Information thermodynamics reveals the robustness of biochemical signal transduction

Similar documents
Forms of Energy. Mass = Energy. Page 1. SPH4U: Introduction to Work. Work & Energy. Particle Physics:

P441 Analytical Mechanics - I. Coupled Oscillators. c Alex R. Dzierba

3. Renewal Limit Theorems

Probability, Estimators, and Stationarity

[5] Solving Multiple Linear Equations A system of m linear equations and n unknown variables:

e t dt e t dt = lim e t dt T (1 e T ) = 1

f t f a f x dx By Lin McMullin f x dx= f b f a. 2

S Radio transmission and network access Exercise 1-2

Location is relative. Coordinate Systems. Which of the following can be described with vectors??

Optimization and Application of initial Value of Non-equidistant New Information GM(1,1) Model

Neural assembly binding in linguistic representation

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment

Reinforcement learning

Introduction to Numerical Analysis. In this lesson you will be taken through a pair of techniques that will be used to solve the equations of.

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Minimum Squared Error

Minimum Squared Error

SOME USEFUL MATHEMATICS

TIME DELAY BASEDUNKNOWN INPUT OBSERVER DESIGN FOR NETWORK CONTROL SYSTEM

A Kalman filtering simulation

Chapter 2: Evaluative Feedback

Caution on causality analysis of ERP data

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

Available online at Pelagia Research Library. Advances in Applied Science Research, 2011, 2 (3):

Research Article Wirtinger-Type Inequality and the Stability Analysis of Delayed Lur e System

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2

Contraction Mapping Principle Approach to Differential Equations

Think of the Relationship Between Time and Space Again

white strictly far ) fnf regular [ with f fcs)8( hs ) as function Preliminary question jointly speaking does not exist! Brownian : APA Lecture 1.

1.0 Electrical Systems

Version 001 test-1 swinney (57010) 1. is constant at m/s.

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

PART V. Wavelets & Multiresolution Analysis

PHYSICS 1210 Exam 1 University of Wyoming 14 February points

Linear Circuit Elements

Reading. Lecture 28: Single Stage Frequency response. Lecture Outline. Context

6. Gas dynamics. Ideal gases Speed of infinitesimal disturbances in still gas

Solutions to Problems from Chapter 2

On Source and Channel Codes for Multiple Inputs and Outputs: Does Multiple Description Meet Space Time? 1

Application of Homotopy Analysis Method for Solving various types of Problems of Partial Differential Equations

Estimating the population parameter, r, q and K based on surplus production model. Wang, Chien-Hsiung

3 Motion with constant acceleration: Linear and projectile motion

Ultrafast Spectroscopy

PHYS 601 HW3 Solution

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

An object moving with speed v around a point at distance r, has an angular velocity. m/s m

Lecture 28: Single Stage Frequency response. Context

Tutorial 4. b a. h(f) = a b a ln 1. b a dx = ln(b a) nats = log(b a) bits. = ln λ + 1 nats. = log e λ bits. = ln 1 2 ln λ + 1. nats. = ln 2e. bits.

Some Inequalities variations on a common theme Lecture I, UL 2007

t v a t area Dynamic Physics for Simulation and Game Programming F a m v v a t x x v t Discrete Dynamics

EXERCISE - 01 CHECK YOUR GRASP

Estimation of Markov Regime-Switching Regression Models with Endogenous Switching

Circuits 24/08/2010. Question. Question. Practice Questions QV CV. Review Formula s RC R R R V IR ... Charging P IV I R ... E Pt.

Process Monitoring and Feedforward Control for Proactive Quality Improvement

FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES

NMR Spectroscopy: Principles and Applications. Nagarajan Murali Advanced Tools Lecture 4

Spectral Galerkin Method for Optimal Control Problems Governed by Integral and Integro- Differential Equations

15. Quantisation Noise and Nonuniform Quantisation

The order of reaction is defined as the number of atoms or molecules whose concentration change during the chemical reaction.

Particle Filtering. CSE 473: Artificial Intelligence Particle Filters. Representation: Particles. Particle Filtering: Elapse Time

4.8 Improper Integrals

The Spring. Consider a spring, which we apply a force F A to either stretch it or compress it

Robust and Learning Control for Complex Systems

A new model for limit order book dynamics

Fourier Series & The Fourier Transform. Joseph Fourier, our hero. Lord Kelvin on Fourier s theorem. What do we want from the Fourier Transform?

Tax Audit and Vertical Externalities

Connectionist Classifier System Based on Accuracy in Autonomous Agent Control

Boundary layer problem for system of first order of ordinary differential equations with linear non-local boundary conditions

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies

Robust Adaptive Inner-Loop Design for Vehicles with Uncertain Dynamics

September 20 Homework Solutions

Lecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations.

