A computational tool of DM relic abundance and direct detection. M. Backovic, F. Maltoni, A. Martini, Mat McCaskey, K.C. Kong, G.

Similar documents
Dark Matter in Particle Physics

Distinguishing Dark Matter Candidates from Direct Detection Experiments

Kaluza-Klein Dark Matter

Constraining minimal U(1) B L model from dark matter observations

FERMION PORTAL DARK MATTER

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B.

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Lecture 12. Dark Matter. Part II What it could be and what it could do

BSM physics and Dark Matter

Searching for sneutrinos at the bottom of the MSSM spectrum

Cosmology/DM - I. Konstantin Matchev

Nonthermal Dark Matter & Top polarization at Collider

Cosmic Antiproton and Gamma-Ray Constraints on Effective Interaction of the Dark matter

DarkSUSY. Joakim Edsjö With Torsten Bringmann, Paolo Gondolo, Lars Bergström, Piero Ullio and Gintaras Duda. APS Meeting

Dark matter in split extended supersymmetry

Collider Searches for Dark Matter

Simplified models in collider searches for dark matter. Stefan Vogl

A cancellation mechanism for dark matter-nucleon interaction: non-abelian case

LHC searches for dark matter.! Uli Haisch

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Generic Dark Matter 13 TeV. Matteo Cremonesi FNAL On behalf of the ATLAS and CMS Collaborations Moriond EWK - March 18, 2016

Supersymmetric dark matter with low reheating temperature of the Universe

Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University

LHC Impact on DM searches

Cosmological Constraint on the Minimal Universal Extra Dimension Model

pmssm Dark Matter Searches On Ice! Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G.

Activités au LAPTh. G. Bélanger

Pseudoscalar-mediated dark matter models: LHC vs cosmology

The LHC Dark Matter Working Group. Antonio Boveia (Ohio State University)

Dark Matter from Non-Standard Cosmology

Collider searches for dark matter. Joachim Kopp. SLAC, October 5, Fermilab

Dark matter and collider signatures from extra dimensions

micromegas : A tool for dark matter studies

Non-Thermal Dark Matter from Moduli Decay. Bhaskar Dutta. Texas A&M University

Two-body currents in WIMP nucleus scattering

Particle Physics and Cosmology II: Dark Matter

LHC searches for momentum dependent DM interactions

Fermionic DM Higgs Portal! An EFT approach

A realistic model for DM interactions in the neutrino portal paradigm

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

WIMP Velocity Distribution and Mass from Direct Detection Experiments

Prospects and Blind Spots for Neutralino Dark Matter

PHY323:Lecture 11 SUSY and UED Higgs and Supersymmetry The Neutralino Extra Dimensions How WIMPs interact

COLD DARK MATTER DETECTION VIA THE LSP-NUCLEUS ELASTIC SCATTERING 1

arxiv: v1 [hep-ph] 8 Sep 2017

WIMP Dark Matter + SUSY

Sho IWAMOTO. 7 Nov HEP phenomenology joint Cavendish DAMTP U. Cambridge

Symmetric WIMP Dark Matter and Baryogenesis

The Story of Wino Dark matter

Effective Theory for Electroweak Doublet Dark Matter

WIMPs and superwimps. Jonathan Feng UC Irvine. MIT Particle Theory Seminar 17 March 2003

Cosmological Constraint on the Minimal Universal Extra Dimension Model

ATLAS Missing Energy Signatures and DM Effective Field Theories

Sho IWAMOTO. 15 Sep Osaka University. Based on [ ] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine)

Dark Matter WIMP and SuperWIMP

Week 3 - Part 2 Recombination and Dark Matter. Joel Primack

The Four Basic Ways of Creating Dark Matter Through a Portal

A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING

arxiv: v1 [hep-ph] 29 Nov 2016

Learning from WIMPs. Manuel Drees. Bonn University. Learning from WIMPs p. 1/29

R-hadrons and Highly Ionising Particles: Searches and Prospects

Axino Phenomenology in the Kim-Nilles mechanism

THE COANNIHILATION CODEX

Direct detection detection of recoil nuclei after interaction of DM particle in large underground scale detector. DAMA, CDMS, ZENON... experiments.

