Mathematical model of IL6 signal transduction pathway

Similar documents
COMPUTER SIMULATION OF DIFFERENTIAL KINETICS OF MAPK ACTIVATION UPON EGF RECEPTOR OVEREXPRESSION

The EGF Signaling Pathway! Introduction! Introduction! Chem Lecture 10 Signal Transduction & Sensory Systems Part 3. EGF promotes cell growth

Chem Lecture 10 Signal Transduction

Cytokines regulate interactions between cells of the hemapoietic system

Mathematical Modeling and Analysis of Crosstalk between MAPK Pathway and Smad-Dependent TGF-β Signal Transduction

Reprogramming what is it? ips. neurones cardiomyocytes. Takahashi K & Yamanaka S. Cell 126, 2006,

State Machine Modeling of MAPK Signaling Pathways

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on

Bioinformatics Modelling dynamic behaviour: Modularisation

Cell-Cell Communication in Development

Qualitative and Quantitative Analysis of a Bio-PEPA Model of the Gp130/JAK/STAT Signalling Pathway

From Petri Nets to Differential Equations An Integrative Approach for Biochemical Network Analysis

Activation of a receptor. Assembly of the complex

PROBABILISTIC SENSITIVITY ANALYSIS OF BIOCHEMICAL REACTION SYSTEMS. Hongxuan Zhang

Cell Cell Communication in Development

Cell Adhesion and Signaling

Control mechanism of JAK/STAT signal transduction pathway

Graduate Institute t of fanatomy and Cell Biology

Cell-Cell Communication in Development

Problem Set # 3

Mathematical Modelling Of The Jak /Stat1 Signal Transduction Pathway By Stephan Beirer READ ONLINE

Essentials of Cell Signaling

Lipniacki 2004 Ground Truth

Supplementary Figures

Process Simulation of Complex Biochemical Pathways in Explicit 3D Space Enabled by Heterogeneous Computing Platform

Enabling Technologies from the Biology Perspective

FYTN05/TEK267 Chemical Forces and Self Assembly

Rapid and sustained nuclear cytoplasmic ERK oscillations induced by epidermal growth factor

Mechanism underlying the bio-effects of an electromagnetic field based on the Huang-Ferrell model

Computational Modeling of the EGFR Network Elucidates Control Mechanisms Regulating Signal Dynamics

Signalling and Crosstalk in Cytokine Pathways: Mathematical Modelling and Quantitative Analysis

Sig2GRN: A Software Tool Linking Signaling Pathway with Gene Regulatory Network for Dynamic Simulation

Mechanisms of Cell Proliferation

Mechanisms of Cell Proliferation

The circle and the basics of signal transduction. Course Outline. Topic #! Topic lecture! Silverthorn! Membranes (pre-requisite material)" "

Dynamic Stability of Signal Transduction Networks Depending on Downstream and Upstream Specificity of Protein Kinases

Reasoning about the ERK signal transduction pathway using BioSigNet-RR

Systems Biology Across Scales: A Personal View XIV. Intra-cellular systems IV: Signal-transduction and networks. Sitabhra Sinha IMSc Chennai

7.013 Problem Set

Reception The target cell s detection of a signal coming from outside the cell May Occur by: Direct connect Through signal molecules

Signal Transduction. Dr. Chaidir, Apt

STRUCTURAL MODELING AND ANALYSIS OF SIGNALING PATHWAYS BASED ON PETRI NETS

Richik N. Ghosh, Linnette Grove, and Oleg Lapets ASSAY and Drug Development Technologies 2004, 2:

Role of SOCS2 in growth hormone actions

P systems based Modelling of Cellular Signalling Pathways

Dynamic modeling and analysis of cancer cellular network motifs

A mechanistic study of evolvability using the mitogen-activated protein kinase cascade

S1 Gene ontology (GO) analysis of the network alignment results

AP Biology Gene Regulation and Development Review

Research Article for BMC Bioinformatics. Mary Ann Blätke 1, Anna Dittrich 2+, Christian Rohr 1,3+,

38050 Povo Trento (Italy), Via Sommarive 14 CAUSAL P-CALCULUS FOR BIOCHEMICAL MODELLING

References on Kinetics and Mechanisms

SPA for quantitative analysis: Lecture 6 Modelling Biological Processes

Ligand-dependent responses of the ErbB signaling network: experimental and modeling analyses