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems

Solutions for Nonlinear Partial Differential Equations By Tan-Cot Method

14. The fundamental theorem of the calculus

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation

Improved Analysis of the Coupling of Optical Waves into Multimode Waveguides Using Overlap Integrals

CS12N: The Coming Revolution in Computer Architecture Laboratory 2 Preparation

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration

Physics 207 Lecture 10

M x t = K x F t x t = A x M 1 F t. M x t = K x cos t G 0. x t = A x cos t F 0

A Simple Method to Solve Quartic Equations. Key words: Polynomials, Quartics, Equations of the Fourth Degree INTRODUCTION

REAL ANALYSIS I HOMEWORK 3. Chapter 1

Problems on transformer main dimensions and windings

Some estimates for the parabolic Anderson model

TEST - 4 (Paper-I) ANSWERS PHYSICS CHEMISTRY MATHEMATICS

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445

FM Applications of Integration 1.Centroid of Area

LAPLACE TRANSFORM OVERCOMING PRINCIPLE DRAWBACKS IN APPLICATION OF THE VARIATIONAL ITERATION METHOD TO FRACTIONAL HEAT EQUATIONS

Moment Analysis of Hadronic Vacuum Polarization Proposal for a lattice QCD evaluation of g µ 2

Extension of Hardy Inequality on Weighted Sequence Spaces

Matrix Algebra. Matrix Addition, Scalar Multiplication and Transposition. Linear Algebra I 24

Anti-Disturbance Control for Multiple Disturbances

A DELAY-DEPENDENT STABILITY CRITERIA FOR T-S FUZZY SYSTEM WITH TIME-DELAYS

r = cos θ + 1. dt ) dt. (1)

M r. d 2. R t a M. Structural Mechanics Section. Exam CT5141 Theory of Elasticity Friday 31 October 2003, 9:00 12:00 hours. Problem 1 (3 points)

Matrices and Determinants

THE FINITE HAUSDORFF AND FRACTAL DIMENSIONS OF THE GLOBAL ATTRACTOR FOR A CLASS KIRCHHOFF-TYPE EQUATIONS

AJAE appendix for Is Exchange Rate Pass-Through in Pork Meat Export Prices Constrained by the Supply of Live Hogs?

Bridging the gap: GCSE AS Level

Transcription:

Bridging he gp beween er nd life! -Discussion wih Prof. Alber Libchber- 3/6/214 Inforion herodynics revels he robusness of biocheicl signl rnsducion Sosuke Io!! Dep. of Phys., he Univ. of Tokyo, Ph D suden (In collborion wih Tkhiro Sgw*) *Dep. of Bsic Science, he Univ. of Tokyo, Associe professor! Our previous work: S. Io nd T. Sgw, Phys. Rev. Le. 111, 1863 (213).

Bridging he gp beween er nd life! -Discussion wih Prof. Alber Libchber- 3/6/214 Inforion herodynics revels he robusness of biocheicl signl rnsducion Sosuke Io!! Dep. of Phys., he Univ. of Tokyo, Ph D suden Ouline 1. An rificil signl rnsducion in inforion heory 2. Biocheicl signl rnsducion of E. Coli cheois 3. Inroducion of inforion herodynics 4. (Min resul) Inforion herodynics revels! he robusness of biocheicl signl rnsducion

1. Inforion heory C. E. Shnnon (1948) A heicl heory of counicion Bell Syse Technicl Journl 27 (3), 379-423 (1948). Shnnon s heore (Noisy-chnnel coding heore) The Shnnon s heore ses h for! ny given noisy counicion chnnel,! i is possible o counice discree d! wihou error. The ighes upper bound! of rchivble inforion re R is given! by he chnnel cpciy C.

1. Shnnon s heore: Mheicl seen Seing: Inpu essge: Ŵ 2 {1,...,M} Ŵ W Oupu essge: W 2 {1,...,M} n y n Encoding funcion: n (Ŵ ):={ 1(Ŵ ),..., n(ŵ )} Decoding funcion: W (y n ):=W (y 1,...,y n ) Error (Gussin chnnel): p(y i i )= 1 p 2N ep pple (i y i ) 2 2N def: Inforion re: R := ln M n def: A re R is sid o be chievble if! here eiss sequence of codes such! h he il probbiliy of error! ends o zero.!

