Joint Quantum Centre Durham/Newcastle. Durham

Similar documents
Microwave Control of the Interaction Between Two Optical Photons. David Szwer 09/09/ / 40

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Kevin J. Weatherill. Joint Quantum Centre (Durham-Newcastle) Department of Physics Durham University

Microwave control of the interaction between two optical photons

arxiv: v3 [quant-ph] 22 Dec 2012

Slow and stored light using Rydberg atoms

Pulsed Rydberg four wave mixing with motion induced dephasing in a thermal vapor

Non-equilibrium spin systems - from quantum soft-matter to nuclear magnetic resonance

Exploring long-range interacting quantum many-body systems with Rydberg atoms

Quantum Computation with Neutral Atoms Lectures 14-15

High-resolution hyperfine spectroscopy of excited states using electromagnetically induced transparency

Resonant energy transport in aggregates of ultracold Rydberg-Atoms

Rydberg excited Calcium Ions for quantum interactions. Innsbruck Mainz Nottingham

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Crossover from Electromagnetically Induced Transparency to Autler-Townes Splitting in Open Ladder Systems with Doppler Broadening.

Andy Schwarzkopf Raithel Lab 1/20/2010

Distributing Quantum Information with Microwave Resonators in Circuit QED

Rydberg excited Calcium Ions for quantum interactions

Lecture 4. Feshbach resonances Ultracold molecules

arxiv: v1 [quant-ph] 22 May 2012

arxiv: v1 [physics.optics] 3 Apr 2016

Ultracold molecules - a new frontier for quantum & chemical physics

Cold Polar Molecules and their Applications for Quantum Information H.P. Büchler

Electromagnetically induced transparency in multi-level cascade scheme of cold rubidium atoms

Electromagnetically induced transparency in rubidium

Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium

RYDBERG BLOCKADE IN AN ARRAY OF OPTICAL TWEEZERS

Interacting Cold Rydberg Atoms: a Toy Many-Body System

Comparison between optical bistabilities versus power and frequency in a composite cavity-atom system

Single Photon Nonlinear Optics with Cavity enhanced Quantum Electrodynamics

OVERVIEW OF RECENT WORK ON LASER EXCITATION OF POSITRONIUM FOR THE FORMATION OF ANTIHYDROGEN

Interference effects on the probe absorption in a driven three-level atomic system. by a coherent pumping field

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion

Quantum Computation with Neutral Atoms

Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers

Positronium: Old Dog, New Tricks

Narrow and contrast resonance of increased absorption in Λ-system observed in Rb cell with buffer gas

Atom trifft Photon. Rydberg blockade. July 10th 2013 Michael Rips

ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN RUBIDIUM 85. Amrozia Shaheen

Manipulating Rydberg atoms and molecules in the gas phase and near chip surfaces

arxiv:quant-ph/ v3 17 Nov 2003

Quantum Many-Body Phenomena in Arrays of Coupled Cavities

Why ultracold molecules?

Single-photon Rydberg excitation spectra of cesium atomic vapor with a 319nm ultra-violet laser

Rydberg atoms: excitation, interactions, trapping

An Opto-Mechanical Microwave-Rate Oscillator

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Okinawa School in Physics 2017 Coherent Quantum Dynamics. Cold Rydberg gases

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

Matter wave interferometry beyond classical limits

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5

LETTERS. Electromagnetically induced transparency with tunable single-photon pulses

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots

1. Cold Collision Basics

arxiv: v1 [physics.atom-ph] 23 Jan 2019

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41

Michael Fleischhauer. Dept. of Physics & research center OPTIMAS University of Kaiserslautern, Germany. GRK 1729, Hannover,

JQI summer school. Aug 12, 2013 Mohammad Hafezi

Transit time broadening contribution to the linear evanescent susceptibility

Saturation Absorption Spectroscopy of Rubidium Atom

Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Quantum Simulation with Rydberg Atoms

arxiv: v1 [physics.atom-ph] 11 Jun 2014

Inhibition of Two-Photon Absorption in a Four-Level Atomic System with Closed-Loop Configuration

Experimental Demonstration of Spinor Slow Light

Experimental demonstration of optical switching and routing via four-wave mixing spatial shift

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

arxiv: v2 [quant-ph] 29 Apr 2016

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Experimental Atomic Physics Research in the Budker Group

Quantum optics of many-body systems

EE-LE E OPTI T C A L S Y TE

YbRb A Candidate for an Ultracold Paramagnetic Molecule

Lecture I: (magnetic) dipolar gases. Lecture II: Rydberg Rydberg interaction. Lecture III : Rydberg ground state interaction

The Nobel Prize in Physics 2012

Quantum Memory with Atomic Ensembles

NanoKelvin Quantum Engineering

VIC Effect and Phase-Dependent Optical Properties of Five-Level K-Type Atoms Interacting with Coherent Laser Fields

pulses. Sec. III contains the simulated results of the interaction process and their analysis, followed by conclusions in Sec. IV.