BIOINFORMATICS ORIGINAL PAPER

Basic Synthetic Biology circuits

Principles of interleukin (IL)-6-type cytokine signalling and its regulation 1

Molecular Cell Biology 5068 In Class Exam 2 November 8, 2016

CS-E5880 Modeling biological networks Parameter estimation for biological networks

Study Guide 11 & 12 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Integrating Bayesian variable selection with Modular Response Analysis to infer biochemical network topology

Cytokinin. Fig Cytokinin needed for growth of shoot apical meristem. F Cytokinin stimulates chloroplast development in the dark

Drug interactions. (Efficacy is a measure of the size of response produced by receptor activation)

Towards modular verification of pathways: fairness and assumptions

Biol403 - Receptor Serine/Threonine Kinases

Introduction to Bioinformatics

Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Tuesday, December 27, 16

Prokaryotic Regulation

Receptors and Ion Channels

Model of Mitogen Activated Protein Kinases for Cell Survival/Death and its Equivalent Bio-circuit

MAPK kinase kinase regulation of SAPK/JNK pathways

Computational modeling of the EGF-receptor system: a paradigm for systems biology

56:198:582 Biological Networks Lecture 11

What is Systems Biology?

Lecture 7: Simple genetic circuits I

MOLECULAR DOCKING ANALYSIS OF HEME BINDING TO MAPK SIGNALING CASCADE MEMBERS INVOLVED IN NEURONS DEVELOPMENT AND SURVIVAL

CONTROL OF PLANT GROWTH AND DEVELOPMENT BI-2232 RIZKITA R E

Modelling spatio-temporal interactions within the cell

The Logic of EGFR/ErbB Signaling: Theoretical Properties and Analysis of High-Throughput Data

Types of biological networks. I. Intra-cellurar networks

Plant Molecular and Cellular Biology Lecture 8: Mechanisms of Cell Cycle Control and DNA Synthesis Gary Peter

Analyzing Pathways using SAT-based Approaches

Prokaryotic Gene Expression (Learning Objectives)

Chapter 15 Active Reading Guide Regulation of Gene Expression

Simulation Methods for Optimal Experimental Design in Systems Biology

Evidence for the Existence of Non-monotonic Dose-response: Does it or Doesn t it?

Systems biology and complexity research

Regulation of metabolism

Importance of Protein sorting. A clue from plastid development

PKA PKC. Reactions: Kf and Kb are in units of um and sec.

Biological Pathways Representation by Petri Nets and extension

1. Ras-Interactors from the RASOMICS database

The MEK/ERK cascade: From signaling specificity to diverse functions

A. Incorrect! The Cell Cycle contains 4 distinct phases: (1) G 1, (2) S Phase, (3) G 2 and (4) M Phase.

Systems Biology. Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, and Ralf Herwig. A Textbook

Co-ordination occurs in multiple layers Intracellular regulation: self-regulation Intercellular regulation: coordinated cell signalling e.g.

Generating executable models from signaling network connectivity and semi-quantitative proteomic measurements

Advances in high-throughput genomics and proteomics analysis

From Petri Nets to Differential Equations - an Integrative Approach for Biochemical Network Analysis

Welcome to Class 21!

Transcription:

Mathematical model of IL6 signal transduction pathway Fnu Steven, Zuyi Huang, Juergen Hahn This document updates the mathematical model of the IL6 signal transduction pathway presented by Singh et al., 2006. A MATLAB program for the updated IL6 model is also included in this work. The model presented by Singh et al., 2006, is based upon the model structure proposed by Heinrich et al., 2003, where the dynamic model of Jak-STAT signaling is adopted from Yamada et al., 2003, and parts of the detailed kinetic model of Erk-C/EBPβ signaling proposed by Schoeberl et al. 2002, are also used. In the model presented by Singh et al., 2006, SOCS3 can bind to the receptor complex that may have STAT3 or SHP2 bound to it. The reason for including these mechanisms is that Singh et al. s Jak-STAT model is based upon a dynamic model of the Jak-STAT pathway stimulated by IFN-γ (Yamada et al., 2003). However, the binding sites of the IL-6 receptor complex have different characteristics than the one for the IFN-γ complex as SOCS3 and SHP2 compete for the same binding site and SOCS3 also inhibits activation of STAT3 (Fischer and Hilfiker-Kleiner, 2008). As a result of this Eq. (1) ~ (4) from Singh et al., 2006 s model are replaced with the reaction shown in Eq. (5) in this work. STAT3C + (IL6-gp80-gp130-JAK) * 2-SOCS3 (IL6-gp80-gp130-JAK) * 2-STAT3C-SOCS3 (1) (IL6-gp80-gp130-JAK) * 2-STAT3C-SOCS3-SHP2 (IL6-gp80-gp130-JAK) * 2 + STAT3C + SOCS3 + SHP2 (3) (IL6-gp80-gp130-JAK) * 2-SOCS3 (IL6-gp80-gp130-JAK) * 2 + SOCS3 (5) (2) (4) This document is structured as follows: Section 1 presents the updated structure of the IL6 signal transduction pathway. Section 2 contains an ordinary differential equation (ODE) model for the updated IL6 signaling. Based upon this ODE model, a MATLAB program is developed and briefly described in Section 3. 1. IL-6 signal transduction pathway 1) gp80 + IL6 IL6-gp80 2) gp130 + JAK gp130-jak 3) IL6-gp80 + gp130-jak IL6-gp80-gp130-JAK 4) IL6-gp80-gp130-JAK + IL6-gp80-gp130-JAK (IL6-gp80-gp130-JAK) 2 5) (IL6-gp80-gp130-JAK) 2 (IL6-gp80-gp130-JAK)* 2 6) (IL6-gp80-gp130-JAK)* 2 + STAT3C (IL6-gp80-gp130-JAK)* 2 - STAT3C 7) (IL6-gp80-gp130-JAK)* 2 - STAT3C (IL6-gp80-gp130-JAK)* 2 + STAT3C* 8) (IL6-gp80-gp130-JAK)* 2 + STAT3C* (IL6-gp80-gp130-JAK)* 2 - STAT3C* 9) STAT3C* + STAT3C* STAT3C*-STAT3C* 10) (IL6-gp80-gp130-JAK)* 2 + SHP2 (IL6-gp80-gp130-JAK)* 2-SHP2 11) (IL6-gp80-gp130-JAK)* 2 -SHP2 (IL6-gp80-gp130-JAK) 2 + SHP2 To whom correspondence should be addressed. Tel.: (979) 845 3568, Fax: (979) 845 6446, e-mail: hahn@tamu.edu

12) PP1 + STAT3C* PP1-STAT3C* 13) PP1-STAT3C* PP1 + STAT3C 14) PP1 + STAT3C*-STAT3C* PP1-STAT3C*-STAT3C* 15) PP1-STAT3C*-STAT3C* PP1 + STAT3C-STAT3C* 16) STAT3C + STAT3C* STAT3C-STAT3C* 17) STAT3C*-STAT3C* STAT3N*-STAT3N* 18) STAT3N*-STAT3N* STAT3N* + STAT3N* 19) PP2 + STAT3N* PP2-STAT3N* 20) PP2-STAT3N* PP2 + STAT3N 21) PP2 + STAT3N*-STAT3N* PP2-STAT3N*-STAT3N* 22) PP2-STAT3N*-STAT3N* PP2 + STAT3N-STAT3N* 23) STAT3N-STAT3N* STAT3N + STAT3N* 24) STAT3N STAT3C,, 25) STAT3N*-STAT3N* mrna-socs3n 26) mrna-socs3n mrna-socs3c 27) mrna-socs3c SOCS3 28) SOCS3 + (IL6-gp80- gp130-jak)* 2 (IL6-gp80- gp130-jak)* 2 -SOCS3 29) mrna-socs3c mrna-socs3c 30) SOCS3 SOCS3 31) (IL6-gp80- gp130-jak)* 2 -SOCS3 SOCS3 + (IL6-gp80- gp130-jak) 2 32) (IL6-gp80- gp130-jak)* 2 -SHP2 (IL6-gp80- gp130-jak)* 2-SHP2* 33) (IL6-gp80- gp130-jak)*2-shp2* + Grb2 (IL6-gp80- gp130-jak)* 2-SHP2*-Grb2 34) (IL6-gp80- gp130-jak)* 2 -SHP2*-Grb2 + SOS (IL6-gp80- gp130-jak)* 2-SHP2*-Grb2-SOS 35) (IL6-gp80- gp130-jak)* 2 -SHP2*-Grb2-SOS + Ras-GDP (IL6-gp80- gp130-jak)* 2-SHP2*-Grb2-SOS-Ra-GDP 36) (IL6-gp80- gp130-jak)* 2 -SHP2*-Grb2-SOS-Ra-GDP (IL6-gp80- gp130-jak)* 2-SHP2*-Grb2-SOS + Ras-GTP 37) Raf + Ras-GTP Raf-Ras-GTP 38) Raf + Ras-GTP Raf* + Ras-GTP* 39) Ras-GTP* + (IL6-gp80- gp130-jak)* 2 -SHP2*-Grb2-SOS (IL6-gp80- gp130-jak)* 2-SHP2*-Grb2-SOS-Ras-GTP 40) (IL6-gp80- gp130-jak)* 2 -SHP2*-Grb2-SOS-Ras-GTP (IL6-gp80- gp130-jak)* 2-SHP2*-Grb2-SOS + Ras-GDP 41) (IL6-gp80- gp130-jak)* 2 -SHP2*-Grb2-SOS (IL6-gp80- gp130-jak)* 2 + SHP2*-Grb2-SOS 42) SHP2*-Grb2-SOS Grb2-SOS + SHP2* 43) Grb2-SOS Grb2 + SOS,, 44) SHP2* SHP2