1. Shnnon s heore: Mheicl seen Seing: Inpu essge: Ŵ 2 {1,...,M} Ŵ W Oupu essge: W 2 {1,...,M} n y n Encoding funcion: n (Ŵ ):={ 1(Ŵ ),..., n(ŵ )} Decoding funcion: W (y n ):=W (y 1,...,y n ) Error (Gussin chnnel): p(y i i )= 1 p 2N ep pple (i y i ) 2 2N def: Inforion re: R := ln M n def: A re R is sid o be chievble if! here eiss sequence of codes such! h he il probbiliy of error! ends o zero.! The chievble inforion re R describes how long encoding lengh is needed o! rnsi inforion wihou error.

1. Shnnon s heore: Mheicl seen Shnnon s heore: The ighes upper bound of chievble! inforion re R is given by he chnnel! cpciy C. C def: chnnel cpciy! (wih power consrin P)! C := R sup p():h 2 ipplep I( : y) Shnnon-Hrley heore: Ŵ n def: uul inforion! I( : y) := Z y n W ddyp(, y)ln p(, y) p()p(y) In he cse of Gussin chnnel, he chnnel cpciy is given by he power-noise rio.! C = 1 2 ln 1 P N

1. Shnnon s heore: Sury Shnnon s heore: The ighes upper bound of chievble! inforion re R is given by he chnnel! cpciy C. C R Ŵ n y n W Shnnon-Hrley heore: C = 1 2 ln 1 P N in he cse of Gussin chnnel The Shnnon s heore ses h he chnnel cpciy C chrcerizes! how uch inforion cn be rnsied correcly (chievble re R).! The chnnel cpciy C is given by he supreu of he uul inforion! beween (inpu signl) nd y (oupu signl).

2. Biocheicl signl rnsducion: E. Coli cheois Signl rnsducion in bio-cheicl cheicl nework e.g. signl rnsducion in E. Coli cheois ehylion level -CH 3 lignd recepor flgellr oor kinse civiy : ehyl (CH 3 ) : lignd The signl rnsducion in E. Coli cheois hs been invesiged s siple! odel orgnis for he dpive biocheicl signl rnsducion. To undersnd! is working echnis, such signl rnscion hve been odeled s noisy! inforion processing device. N. Brki nd S. Leibler, Nure 387, 913 (1997). P. Meh e. l., Mol. Sys. Biol. 5, 826 (24). Y. Tu e. l., Proc. Nl. Acd. Sci. USA 15, 14855 (28). F. Tosevin nd P. R. en Wolde, Phys. Rev. Le. 12, 21811 (29).

2. Biocheicl signl rnsducion: Coprison beween inforion device nd biocheicl nework Signl rnsducion in rificil inforion device The chievble inforion re R is well-defined! by he encoder nd decoder.!! The Shnnon s heore ses h he upper bound! of chievble inforion re R is given by he! chnnel cpciy C. Signl rnsducion in bio-cheicl cheicl nework The inforion re R is ill-defined in living cells! wihou he encoder nd decoder.! lignd ehylion level recepor -CH 3 flgellr oor No heore corresponding o he Shnnon s heore eiss.! kinse civiy : ehyl (CH 3 ) : lignd

2. Biocheicl signl rnsducion: Coprison beween inforion device nd biocheicl nework Signl rnsducion in rificil inforion device The chievble inforion re R is well-defined! by he encoder nd decoder.!! The Shnnon s heore ses h he upper bound! of chievble inforion re R is given by he! chnnel cpciy C. Signl rnsducion in bio-cheicl cheicl nework The inforion re R is ill-defined in living cells! wihou he encoder nd decoder.! lignd ehylion level recepor -CH 3 kinse civiy flgellr oor : ehyl (CH 3 ) : lignd No heore corresponding o he Shnnon s heore eiss.! Inforion herodynics revels he! robusness of biocheicl signl rnsducion.!

3. Inforion herodynics: The proble of he Mwell s deon The Mwell s deon J.C. Mwell Theory of he (1871). In 19h cenury, J. C. Mwell creed he hough eperien describing he ppren violion of he second lw.! Therodynics nd inforion processing L. Szilrd, Z. Phys. 53, 84 (1929). L. Szilrd invesiged he relionship beween! he ppren violion of he second lw nd! he inforion enropy. L. Brillouin, J. Appl. Phys. 22, 334 (1951).! R. Lnduer, IBM J. Res. Dev. 5, 183 (1961).! C. H. Benne, In. J. Theor. Phys. 21, 95 (1982).! ec.