Physics and Chemistry with Diatomic Molecules Near Absolute Zero. Tanya Zelevinsky & ZLab Columbia University, New York

Quantum Optics in Wavelength Scale Structures

Time Reversal and the electron electric dipole moment. Ben Sauer

Investigation of two-color magneto-optical trap with cesium 6S 1/2-6P 3/2-7S 1/2 ladder-type system

Lifetimes of ultralong range Rydberg molecules in a dense Bose Einstein condensate

The liquid-vapour interface of QDO water. Flaviu Cipcigan Andrew Jones Jason Crain Vlad Sokhan Glenn Martyna

Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

Storing and manipulating quantum information using atomic ensembles

arxiv: v1 [physics.atom-ph] 8 Jan 2016

Laser system for EIT spectroscopy of cold Rb atoms

Introduction to cold atoms and Bose-Einstein condensation (II)

Introduction to Cavity QED

The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA. NSF Visiting Committee, April 28-29, 2014

Golden chain of strongly interacting Rydberg atoms

Optical Multi-wave Mixing Process Based on Electromagnetically Induced Transparency

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Introduction to Nonlinear Optics

Hyperfine structure in photoassociative spectra of 6 Li 2 and 7 Li 2

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Transcription:

Joint Quantum Centre Durham/Newcastle Acknowledgements Durham (Current) Staff: MPA Jones, KJ Weatherill PDRA: P Huillery PhD: H Busche, S Ball, T Ilieva C Wade, N Sibalic Durham Theory Collaborations Nottingham: I Lesanovsky. Dresden T Pohl Finance Former members PDRA: A Mohapatra (NISER), A Gauguet (Toulouse), U Krohn D Szwer (NPL) PhD: MG Bason (Aarhus), JD Pritchard (Wisc), RP Abel D Maxwell (CERN), D Paredes (ICFO)

From Rydberg EIT to quantum non-linear optics 2006 2010 2012 2013 Rydberg EIT 46d Giant optical non-linearity Rydberg quantum optics Non-equilibrium phase transition Maxwell et al., Phys. Rev. Lett. 110, 103003 (2013). XXZ model Mohapatra et al., Phys. Rev. Lett. 98, 113003 (2007). Carr et al., Phys. Lev. Lett. 111, 113901 (2013). Pritchard et al., Phys. Rev. Lett. 105, 193603 (2010). Rydberg non-linear optics, Pritchard et al., Annual Review of Cold Atoms and Molecules, 1, 301 (2013).

Ground states to highly-excited Rydberg states

Ground states to highly-excited Rydberg states Dipole moment Rydberg ns Rydberg np Dipole moment Ground s Rydberg np Lifetime Sensitivity to E fields Resonant dipole dipole ns,np van der Waals interactions ns,ns Sensors Quantum optics many body

Rydberg inspiration! 2004 Frederick Merkt, ETH ECAMP Rennes 2004 Millimeter wave spectroscopy of argon

Rydberg atom detection Fluorescence (low n) Ionisation (high n) n = 10 Haroche et al., Phys. Rev. Lett. 33, 1063 (1974). n = 41 Fabre et al., Phys. Rev. A 18, 229 (1978).

Electromagnetically induced transparency Boller, Imamoglu and Harris, Phys. Rev. Lett. 66, 2593 (1991).

Ladder EIT with Rydbergs? J Gea Banacloche, Y Li, S Jin, M Xiao, Phys Rev A 51, 576 (1995). S Badger, IG Hughes and CS Adams, J. Phys. B 34, L749 (2001).

Ladder EIT: limited utility?

Ladder EIT with Rydbergs? Dipole moment ns np Dipole moment gs np Lifetime Sensitivity to E fields Resonant dipole dipole ns,np van der Waals interactions ns,ns

Ladder EIT with Rydbergs? A problem Dipole moment ns np Dipole moment p ns Lifetime Sensitivity to E fields Resonant dipole dipole ns,np van der Waals interactions ns,ns

Ladder EIT? Clarke and van Wijngaarden, Phys. Rev. A 64, 023818 (2001). 365 mw

Experiment summer 2006

1 st Rydberg EIT (06.11.06) Thermal vapour

1 st Rydberg EIT (06.11.06) Photodiode signal Oscilloscope trace Saturation spectroscopy 5s 5p 26d EIT Laser detuning

Rydberg EIT n = 46 d 2 MHz Mohapatra et al., Phys. Rev. Lett. 98, 113003 (2007).