45) (IL6-gp80- gp130-jak)* 2 -SHP2* (IL6-gp80- gp130-jak)* 2 + SHP2* 46) SHP2* + Grb2 SHP2*-Grb2 47) (IL6-gp80- gp130-jak)* 2 -SHP2*-Grb2 SHP2*-Grb2 + (IL6-gp80- gp130-jak)* 2 48) SHP2*-Grb2 + SOS SHP2*-Grb2-SOS 49) (IL6-gp80- gp130-jak)* 2 -SHP2* + Grb2-SOS (IL6-gp80- gp130-jak)* 2-SHP2*-Grb2-SOS 50) Raf* + Phosp1 Raf*-Phosp1 51) Raf*-Phosp1 Raf + Phosp1 52) MEK + Raf* MEK-Raf* 53) MEK-Raf* MEK-P + Raf* 54) MEK-P + Raf* MEK-P-Raf* 55) MEK-P-Raf* MEK-PP + Raf* 56) MEK-PP + Phosp2 MEK-PP-Phosp2 57) MEK-PP-Phosp2 MEK-P + Phosp2 58) MEK-P + Phosp2 MEK-P-Phosp2 59) MEK-P-Phosp2 MEK + Phosp2 60) ERK + MEK-PP ERK-MEK-PP 61) ERK-MEK-PP ERK-P + MEK-PP 62) ERK-P + MEK-PP ERK-P-MEK-PP 63) ERK-P-MEK-PP ERK-PP + MEK-PP 64) ERK-PP + Phosp3 ERK-PP-Phosp3 65) ERK-PP-Phosp3 ERK-PP + Phosp3 66) ERK-PP + Phosp3 ERK-P-Phosp3 67) ERK-P-Phosp3 ERK + Phosp3

