Binding Theory Equations for Affinity and Kinetics Analysis

Similar documents
How antibody surface coverage on nanoparticles determines the. activity and kinetics of antigen capturing for biosensing

Kinetic Models of Protein Binding

Lecture 7. Surface Reaction Kinetics on a

protein interaction analysis bulletin 6300

Kinetic & Affinity Analysis

Problem solving steps

Concept review: Binding equilibria

SIMPLE MCP TRANSPORT MODEL

Quantifying the Affinities and Kinetics of Protein Interactions Using Silicon Nanowire Biosensors

= k 2 [CH 3 *][CH 3 CHO] (1.1)

Protein-Ligand Interactions Are Responsible for Signal Transduction

Fast and Slow Ligand Exchange at the Surface of Colloidal Gold Nanoparticles

A. One-Substrate Reactions (1) Kinetic concepts

Foundations of Chemical Kinetics. Lecture 32: Heterogeneous kinetics: Gases and surfaces

Supporting Information

Lecture 12. Complications and how to solve them

Chemical kinetics and catalysis

Kinetic and Thermodynamic Analysis of Ligand Receptor Interactions: SPR Applications in Drug Development

CHAPTER 8 Analysis of FP Binding Data

Problem Set 5 Question 1

Adsorption of gases on solids (focus on physisorption)

Lecture 5. Solid surface: Adsorption and Catalysis

Supporting Information

Statistical mechanics of biological processes

10.37 Exam 2 25 April, points. = 10 nm. The association rate constant

Part II => PROTEINS and ENZYMES. 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition

GAS-SURFACE INTERACTIONS

schematic diagram; EGF binding, dimerization, phosphorylation, Grb2 binding, etc.

R7.3 Receptor Kinetics

where a + b = 2 (this is the general case) These all come from the fact that this is an overall second order reaction.

Enzyme reaction example of Catalysis, simplest form: E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate

3.5. Kinetic Approach for Isotherms

CHIRAL SEPARATION USING THIN LAYER CHROMATOGRAPHY

Bioinformatics: Network Analysis


4. What is the general expression Keq (the equilibrium constant) in terms of product and reactant concentration? tell us about the enzyme.

Dynamical Monte-Carlo Simulation of Surface Kinetics

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To

Supporting Text Z = 2Γ 2+ + Γ + Γ [1]

2 Reaction kinetics in gases

A Comparison of System Dynamics and Agent-Based SimulationApplied to the Study of Cellular Receptor Dynamics

Hydrogen adsorption by graphite intercalation compounds

Lecture 27. Transition States and Enzyme Catalysis

Tutorial Chemical Reaction Engineering:

Supplemental Materials and Methods

Transient kinetic methods. Biophysics seminars Kinga Futó

Biochemistry 3100 Sample Problems Binding proteins, Kinetics & Catalysis

AUTOMOTIVE EXHAUST AFTERTREATMENT

7. Kinetics controlled by fluctuations: Kramers theory of activated processes

Interfacial dynamics

[ A] 2. [ A] 2 = 2k dt. [ A] o

Quiz 3 for Physics 176: Answers. Professor Greenside

Advanced Physical Chemistry CHAPTER 18 ELEMENTARY CHEMICAL KINETICS

EQUILIBRIUM, MASS CONSERVATION, AND KINETICS

Label-Free Sandwich Imaging Ellipsometry Immunosensor for. Serological Detection of Procalcitonin

Lecture 2: Receptor-ligand binding and cooperativity

Introduction to Chromatography

Supplementary Information

Chemical Kinetics. Topic 7

3 Faradaic Reaction with a Surface Adsorption Step

Supporting Information for: Kinetic Mechanisms Governing Stable Ribonucleotide Incorporation in Individual DNA Polymerase Complexes

Simultaneous intracellular chloride and ph measurements using a GFPbased

Supplementary Information

Small-Molecule Kinetics

Small-Molecule Kinetics

1. Ion exchange chromatography

I: Life and Energy. Lecture 2: Solutions and chemical potential; Osmotic pressure (B Lentz).

Chemical Exchange and Ligand Binding

Surface Plasmon Resonance for Immunoassays. Sadagopan Krishnan Chem 395 Instructor: Prof.Rusling

Fragment-Based Drug Discovery (FBDD) Using the dispr Technique on Pioneer Systems with OneStep and NeXtStep Injection Methodologies

Effects of Chemical Exchange on NMR Spectra

Monolayers. Factors affecting the adsorption from solution. Adsorption of amphiphilic molecules on solid support

On the status of the Michaelis-Menten equation and its implications for enzymology

Module 6 : Reaction Kinetics and Dynamics Lecture 28 : Elementary Reactions and Reaction Mechanisms