Chern-Simons portal Dark Matter

WIMP dark matter and Baryogenesis

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di Scienze e Tecnologie Corso di Laurea Magistrale in Fisica

IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY

Probing Dark Matter at the LHC

Search for SUperSYmmetry SUSY

Particle Cosmology. V.A. Rubakov. Institute for Nuclear Research of the Russian Academy of Sciences, Moscow and Moscow State University

Feebly Interacting Massive Particles and their signatures

HIGGS-PORTAL DARK MATTER AT THE LHC

Big-Bang nucleosynthesis, early Universe and relic particles. Alexandre Arbey. Moriond Cosmology La Thuile, Italy March 23rd, 2018

Probing the nature of Dark matter with radio astronomy. Céline Boehm

Introducing SModelS - with an application to light neutralino DM

Calculation of Momentum Distribution Function of a Non-Thermal Fermionic Dark Matter

Sneutrino dark matter and its LHC phenomenology

Dark Matter searches in ATLAS: Run 1 results and Run 2 prospects

INDIRECT DARK MATTER DETECTION

The Linear Collider and the Preposterous Universe

Light Stop Bound State Production at the LHC. Yeo Woong Yoon (KIAS) In collaboration with P. Ko, Chul Kim at Yonsei U.

Lecture 14. Dark Matter. Part IV Indirect Detection Methods

Hunting the Invisible -- Searches for Dark Matter at the LHC

Beyond Simplified Models

Beyond the WIMP Alternative dark matter candidates. Riccardo Catena. Chalmers University

Search for New Physics at the Early LHC

Davison E. Soper Institute of Theoretical Science, University of Oregon, Eugene, OR 97403, USA

New Physics at the TeV Scale and Beyond Summary

Supersymmetry and Dark Matter

Lecture 39, 40 Supplement: Particle physics in the LHC era

A model of the basic interactions between elementary particles is defined by the following three ingredients:

Recent results from the LHCb experiment

Dark Matter Searches in CMS. Ashok Kumar Delhi University - Delhi

Inert Doublet Model and DAMA:

The WIMPless Miracle and the DAMA Puzzle

Distinguishing the spin of DM using dilepton events

THE STATUS OF NEUTRALINO DARK MATTER

PAMELA from Dark Matter Annihilations to Vector Leptons

Transcription:

MadDM A computational tool of DM relic abundance and direct detection M. Backovic, F. Maltoni, A. Martini, Mat McCaskey, K.C. Kong, G. Mohlabeng KUBEC International Workshop on Dark Matter Searches 28 August 2014 Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 1 / 32

State of the art The mystery of dark matter Observations galaxies rotational curves. Bullet cluster. Cosmic microwave background : ΩDM h2 = 0.1199 ± 0.0027. Candidates Heavy neutrinos Axions (Peccei-Quinn): CP violation in QCD. LSP (SUSY) : neutralino χ 01, gravitino (supergravity) LKP (Kaluza-Klein) : extra-dimensions theories.... Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 2 / 32

State of the art DM detection opportunities Three possibilities Indirect detection: FERMI-LAT, AMS-02. Direct detection: XENON100, LUX, CDMS. Production at collider: LHC. Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 3 / 32

State of the art Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 4 / 32

State of the art Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 5 / 32

State of the art Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 6 / 32

State of the art Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 7 / 32

State of the art Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 8 / 32

State of the art DM tools in the LHC era Tools darksusy is a popular, although model specific DM tool (JCAP 0407 (2004) 008). SUSY contains a lot of generic DM features like co-annihilations and resonant annihilations => darksusy has a lot of useful technology for DM phenomenology in a generic model. darksusy can be hacked to include other models, but this is not trivial! Many other (model specific) tools exist: Isatools, SSARD, Drees, Roszkowski... Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 9 / 32

State of the art MADGRAPH5 Since 1994, MADGRAPH has grown into a powerful collider phenomenology framework...... but no capability to calculate astrophysical and cosmological signatures in models which contain dark matter candidates. Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 10 / 32

State of the art MadDM First step to extend MadGraph5 capabilities to dark matter phenomenology Built on top of existing MadGraph5 architecture - inherits all of the existing MadGraph structure. MadDM Why MadGraph5? Popular among experimentalists. Novel Python libraries make add-ons easy. MadGraph5_aMC@NLO is an NLO generator (future loop-induced processes). Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 11 / 32