IL6 gp80 1 gp130 JAK 2 IL6-gp80 3 gp130-jak IL6-gp80-gp130-JAK CELL SURFACE 4 IL6-gp80-gp130-JAK (IL6-gp80-gp130-JAK)2 9 (STAT3C)*2 14 PP1 PP1-(STAT3C * )2 15 STAT3C-STAT3C* STAT3C * 5 7 (IL6-gp80-gp130-JAK * )2-STAT3C (IL6-gp80-gp130-JAK)*2 STAT3C * 6 12 PP1-STAT3C * STAT3C 13 8 STAT3C * -(IL6-gp80-gp130-JAK * )2 16 STAT3C * 11 SHP2 (IL6-gp80-gp130-JAK)*2-SHP2 44 1 10 0 32 45 SHP2 * (IL6-gp80-gp130-JAK * )2-SHP2 * Grb2 Grb2-Sos 46 47 33 SHP2 * -Grb2 (IL6-gp80-gp130-JAK * )2-SHP2 * -Grb2 Sos 49 48 34 41 SHP2 * -Grb2-Sos (IL6-gp80-gp130-JAK * )2-SHP2 * -Grb2-Sos 35 Ras-GDP 40 42 SHP2 * Grb2 43 Grb2-Sos (IL6-gp80-gp130-JAK * )2- SHP2 * -Grb2-Sos-Ras-GDP (IL6-gp80-gp130-JAK * )2- SHP2 * -Grb2-Sos-Ras-GTP (IL6-gp80-gp130-JAK)2 SOCS3 Sos Ras-GTP 36 37 Raf-Ras-GTP 39 Ras-GTP * 38 Raf 51 Raf * -Phosp1 Phosp1 50 Raf * MEK MEK-Raf * MEK-P MEK-P-Raf * 52 53 54 Raf * 59 MEK-P-Phosp2 MEK-P MEK-PP-Phosp2 58 57 Phosp2 Phosp2 56 55 MEK-PP 31 ERK ERK-MEK-PP ERK-P ERK-P-MEK-PP 63 60 61 62 MEK-PP 67 ERK-P-Phosp3 ERK-P ERK-PP-Phosp3 ERK-PP 66 65 64 Phosp3 Phosp3 28 27 Socs3- (IL6-gp80-gp130-JAK*)2 SOCS3 mrna-socs3-c 30 29 STAT3C Degradation 26 Degradation 24 PP2-STAT3N * STAT3N 20 STAT3N * 19 STAT3N * 23 STAT3N * mrna-socs3-n PP2 STAT3N-STAT3N * 18 22 25 21 17 PP2-(STAT3N * )2 (STAT3N * )2 CYTOSOL NUCLEUS 68 DNA Figure 1, Schematic diagram of IL-6 signal transduction pathway 2. Ordinary differential equation (ODE) model of IL-6 signaling dx 1 /dt dx 2 /dt = 0 = k f1 x 1 u - k r1 x 2 - k f3 x 2 x 5 + k r3 x 6 dx 3 /dt = 0 dx 4 /dt = -k f2 x 3 x 4 + k r2 x 5 dx 5 /dt = k f2 x 3 x 4 - k r2 x 5 - k f3 x 2 x 5 + k r3 x 6 dx 6 /dt = k f3 x 2 x 5 - k r3 x 6-2k f4 x 6 x 6 + 2k r4 x 7 dx 7 /dt = k f4 x 6 x 6 - k r4 x 7 - k 5 x 7 + k 11 x 15 + k 31 x 30 dx 8 /dt = k 5 x 7 - k f6 x 8 x 9 + k r6 x 10 + k 7 x 10 - k f8 x 8 x 11 + k r8 x 12 - k f10 x 8 x 14 + k r10 x 15 - k f28 x 29 x 8 + k r28 x 30 + k f41 x 35 -k r41 x 8 x 44 + k f45 x 31 - k r45 x 8 x 46 + k f47 x 33 - k r47 x 47 x 8 dx 9 /dt = -k f6 x 8 x 9 + k r6 x 10 + k 13 x 17 - k f16 x 9 x 11 + k r16 x 19 + k 24 x 24 dx 10 /dt = k f6 x 8 x 9 - k r6 x 10 - k 7 x 10 dx 11 /dt = k 7 x 10 - k f8 x 8 x 11 + k r8 x 12-2k f9 x 11 x 11 + 2k r9 x 13 - k f12 x 16 x 11 + k r12 x 17 - k f16 x 9 x 11 + k r16 x 19