SUPPLEMENTARY INFORMATION

SPHERO TM Magnetic Particles

K ex. Conformational equilibrium. equilibrium K B

5. Advection and Diffusion of an Instantaneous, Point Source

Supporting Information. Binding of solvent molecules to a protein surface in binary mixtures follows a competitive Langmuir model

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

Phys 450 Spring 2011 Solution set 6. A bimolecular reaction in which A and B combine to form the product P may be written as:

Calorimetry: differential scanning calorimetry (DSC), isothermal titration calorimetry (ITC)

Initial amounts: mol Amounts at equilibrium: mol (5) Initial amounts: x mol Amounts at equilibrium: x mol

SIMPLE MODEL Direct Binding Analysis

Module 8: "Stability of Colloids" Lecture 38: "" The Lecture Contains: Calculation for CCC (n c )

SOME IMPORTANT GRAPH REPRESENTATION

Supplementary Materials for

Mathematical model of serodiagnostic immunochromatographic assay

Elementary Binding Equations and Related Equations in Biochemistry

3. Based on how energy is stored in the molecules, explain why ΔG is independent of the path of the reaction.

What is an enzyme? Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics. Margaret A. Daugherty Fall General Properties

Ligand Binding A. Binding to a Single Site:

Energy Barriers and Rates - Transition State Theory for Physicists

CHEM 341 PHYSICAL CHEMISTRY FINAL EXAM. Name

Supporting Text - Jégou et al.

Electrode Kinetics 1

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like)

XX-th ARS SEPARATORIA Szklarska Poręba, Poland 2005

Biochemical / Biophysical Kinetics Made Easy

15.1 The Concept of Equilibrium

Transcription:

Technology Note #101 Binding Theory Equations for Affinity and Kinetics Analysis This technology note summarizes important equations underlying the theory of binding of solute analytes to surface-tethered ligands. Keywords: affinity kinetics association & dissociation rates k on, k off affinity (dissociation) constant K a (K d ) equilibrium analysis avidity, bivalent binders Let A and B be two interacting species in solution which can form a bound product, AB, and let c A, c B, c AB be their A + B AB (1) concentrations in mol liter The time-dependent rate equations for the formation and the decay of product c AB are: with the forward reaction rate constant k on and reverse reaction rate constant k off. dc AB dt dc AB dt = k on c A c B = k off c AB (2) k on is also called the on-rate or association rate, and k off is the off-rate or dissociation rate. Note that k on and k off have different units: [k on ] = M 1 s 1 [k off ] = s 1 Equilibrium In equilibrium the sum of all time-derivatives is zero, Σ dc AB dt = 0 k on c A c B = k off c AB, which yields a fundamental chemical equation, the law-ofmass-action in solution: The affinity constant K a links the concentration of bound molecules to the concentrations of free reactants and hence gauges the strength of the interaction. K a = 1 K d k on k off = or c AB c A c B c AB = K a c A c B (3) It is often practicable to consider the dissociation constant K d, because it has the unit of a concentration, and thus can be compared to the reactant concentrations. [K a ] = M 1 [K d ] = M 1

Figure 1 Dynamic equilibrium on a switchsense biosensor, the example shows a fraction bound of 25% In solution, c AB depends on the concentrations of both reactants c A and c B, but for surface biosensors the law-ofmass-action simplifies, because the total number (surface density) of capture molecules which are immobilized on the biosensor surface, n B,0, is constant. In eq. 4, n B denotes the number of free binding sites on the surface and n AB is the number of binding sites occupied with analyte A. While n B and n AB correspond to c B and c AB in the solution case, we use a different notation to emphasize the different nature of solute reactants (c) and surface-immobilized reactants (n). In an ideal biosensing experiment, the number of solute reactants should be in large excess of the number of surface binding sites so that effectively c does not change when molecules adsorb from the solution onto the surface. This simplifies matters to a great extent and usually is accomplished by providing a constant flow of fresh analyte solution to the sensor. n B,0 = n B + n AB = const. n B ~c B n AB ~c AB (4) An essential quantity in a biosensing experiment is the fraction bound (f) value, because it is proportional to the biosensor signal. The fraction bound is defined as the number of occupied binding sites on the detection spot (n AB ) divided by the total number of binding sites (n B,0 ). The fraction bound is 0% for a pristine sensor and reaches 100% when the sensor surface is fully saturated with analyte molecules. Inserting (4) into (3) and rearranging according to (5) yields the equivalent of the law-of-mass-action for surface biosensors: fraction bound n AB n B,0 signal (5) fraction bound in equilibrium: f eq (c) = c (6) c + K d Eq. 6 pertains to the equilibrium state (t ). It corresponds to the Langmuir isotherm, which has been derived for the adsorption of gas molecules onto surfaces. Compared to the law-of-mass-action in solution, the equation is simpler; it only depends on the analyte concentration c and the equilibrium dissociation constant K d. (Note that c = c A ; the index A is omitted for simplicity in the following.) 2