State of the art ATLAS search for DM ATLAS results from a DM search in fat jet + MET channel - constraints on a myriad of effective models. ATLAS used MG for collider analysis, why not add the MadDM output for relic density? Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 12 / 32

MadDM structure Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 13 / 32

MadDM structure Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 14 / 32

MadDM structure Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 15 / 32

MadDM structure example.py #! /usr/bin/env python from init import * from darkmatter_eff import * #Create the relic density object. dm=darkmatter() #Initialize it from the rsxsm model in the MadGraph model folder, #and store all the results in the Projects/rsxSM subfolder. dm.init_from_model( rsxsm, rsxsm_project, new_proj = True) #dm.init_from_model( DM_eff_scalar, DM_eff_scalar, new_proj = True) # Determine the dark matter candidate... dm.finddmcandidate(prompts=false, dm_candidate= ) #...and all the coannihilation partners with the mass splitting # defined by mx0 - mx1 / mx0 < coann_eps. dm.findcoannparticles(prompts = False, coann_eps = 0.1) #Get the project name with the set of DM particles and see #if it already exists. dm.getprojectname() Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 16 / 32

MadDM structure example.py #Generate all 2-2 diagrams. print "Generating annihilation diagrams..." dm.generatediagrams() #Generate the diagrams for direct detection. print "Generating direct detection diagrams..." dm.generatediagramsdirdetect() (NEW feature!!!) #Print some dark matter properties in the mean time. print "------ Testing the darkmatter object properties ------" print "Calc. Omega: "+str(dm._do_relic_density) print "Calc. DD: "+str(dm._do_direct_detection) print "DM name: "+dm._dm_particles[0].get( name ) print "DM spin: "+str(dm._dm_particles[0].get( spin )) print "DM mass var: "+dm._dm_particles[0].get( mass ) print "Mass: "+ str(dm.getmass(dm._dm_particles[0].get( pdg_code )))+"\n" print "Project: "+dm._projectname #Output the FORTRAN version of the matrix elements #and compile the numerical code. dm.createnumericalsession() #Calculate relic density. omega = dm.calculaterelicabundance() print "----------------------------------------------" print "Relic Density: "+str(omega), print "----------------------------------------------" Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 17 / 32

MadDM - relic abundance MadDM v1.0 : relic abundance M. Backovic M. McCaskey K.C. Kong Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 18 / 32

MadDM - relic abundance MadDM - Relic density calculation In DM model with only one DM particle, the density evolution is described by the rate equation ( dn ( ) ) χ 2 + 3Hn χ = 2 σ eff v nχ 2 nχ EQ, dt with σ eff v N i,j=1 σ(χ i χ j SM)v neq χ i nχ EQ, the equilibrium density (n EQ χ n EQ χ j ) 2, the thermally averaged cross section To obtain DM relic abundance in canonical models, integrate the rate equation from a freeze out time (determined by iteration over the rate equation integration) ( Ωh 2 dx σv ) 1 x 2 x m χ T x f MadDM takes co-annihlation, treshold effects and resonances into account and is also able to deal with non-canonical models! Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 19 / 32

MadDM - relic abundance MadDM - Relic density validation Toy model : Real singlet extension of SM (rsxsm): L DM = m2 2 H H + λ ( ) 2 H δ H + 4 2 H H S 2 + m2 S 2 S2 + λ S 4 S4 Only parameters are mass of DM and coupling to the H boson S H S iδ iδv H S H S Typical DM annihilation diagrams : S H S H S V S f S H H S H H S H S H S H S V S f Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 20 / 32

MadDM - relic abundance Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 21 / 32

MadDM - direct detection MadDM v2.0 : direct detection and DDM M. Backovic M. McCaskey A. Martini F. Maltoni K.C. Kong G. Mohlabeng A. Para J. Yoo Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 22 / 32

MadDM - direct detection MadDM : Direct detection (NEW) Typically v DM 300km/s c Transfer momentum to nuclei is very low 0-momentum transfer approximation. Calculation steps : 1 Lagrangian: extract spin-independent and spin-dependent operators. 2 DM-quarks amplitude computation with MadGraph. 3 DM-nucleon calculation (form factors). 4 DM-nucleus interaction. 5 Direct detection rates. Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 23 / 32