dx 12 /dt = k f8 x 8 x 11 - k r8 x 12 dx 13 /dt = k f9 x 11 x 11 - k r9 x 13 - k f14 x 16 x 13 + k r14 x 18 - k 17 x 13 dx 14 /dt = -k f10 x 8 x 14 + k r10 x 15 + k 11 x 15 + v m x 46 /(k m + x 46 ) dx 15 /dt = k f10 x 8 x 14 - k r10 x 15 - k 11 x 15 - k f32 x 15 + k r32 x 31 dx 16 /dt = -k f12 x 16 x 11 + k r12 x 17 + k 13 x 17 - k f14 x 16 x 13 + k r14 x 18 + k 15 x 18 dx 17 /dt = k f12 x 16 x 11 - k r12 x 17 - k 13 x 17 dx 18 /dt = k f14 x 16 x 13 - k r14 x 18 - k 15 x 18 dx 19 /dt = k 15 x 18 + k f16 x 9 x 11 - k r16 x 19 dx 20 /dt = k 17 x 13 - k f18 x 20 + k r18 x 21 x 21 - k f21 x 22 x 20 + k r21 x 25 dx 21 /dt = 2k f18 x 20-2k r18 x 21 x 21 - k f19 x 22 x 21 + k r19 x 23 + k r23 x 26 - k f23 x 24 x 21 dx 22 /dt = -k f19 x 22 x 21 + k r19 x 23 + k 20 x 23 - k f21 x 22 x 20 + k r21 x 25 + k 22 x 25 dx 23 /dt = k f19 x 22 x 21 - k r19 x 23 - k 20 x 23 dx 24 /dt = k 20 x 23 + k r23 x 26 - k f23 x 24 x 21 - k 24 x 24 dx 25 /dt = k f21 x 22 x 20 - k r21 x 25 - k 22 x 25 dx 26 /dt = k 22 x 25 - k r23 x 26 + k f23 x 24 x 21 dx 27 /dt = k 25a x 20 /(k 25b + x 20 ) - k 26 x 27 dx 28 /dt = k 26 x 27 - k 29 x 28 dx 29 /dt = k 27 x 28 - k f28 x 29 x 8 + k r28 x 30 - k 30 x 29 + k 31 x 30 dx 30 /dt = k f28 x 29 x 8 - k r28 x 30 - k 31 x 30 dx 31 /dt = k f32 x 15 - k r32 x 31 - k f33 x 31 x 32 + k r33 x 33 - k f45 x 31 + k r45 x 8 x 46 - k f49 x 31 x 45 + k r49 x 35 dx 32 /dt = -k f33 x 31 x 32 + k r33 x 33 + k f43 x 45 - k r43 x 32 x 34 - k f46 x 46 x 32 + k r46 x 47 dx 33 /dt = k f33 x 31 x 32 - k r33 x 33 - k f34 x 33 x 34 + k r34 x 35 - k f47 x 33 + k r47 x 47 x 8 dx 34 /dt = -k f34 x 33 x 34 + k r34 x 35 + k f43 x 45 - k r43 x 32 x 34 - k f48 x 47 x 34 + k r48 x 44 dx 35 /dt = k f34 x 33 x 34 - k r34 x 35 - k f35 x 35 x 36 + k r35 x 37 + k f36 x 37 - k r36 x 37 x 38 - k f39 x 42 x 35 + k r39 x 43 + k f40 x 43 - k r40 x 35 x 36 - k f41 x 35 + k r41 x 8 x 44 + k f49 x 31 x 45 - k r49 x 35 dx 36 /dt = -k f35 x 35 x 36 + k r35 x 37 + k f40 x 43 - k r40 x 35 x 36 dx 37 /dt = k f35 x 35 x 36 - k r35 x 37 - k f36 x 37 + k r36 x 35 x 38 dx 38 /dt = k f36 x 37 - k r36 x 35 x 38 - k f37 x 39 x 38 + k r36 x 40 dx 39 /dt = -k f37 x 39 x 38 + k r37 x 40 + k 51 x 49 dx 40 /dt = k f37 x 39 x 38 - k r37 x 40 - k f38 x 40 + k r38 x 41 x 42 dx 41 /dt = k f38 x 40 - k r38 x 41 x 42 - k f50 x 41 x 48 + k r50 x 49 - k f52 x 50 x 41 + k r52 x 51 + k 53 x 51 - k f54 x 52 x 41 + k r54 x 53 + k 55 x 53 dx 42 /dt = k f38 x 40 - k r38 x 41 x 42 - k f39 x 42 x 35 + k r39 x 43 dx 43 /dt = k f39 x 42 x 35 - k r39 x 43 - k f40 x 43 + k r40 x 35 x 36 dx 44 /dt = k f41 x 35 - k r41 x 8 x 44 - k f42 x 44 + k r42 x 45 x 46 + k f48 x 47 x 34 - k r48 x 44 dx 45 /dt = k f42 x 44 - k r42 x 45 x 46 - k f43 x 45 + k r43 x 32 x 34 - k f49 x 31 x 45 + k r49 x 35 dx 46 /dt = k f42 x 44 - k r42 x 45 x 46 - v m x 46 /(k m + x 46 )+ k f45 x 31 - k r45 x 8 x 46 - k f46 x 46 x 32 + k r46 x 47 dx 47 /dt = k f46 x 46 x 32 - k r46 x 47 + k f47 x 33 - k r47 x 47 x 8 - k f48 x 47 x 34 + k r48 x 44 dx 48 /dt = -k f50 x 41 x 48 + k r50 x 49 + k 51 x 49 dx 49 /dt = k f50 x 41 x 48 - k r50 x 49 - k 51 x 49 dx 50 /dt = -k f52 x 50 x 41 + k r52 x 51 + k 59 x 57 dx 51 /dt = k f52 x 50 x 41 - k r52 x 51 - k 53 x 51 dx 52 /dt = k 53 x 51 - k f54 x 52 x 41 + k r54 x 53 + k 57 x 56 - k f58 x 52 x 55 + k r58 x 57 dx 53 /dt = k f54 x 52 x 41 - k r54 x 53 - k 55 x 53 dx 54 /dt = k 55 x 53 - k f56 x 54 x 55 + k r56 x 56 - k f60 x 58 x 54 + k r60 x 59 + k 61 x 59 - k f62 x 60 x 54 + k r62 x 61 + k 63 x 61 dx 55 /dt = -k f56 x 54 x 55 + k r56 x 56 + k 57 x 56 - k f58 x 52 x 55 + k r58 x 57 + k 59 x 57 dx 56 /dt = k f56 x 54 x 55 - k r56 x 56 - k 57 x 56 dx 57 /dt = k f58 x 52 x 55 - k r58 x 57 - k 59 x 57 dx 58 /dt = -k f60 x 58 x 54 + k r60 x 59 + k 67 x 65 dx 59 /dt = k f60 x 58 x 54 - k r60 x 59 - k 61 x 59 dx 60 /dt = k 61 x 59 - k f62 x 60 x 54 + k r62 x 61 + k 65 x 64 - k f66 x 60 x 63 + k r66 x 65 dx 61 /dt = k f62 x 60 x 54 - k r62 x 61 - k 63 x 61 dx 62 /dt = k 63 x 61 - k f64 x 62 x 63 + k r64 x 64 dx 63 /dt = -k f64 x 62 x 63 + k r64 x 64 + k 65 x 64 - k f66 x 60 x 63 + k r66 x 65 + k 67 x 65 dx 64 /dt = k f64 x 62 x 63 - k r64 x 64 - k 65 x 64 dx 65 /dt = k f66 x 60 x 63 - k r66 x 65 - k 67 x 65