Figure 2 Fraction bound calculated with eq. 6. The fraction bound function is a sigmoidal curve centered around K d, i.e., if the analyte concentration is equal to the dissociation constant, 50% of the binding sites on the surface are occupied with analyte, f eq (c = K d ) = 0.5. Note that f eq varies significantly only if c is within plus/minus two orders of magnitude from the K d value. For low concentrations, c < 0.01 K d, less than 1% of the binding sites are occupied with analyte, while for high concentrations, c > 100 K d, more than 99% of the sensor s binding capacity is saturated. Binding kinetics When the concentration of analyte molecules above the sensor changes, a new equilibrium of bound (unbound) ligands adjusts on the surface. Binding kinetics may be analyzed from real-time data by integrating the rate equations (2). Figure 3 For the association phase at a given analyte concentration c the solution of (2) is f(t, c) = f eq (c) [1 exp{ k obs on t}] (7) obs with the observable on-rate k on The signal approaches its terminal value f eq in an exponential manner with the characteristic time constant τ obs on. As f eq depends on the analyte concentration, so does the observable signal change. In practice, this makes measurements at low concentrations (c K d ) difficult because association kinetics are slow and the attainable signal change is small. obs Note that the observable rate constant k on depends not only on c and the intrinsic association rate k on, but also on the off-rate k off. This has the somewhat counterintuitive consequence that the kinetics during the association phase are influenced by the dissociation rate, especially if the dissociation rate is very high. For low dissociation rates or high analyte concentrations (c k on k off ), however, the dissociation rate may be neglected during the association phase and k obs on c k on. The dissociation phase is measured by removing the analyte solution above the sensor and exchanging it with pure running buffer (c = 0). It is solely controlled by the dissociation rate constant k off and the dissociation time constant τ off, respectively. k obs on = c k on + k off (8) obs = 1 obs k on (9) τ on f(t) = a exp{ k off t} (10) τ off = 1 k off (11) 3

The observable dissociation time constant τ off does not depend on the conditions during the association phase. Regardless of the used analyte concentration and the duration of the association phase (the actual saturation state of the sensor), the dissociation phase always features the same k off value. The prefactor a (amplitude) corresponds to the fraction bound right before the analyte solution is exchanged with running buffer. Figure 4 Exemplary solutions to equations (6), (7), and (10) for K D = 1 µm (top, e.g. a small molecule protein interaction), K D = 1 nm (middle, e.g. a protein protein interaction), K D = 10 pm (bottom, e.g. a high affinity antibody protein interaction). Concentrations are listed between the kinetic curves and also indicated in the fraction bound plot. Bi-phasic association/dissociation kinetics So far we have considered a mono-phasic association and dissociation behavior, which pertains to the simplest case where one type of analyte interacts with one type of surface-bound ligand, involving only one type of binding site, cf. Fig. 2. 4

However, more complex situations lead to a bi-phasic or multi-phasic dissociation/association behavior, like the examples depicted in Figure 5. Figure 5 Complex binding situations which lead to a bi-phasic dissociation behavior and a mono- or bi-phasic association behavior, respectively. Equation (10) can be expanded to account for more than one dissociation process: The amplitudes a 1, a 2, reflect the respective contributions of the different dissociating species to the overall dissociation curve. f(t) = a 1 exp{ k off,1 t} +a 2 exp{ k off,2 t} + a 1 + a 2 + = 100% (12) (13) Bivalent antibodies (cf. Fig. 5 top left) are exemplary analytes which exhibit bi-phasic dissociation behavior: antibodies which bind to antigen-probes via one arm only feature fast dissociation rates (high k off,1 ~ short τ off,1 ), while antibodies which are bound to two antigen-modified probes by interlinking them feature a slow dissociation rate (low k off,2 ~ long τ off,2 ). Figure 5 Schematic illustration of bivalent antibodies dissociating from detection spots with a low density (top) and a high density (bottom) of antigen-modified probes. To test whether a biphasic dissociation behavior stems from bivalent analytes like antibodies, it is advisable to investigate antigen layers with different densities. The relative contribution (amplitude) a 2 of the slow dissociation rate k off,2 is expected to drease with A 5

decreasing antigen density, because the probability for interlinking becomes lower. B Figure 6 Calculated biphasic dissociation curves (gray solid lines), which are superpositions of two exponential functions (dashed blue lines) with time constants differing by a factor of 20. The three cases exemplify different relative amplitudes: a 1 = 20% a 2 = 80% a 1 = 50% a 2 = 50% a 1 = 80% a 2 = 20% (from top to bottom). C Ulrich Rant, Dynamic Biosensors GmbH, Martinsried, Germany Please address correspondence to rant@dynamic-biosensors.com 6