Rydberg EIT: giant Kerr effects Non-linearity Slope (EIT) Shift (Rydberg) Bad slope! 2 - level 3 - level EIT Good slope!

Ladder EIT with Rydbergs: non-linearity Dipole moment ns np Dipole moment p ns Lifetime Kerr effect Sensitivity to E fields Resonant dipole dipole ns,np van der Waals interactions ns,ns

Ladder EIT with Rydbergs: non-linearity Dipole moment ns np Dipole moment p ns Lifetime Sensitivity to E fields Optical Kerr effect Resonant dipole dipole ns,np van der Waals interactions ns,ns

Early theory

1 st Rydberg EIT in cold atoms (2008)

Rydberg EIT (2010) Pritchard et al, PRL 105, 193603 (2010) n = 46 s

Dipole blockade and Rydberg EIT Rydberg polaritons Pritchard et al, PRL 105, 193603 (2010)

Giant optical non-linearity Rydberg non-linear optics, Pritchard et al., Ann. Rev. of Cold Atoms and Mol., 1, 301 (2013). arxiv:1205.4890 Optical Kerr effect Kerr non-linearity

A photon-photon processor? Rydberg non-linear optics, Pritchard et al., Ann. Rev. of Cold Atoms and Mol., 1, 301 (2013). arxiv:1205.4890 Kerr non-linearity

A photon-photon processor? Rydberg non-linear optics, Pritchard et al., Ann. Rev. of Cold Atoms and Mol., 1, 301 (2013). arxiv:1205.4890 Kerr non-linearity JH Shapiro, Single-photon Kerr nonlinearities do not help quantum computation, Phys Rev A 76, 062305 (2006) J Gea Banacloche, Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets, Phys Rev A 81, 043823 (2010)

Rydberg quantum optics Georgia Tech Harvard/MIT Durham Dudin et al, Science 336, 887 (2012) Peyronel et al, Nature 488, 57 (2012) Maxwell et al, PRL 110, 103001 (2013) plus Heidelberg, Garching, Stuttgart, Paris, ICFO

Interface: optical, THz, microwave and rf 1 100 GHz Cs levels

Optically trapped ultracold Rb atoms Experiment: laser cooled Rb atoms See D Maxwell, PhD thesis www.jqc.org.uk 2 mm 15 mm 5 mm Maxwell et al., Phys. Rev. Lett. 110, 103003 (2013).

Rydberg quantum memory Rydberg polaritons! Maxwell et al., Phys. Rev. Lett. 110, 103003 (2013).

Anti-bunching: memory is blockaded 2 mm 15 mm 5 mm Limited to 3 polaritons! Maxwell et al., Phys. Rev. Lett. 110, 103003 (2013).

Microwave control of photon-photon interactions Maxwell et al., Phys. Rev. A 110, 043827 (2014). Increasing microwave power

Microwave control of photon-photon interactions Maxwell et al., Phys. Rev. A 110, 043827 (2014). Increasing microwave power

Microwave control of photon-photon interactions Maxwell et al., Phys. Rev. A 110, 043827 (2014). Increasing microwave power Theory: dephasing of spin waves. Bariani et al., Phys. Rev. Lett. 108, 030501 (2012).

A photon-photon processor Paredes-Barato et al., Phys. Lev. Lett. 112, 040501 (2014). Write Retrieve JH Shapiro, Single-photon Kerr nonlinearities do not help quantum computation, Phys Rev A 76, 062305 (2006) J Gea Banacloche, Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets, Phys Rev A 81, 043823 (2010)

Excitation hopping: XXZ spin model Hopping between single atoms: Barredo et al., arxiv:1408:1055

Exciton dynamics: XXZ spin model S Bettelli et al, PRA 88, 043436 (2013) Driving Hopping XXZ model

3 photon Rydberg EIT: 6s 6p 7s 26p 785 nm

3 photon EIT C. Carr et al. Opt. Lett. 37, 3858 (2012). Long cell (low density) Short cell (higher density)

Phase transition

Non-equilibrium phase transition Seattle PI

Intrinsic optical bistability Lorentz shift

Superradiant cascade

Summary Rydberg non-linear optics, Pritchard et al., Ann. Rev. of Cold Atoms and Mol., 1, 301 (2013). 1. Rydberg EIT: 2. Microwave to optical interface 3. Phase transition

Superradiant [?] depopulation of 26p

Superradiant cascade [?]