3. Inforion herodynics: Recen progress of he Mwell s deon Theoreicl progress H. Touchee nd S. Lloyd, Phys. Rev. Le. 84. 1156 (2). F. Co, L. Denis nd J. M. R. Prrondo Phys. Rev. Le. 93. 463 (24). T. Sgw nd M. Ued, Phys. Rev. Le. 1. 843 (28). T. Sgw nd M. Ued, Phys. Rev. Le. 14. 962 (21). J. M. Horowiz nd S. Vikunnhn, Phys. Rev. E. 82. 6112 (21). D. Abreu nd U. Seifer, Europhys. Le., 95. 15 (211). D. Mndl nd C. Jrzynski, Proc. Nl. Acd. Sci. USA 19. 11641 (212). S. Io nd T. Sgw, Phys. Rev. Le., 111. 1863 (213). The eperienl relizion of he Mwell s deon! (Toybe s eperien, 21) Eperienl progress S. Toybe, T. Sgw, M. Ued, E. Muneyuki nd M. Sno, N. Phys. 6, 988 (21). A. Beru, A. Arkelyn, A. Perosyn, S. Ciliber, R. Dillenschneider nd E. Luz, Nure 483, 187 (212).

3. Inforion herodynics: Recen progress of he Mwell s deon Scheic of inforion herodynics feedbck eory syse 1 esureen inforion flow A flucuing herl syse (i.e., Brownin pricle) The Mwell s deon perfors feedbck conrol o flucuing herl syse (i.e., Brownin pricle).!! The Mwell s deon reduce he enropy producion of Brownin pricle using! inforion of he eory oucoe. he flow For coupled Brownin pricles second lw of herodynics inforion herodynics inforion flow he flow he flow he flow We re he rge syse ( green pricle) s! conrolled syse, nd noher Brownin pricle ( blue pricle) s eory syse (corresponding o he Mwell s deon). S. Io nd T. Sgw, Phys. Rev. Le., 111. 1863 (213).

3. Inforion herodynics: Coprison beween herodynics nd inforion herodynics Coprison beween he second lw of herodynics nd inforion herodynics he second lw of herodynics (Clusius): J ds J Shnnon enropy difference: Z ds := d d d d p[,, d T T he flu: ie: d d d, d ] ln J eperure: ( =, ) second lw of herodynics p[, ] p[d, d ] T kb = 1 inforion herodynics inforion flow he flow he flow he flow

3. Inforion herodynics: Coprison beween herodynics nd inforion herodynics Coprison beween he second lw of herodynics nd inforion herodynics he second lw of herodynics (Clusius): J ds J ds J d T T T d inforion herodynics (our resul): dir d ds d J T condiionl Shnnon enropy difference: ds inforion flow (rnsfer enropy): dir := Z J T p[d, ] d d dd p[,, d ] ln p[d ] := Z d d dd dd p[,, d, d ] ln p[ ] p[d d ] S. Io nd T. Sgw, Phys. Rev. Le., 111. 1863 (213). second lw of herodynics inforion herodynics inforion flow he flow he flow he flow

3. Inforion herodynics: Coprison beween herodynics nd inforion herodynics coprison beween he second lw of herodynics nd inforion herodynics he second lw of herodynics (Clusius): ds J J T d T inforion herodynics (our resul): dir d ds d J T As upper bound of he he flu J,! inforion herodynics gives igher bound.! inforion flow (rnsfer enropy): dir := Z p[d, ] d d dd p[,, d ] ln p[d ] Inforion herodynics do no cre! bou he dissipion of noher syse. second lw of herodynics inforion herodynics inforion flow he flow he flow he flow

3. Inforion herodynics: Inforion flow (rnsfer enropy) Trnsfer enropy is non-preric sic esuring he oun of direced rnsfer of inforion beween wo rndo processes. T. Schreiber, Phys. Rev. Le., 85. 461 (2). If coupled dynics is given by he Mrkov chin, we hve he ph probbiliy such s p[ d, ]p[ d, ]p[, ] rnsiion probbiliy of for single ie sep. If dynics of is independen fro dynics of, we hve he ph probbiliy such s p[ d ]p[ d ]p[, ] rnsiion probbiliy of for single ie sep. Inforion flow (he rnsfer enropy) fro o is given by he difference beween condiionl Shnnon enropy of hese rnsiion probbiliies. di r := hln p[ d, ]i hln p[ d ]i h i :enseble verge

4. Min resul: Applicion of inforion herodynics o biocheicl signl rnsducion Cheois ehylion level -CH3 lignd recepor flgellr oor We re he signl rnsducion of E. coli cheois s he Mwell s deon proble.! kinse civiy : ehyl (CH3) : lignd feedbck feedbck inforion herodynics: dir d ds d J T ehylion level ehylion level lignd lignd recepor recepor CH CH3 3 esureen esureen flgellr oor flgellr oor : negive feedbck loop : negive feedbck loop