Tabel 1, State variables of the model and their initial values Name Component Initial value (nm) u IL6 3.83 (100 ng/ml) x 1 gp80 8 x 2 IL6-gp80 0 x 3 gp130 0.8 x 4 JAK 12 x 5 gp130-jak 0 x 6 IL6-gp80- gp130-jak 0 x 7 (IL6-gp80- gp130-jak) 2 0 x 8 (IL6-gp80- gp130-jak)* 2 0 x 9 STAT3C 1000 x 10 (IL6-gp80- gp130-jak)* 2 -STAT3C 0 x 11 STAT3C* 0 x 12 (IL6-gp80- gp130-jak)* 2 -STAT3C* 0 x 13 STAT3C* -STAT3C* 0 x 14 SHP2 100 x 15 (IL6-gp80- gp130-jak)* 2 SHP2 0 x 16 PP1 50 x 17 PP1-STAT3C* 0 x 18 PP1-STAT3C*- STAT3C* 0 x 19 STAT3C -STAT3C* 0 x 20 STAT3N*- STAT3N* 0 x 21 STAT3N* 0 x 22 PP2 60 x 23 PP2-STAT3N* 0 x 24 STAT3N 0 x 25 PP2-STAT3N*- STAT3N* 0 x 26 STAT3N- STAT3N* 0 x 27 mrna-socs3n 0 x 28 mrna-socs3c 0 x 29 SOCS3 0 x 30 (IL6-gp80- gp130-jak)* 2 SOCS3 0 x 31 (IL6-gp80- gp130-jak)* 2 SHP2* 0 x 32 Grb2 85 x 33 (IL6-gp80- gp130-jak)* 2 SHP2*-Grb2 0 x 34 SOS 34 x 35 (IL6-gp80- gp130-jak)* 2 SHP2*-Grb2-SOS 0 x 36 Ras-GDP 19000 x 37 (IL6-gp80- gp130-jak)* 2 SHP2*-Grb2-SOS-Ras-GDP 0 x 38 Ras-GTP 0 x 39 Raf 67

x 40 Raf-Ras-GTP 0 x 41 Raf* 0 x 42 Ras-GTP* 0 x 43 (IL6-gp80- gp130-jak)* 2 SHP2*-Grb2-SOS-Ras-GTP 0 x 44 SHP2*-Grb2-SOS 0 x 45 Grb2- SOS 0 x 46 SHP2* 0 x 47 SHP2*-Grb2 0 x 48 Phosp1 67 x 49 Raf*- Phosp1 0 x 50 MEK 41667 x 51 MEK-Raf* 0 x 52 MEK-P 0 x 53 MEK-P-Raf* 0 x 54 MEK-PP 0 x 55 Phosp2 67 x 56 MEK-PP-Phosp2 0 x 57 MEK-P-Phosp2 0 x 58 ERK 35000 x 59 ERK- MEK-PP 0 x 60 ERK- P 0 x 61 ERK-P- MEK-PP 0 x 62 ERK- PP 0 x 63 Phosp3 16667 x 64 ERK-PP- Phosp3 0 x 65 ERK-P- Phosp3 0 Table 2, Values of the parameters Name Value Name Value Name Value k f1 0.1 k r23 0.2 k f45 0.3 k r1 0.05 k 24 0.05 k r45 0.0009 k f2 0.1 k 25a 0.01 k f46 0.01 k r2 0.05 k 25b 400 k r46 0.55 k f3 0.02 k 26 0.001 k f47 0.3 k r3 0.02 k 27 0.01 k r47 0.0009 k f4 0.04 k f28 5 k f48 0.03 k r4 0.2 k r28 0.1 k r48 0.064 k 5 0.005 k 29 0.0005 k f49 0.03 k f6 0.008 k 30 0.0005 k r49 0.0429 k r6 0.8 k 31 0.003 k f50 0.0717