MadDM - direct detection MadDM: operator expansion method We implement an effective Lagrangian (L eff ) including all the effective operators available for DM-quarks interactions for a specific DM spin and for SI (or SD) (similar as micromegas, arxiv:0803.2360) : SI SD DM spin Even Odd 0 2MχΦχΦ χ ( µφχφ ψq ψq i ) χ Φχ µφ χ ψ q γ µ ψq 1 2 ψχψχ ψ q ψq ψ q γµψχ ψq γ µ ψq 1 2MχA χµ Aµ χ (A ψq ψq iλq,o α ) χ µaχ,α Aα χ µa χα ψ q γµψq 1 2 1 ψχγµγ 5 ψχ ψ q γ µ γ 5 ψ ( q ) 6 αa χβ Aχν A χβ αaχν i 3 2 1 2 ψχσµνψχ ψq σµν ψ q (AχµA ) χν A χµ Aχν ψ q σ µν ψq ε αβνµ ψ q γ5 γµψ q Then the trick is to combine L eff to the input model (related to L input ) to get the interference term between the two models : M eff +input 2 = M input 2 + M eff 2 + 2 M eff M input the interference term gives us the right contribution! Already implemented in MadDM Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 24 / 32

MadDM - direct detection DM-nucleus interaction Matrix element qq of quarks in a nucleon state : qq = m p,n fq p,n (light quarks); qq = 2 m p,n f p,n G (heavy quarks) m q 27 m q DM-nucleon couplings: f χ p,n = m p,n q=u,d,s C q fq p,n m q + 2 27 m p,n f p,n G q=c,b,t where C q comes from the projection operator method (and M = C q qq ). Finally, you can compute the cross-section DM-nucleus (SI interactions), σ = Already implemented in MadDM! 4mN 2 m2 χ π ( ) 2 (Af χ p + (A Z)f χ ) 2 n M χ + m N C q m q Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 25 / 32

MadDM - direct detection DM-nucleus interaction Spin dependent case : σ = 16m2 N m2 χ π ( J A + 1 ( ) ) εp 2 Sp a + ε n S A 2 n M χ + m N J A where J A is the spin of the nucleus, Sp,n A are the expectation value of the spin content of the nucleon in a nucleus with A nucleons Already implemented in MadDM! Differential rate : dr = ρ 0σ 0 de r 2m χ mr 2 F (E r ) v min [ ] f(v) dv v Available soon in MadDM! Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 26 / 32

MadDM - direct detection b, t b, t b, t MadDM validations - rsxsm χ H χ χ χ 10-6 Micromegas MadDM 10-6 Micromegas MadDM σ p (pb) proton scalar DM scalar interaction (Higgs portal) σ n (pb) neutron scalar DM scalar interaction (Higgs portal) 10-7 10-7 50 100 150 200 M DM (GeV) 50 100 150 200 M DM (GeV) Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 27 / 32

MadDM - direct detection MadDM validations - Higgs portal (vector DM) Micromegas MadDM Micromegas MadDM 10-5 10-5 σ p (pb) proton vector DM scalar interaction (Higgs portal) σ n (pb) neutron vector DM scalar interaction (Higgs portal) 10-6 50 100 150 200 M DM (GeV) 10-6 50 100 150 200 M DM (GeV) Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 28 / 32

MadDM - direct detection MadDM validations - Axial vector interaction (fermion DM) 0.35 Micromegas MadDM 0.24 Micromegas MadDM 0.23 neutron σ p (pb) 0.3 proton σ n (pb) 0.22 fermion DM axial-vector interaction 0.21 fermion DM axial-vector interaction 0.25 60 80 100 120 140 160 180 200 M DM (GeV) 0.2 60 80 100 120 140 160 180 200 M DM (GeV) Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 29 / 32

MadDM - direct detection MadDM: directional detection R E A D Y Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 30 / 32

MadDM - direct detection MadDM - (near) future plans. Link to Pythia/ GALPROP Currently discussing Database of experimental results (e.g. HiggsBounds) Urgent! MadDM NLO Direct detection Almost finished Indirect detection susy.phsx.ku.edu/~mihailo/ Directional detection Finished, awaiting direct detection module Much effort to integrate NLO tools into MadGraph framework. Web interface Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 31 / 32

MadDM - direct detection MadDM DEMO! Tutorial : http://susy.phsx.ku.edu/~mihailo/tutorial.html Antony Martini (UCL-CP3) MadDM v2.0 28 August 2014 32 / 32