4. Model: The coupled Lngevin odel of biocheicl signl rnsducion The coupled Lngevin odel of bio-cheicl signl rnsducion 1 h i = 2T ( ) (,, L ) = h i = 1 = (,, L ) = L Y. Tu e. l., Proc. Nl. Acd. Sci. USA 15, 14855 (28)., : posiive consn! (linerizion of Monod-Chndeu-Wyn odel)! feedbck feedbck > : ie consn ehylion level ehylion level lignd lignd recepor recepor CH CH3 3 esureen esureen flgellr oor flgellr oor : negive feedbck loop : negive feedbck loop

4. Model: The coupled Lngevin odel of biocheicl signl rnsducion coupled Lngevin odel of bio-cheicl signl rnsducion 1 h i = 2T ( ) (,, L ) = h i = 1 = (,, L ) = L Y. Tu e. l., Proc. Nl. Acd. Sci. USA 15, 14855 (28). feedbck feedbck ehylion level ehylion level lignd lignd ie recepor recepor CH CH3 3 esureen esureen flgellr oor flgellr oor : negive feedbck loop : negive feedbck loop A relion of κ chrcerizes he degree of dpion of he syse! o he environenl chnge.

4. Model: The coupled Lngevin odel of biocheicl signl rnsducion coupled Lngevin odel of bio-cheicl signl rnsducion 1 h i = 2T ( ) (,, L ) = h i = 1 = (,, L ) = L A relion of κ chrcerizes he degree! of dpion of he syse! o he environenl chnge. ie Men squre error: h 2 i This quniy chrcerizes he ROBUSTNESS! of he signl rnsducion gins he! environenl noise induced by ξ. feedbck feedbck ehylion level ehylion level lignd lignd recepor recepor CH CH3 3 esureen esureen flgellr oor flgellr oor : negive feedbck loop : negive feedbck loop

4. Min resul: Inforion herodynics for he biocheicl signl rnsducion Inforion herodynics dir d He dissipion: J T 1 = T T 1 2 h i Inforion flow: dir 1 P = ln 1 d 2 N ds J T d The lrger J is, he ore robus he dpion is! gins he environenl noise.! (The ROBUSTNESS of signl rnsducion)! ie 2 : he inensiy of he effecive signl! ( ) V P := h is rnsied fro o 2 V := h2 i N := h i 2T 2 h i p := h ih i V V : he inensiy of he noise feedbck feedbck ehylion level ehylion level lignd lignd recepor recepor CH CH3 3 esureen esureen flgellr oor flgellr oor : negive feedbck loop : negive feedbck loop

4. Min resul: Anlogicl siilriy beween he Shnnon s heore nd inforion herodynics inforion device biocheicl nework robusness in signl rnsducion gins noise chievble inforion re (ccurcy of inforion rnsission gins noise) noise inpu encoder decoder oupu inforion flow chnnel cpciy in sionry se Shnnon-Hrley heore: 1 P C = ln 1 2 N The chievble inforion re R describes! how uch inforion is rnsied correcly! gins he counicion chnnel noise. Inforion herodynics: dir 1 P = ln 1 d 2 N! The he flu J describes! how uch robus dpion is chieved! gins he environenl noise.

4. Nuericl resuls : inforion herodynics VS he second lw of herodynics Lignd signl L nd noise ξ re induced by!. sep funcion, b. sinusoidl funcion, nd c. liner funcion. b c 8 7 6 5 4 3 2 1 4 2-2 -4 12 1 8 6 4 2-2 -1.1.2.3.4.5.6 ie.1.2.3.4.5.6 ie -4.1.2.3.4.5.6 ie Inforion herodynics Convenionl herodynics Info := dir d ds d J T vs SL := J T ds d J T Inforion herodynics is ore useful o discuss! he biocheicl signl rnsducion hn he convenionl herodynics.

SUMMARY We hve found novel ehod o chrcerize he robusness of he biocheicl signl rnsducion in ers of inforion herodynics. We hve esblished he nlogy beween inforion herodynics nd he convenionl inforion heory : he inforion flow dir/d chrcerizes he biologicl counicion in living cells, prllel o he chnnel cpciy C in rificil counicion. Our resul would open up novel qunificion of he biocheicl signl rnsducion in living cells. In he fuure, we could invesige he role of ech coponen on biocheicl cople signl neworks in quniive robusness in signl rnsducion gins noise wy. chievble inforion re (ccurcy of inforion rnsission gins noise) noise inpu encoder decoder oupu chnnel cpciy inforion flow in sionry se