k 7 0.4 k f32 6 k r50 0.2 k f8 0.005 k r32 0.06 k 51 1 k r8 0.5 k f33 0.01 k f52 0.011 k f9 0.02 k r33 0.55 k r52 0.001833 k r9 0.1 k f34 0.01 k 53 3.5 k f10 0.001 k r34 0.0214 k f54 0.011 k r10 0.2 k f35 0.015 k r54 0.001833 k 11 0.003 k r35 1.3 k 55 2.9 k f12 0.001 k f36 0.5 k f56 0.0143 k r12 0.2 k r36 0.0001 k r56 0.8 k 13 0.003 k f37 0.001 k 57 0.058 k f14 0.001 k r37 0.0053 k f58 0.00025 k r14 0.2 k f38 1 k r58 0.5 k 15 0.003 k r38 0.0007 k 59 0.058 k f16 0.0000002 k f39 0.0079 k f60 0.00011 k r16 0.2 k r39 0.4 k r60 0.033 k 17 0.005 k f40 0.023 k 61 16 k f18 0.1 k r40 0.00022 k f62 0.00011 k r18 0.02 k f41 0.1 k r62 0.033 k f19 0.001 k r41 0.000245 k 63 6.7 k r19 0.2 k f42 0.3 k f64 0.014 k 20 0.005 k r42 0.021 k r64 0.6 k f21 0.001 k f43 0.0015 k 65 0.27 k r21 0.2 k r43 0.0045 k f66 0.005 k 22 0.005 v m 1.7 k r66 0.5 k f23 2E-7 k m 340 k 67 0.3 Note: First order rate constants have units of 1/s and second order rate constants of [nm -1 s -1 ]. 3. MATLAB program for the model of IL6 signaling The ODE model of IL6 signaling is contained in the document pathway_model.m, and the program Main.m is used to run the program. Please follow the following procedures to run the program: 1) Place both programs, pathway_model.m and Main.m, in the same folder; 2) Type Main in the command window to run the simulation. Simulation results for nuclear STAT3 and SOCS3 for stimulation with 100 ng/ml IL6 are shown in Figure 2 and Figure 3, respectively.

60 STAT3N*-STAT3N* (nm) 50 40 30 20 10 0 0 50 100 150 200 250 300 350 400 Time (minute) Figure 2, Simulation result for STAT3N*-STAT3N* with 100 ng/ml IL6 stimulation 25 20 SOCS3 (nm) 15 10 5 0 0 5 10 15 20 25 Time (hour) Figure 3, Simulation result for STAT3N*-STAT3N* with 100 ng/ml IL6 stimulation Reference Fischer, P., and Hilfiker-Kleiner, D.: Role of gp130-mediated signaling pathways in the heart and its impact on potential therapeutic aspects, Br. J. Pharmacol, 2008, 153, pp. S414 S427. Heinrich, P.C., Behrmann, I., Haan, S., Hermanns, H.M., Muller-Newen, G., Schaper, F.: Principles of interleukin (IL)-6-type cytokine signaling and its regulation, Biochem. J., 2003, 374, pp. 1-20 Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D., Muller, G.: Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors, Nature Biotechnology, 2002, 20, pp. 370-375 Singh, A., Jayaraman, A., Hahn, J.: Modeling regulatory mechanisms in IL-6 signal transduction in hepatocytes, Biotechnol. Bioeng., 2006, 95, (5), pp. 850-862 Yamada, S., Shionoa, S., Joob, A., Yoshimura, A.: Control mechanism of JAK/STAT signal transduction pathway, Febs Lett, 2003, 534, pp. 190-196