Diode-Pumped Cryogenic Yb[superscript 3+]:YLF Laser of 100-W Output Power with High Beam Quality

Similar documents
High-power Cryogenic Yb:YAG Lasers and Optical Particle Targeting for EUV Sources *

High-power Cryogenic Yb:YAG Lasers and Optical Particle Targeting for EUV Sources *

New Concept of DPSSL

Sintec Optronics Pte Ltd

Cryogenically cooled 946nm Nd:YAG laser

High Power Continuous Wave Nd:KGW Laser With Low Quantum Defect Diode Pumping

Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities

Ho:YLF pumped HBr laser

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

Design and operation of antiresonant Fabry Perot saturable semiconductor absorbers for mode-locked solid-state lasers

Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber

High average power ultrafast lasers

Resonantly Pumped Er:YAG and Er:YAP Lasers

Ultrafast laser oscillators: perspectives from past to futures. New frontiers in all-solid-state lasers: High average power High pulse repetition rate

An alternative method to specify the degree of resonator stability

IN RECENT YEARS, Cr -doped crystals have attracted a

3.5 Cavities Cavity modes and ABCD-matrix analysis 206 CHAPTER 3. ULTRASHORT SOURCES I - FUNDAMENTALS

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK

Nanocomposite photonic crystal devices

Experimental characterization of Cr4+:YAG passively Q-switched Cr:Nd:GSGG lasers and comparison with a simple rate equation model

A hybrid diode-gas laser approach to high power and brightness (DPAL)

Modeling of High Power Solid-State Slab Lasers

Stimulated Emission. Electrons can absorb photons from medium. Accelerated electrons emit light to return their ground state

Multipulse Operation and Limits of the Kerr-Lens Mode-Locking Stability

Two-Dimensional simulation of thermal blooming effects in ring pattern laser beam propagating into absorbing CO2 gas

Numerical Analysis of Soft-Aperture Kerr-Lens Mode Locking in Ti:Sapphire Laser Cavities by Using Nonlinear ABCD Matrices

Graphene mode-locked Cr:ZnS chirped-pulse oscillator

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

The Generation of Ultrashort Laser Pulses

Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers

Ultrafast Laser Physics

Comparison of different composite Nd:YAG rods thermal properties under diode pumping

Using a volume Bragg grating instead of a Faraday isolator in lasers incorporating stimulated Brillouin scattering wavefront reversal or beam cleanup

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Neodymium Laser Q-Switched with a Cr 4+ : YAG Crystal: Control over Polarization State by Exterior Weak Resonant Radiation

OPTICAL GAIN AND LASERS

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

Fluoride Laser Crystals: YLiF 4 (YLF)

Ultra-narrow-band tunable laserline notch filter

Stimulated Emission Devices: LASERS

Sensitive Detection and Identification of Isovanillin Aerosol Particles at the pg/cm 3 Mass Concentration Level Using Raman Spectroscopy*

Engineering Medical Optics BME136/251 Winter 2017

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015

Mid-IR Photothermal Imaging with a Compact Ultrafast Fiber Probe Laser

Spectroscopic investigations of Rb- and Cs- rare gas systems

Nonlinear Optics (NLO)

Dmitriy Churin. Designing high power single frequency fiber lasers

Effects of resonator input power on Kerr lens mode-locked lasers

Passively Q-switched microlaser performance in the presence of pump-induced bleaching of the saturable absorber

Photonic crystal enabled THz sources and one-way waveguides

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Multiple-color cw visible lasers by frequency sum-mixing in a cascading Raman fiber laser

Investigation of absorption pump light distribution in edged-pumped high power Yb:YAG\YAG disk laser

Laserphysik. Prof. Yong Lei & Dr. Yang Xu. Fachgebiet Angewandte Nanophysik, Institut für Physik

Thermal Lensing Effects in End pumped Er:YAG Laser

Quantum Electronics Laser Physics. Chapter 5. The Laser Amplifier

Ar and Kr ion lasers

MODERN high-average-power solid-state lasers suffer

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Aberrations induced by anti-ase cap on thindisk active element

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

Blue-green Emitting Semiconductor Disk Lasers with Intra-Cavity Frequency Doubling

Temperature-dependent spectroscopic analysis of F 2 + ** and F 2 + **-like color centers in LiF

Doctor of Philosophy

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Semiconductor Disk Laser on Microchannel Cooler

Fiber Lasers. Chapter Basic Concepts

850 nm EMISSION IN Er:YLiF 4 UPCONVERSION LASERS

What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light

Stimulated Emission. ! Electrons can absorb photons from medium. ! Accelerated electrons emit light to return their ground state

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Phase-matching temperature shifts in blue generation by frequency doubling of femtosecond pulses in KNbO 3

Thin-disk laser Power scaling to the kw regime in fundamental mode operation

A tunable corner-pumped Nd:YAG/YAG composite slab CW laser

Steady state mode-locking of the Nd:YVO 4 laser operating on the 1.34 µm transition using intracavity SHG in BIBO or PPMgSLT

ULTRAFAST laser sources have enormous impact on many

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Z-scan Measurement of Upconversion in Er:YAG

Development of a table top TW laser accelerator for medical imaging isotope production

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Lasers and Electro-optics

Laser Excitation Dynamics of Argon Metastables Generated in Atmospheric Pressure Flows by Microwave Frequency Microplasma Arrays

Thermal lens and heat generation of Nd:YAG lasers operating at and 1.34 µm

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Chapter9. Amplification of light. Lasers Part 2

arxiv: v2 [physics.optics] 29 Aug 2017

DEVELOPMENT OF HIGH-POWER PICOSECOND FIBER-BASED ULTRAVIOLET SOURCE

Deterministic Nanosecond Laser-Induced Breakdown Thresholds In Pure and Yb 3+ Doped Fused Silica

Highly Nonlinear Fibers and Their Applications

Local laser cooling of Yb:YLF to 110 K

Chapter 5. Semiconductor Laser

Color Center Production by Femtosecond-Pulse Laser Irradiation in Fluoride Crystals

Dissipative soliton resonance in an all-normaldispersion erbium-doped fiber laser

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators

LASERS. Amplifiers: Broad-band communications (avoid down-conversion)

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation

*Corresponding author:

Dark Soliton Fiber Laser

γ c = rl = lt R ~ e (g l)t/t R Intensität 0 e γ c t Zeit, ns

Transcription:

Diode-Pumped Cryogenic Yb[superscript 3+]:YLF Laser of 100-W Output Power with High Beam Quality The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Zapata, Luis E. et al. Diode-pumped cryogenic Yb[sup 3 + ]:YLF laser of 100-watt output power with high beam quality. Laser Technology for Defense and Security VI. Ed. Mark Dubinskii & Stephen G. Post. Orlando, Florida, USA: SPIE, 2010. 768607-6. 2010 SPIE http://dx.doi.org/10.1117/12.853196 SPIE Version Final published version Accessed Wed Jun 27 11:25:03 EDT 2018 Citable Link Terms of Use Detailed Terms http://hdl.handle.net/1721.1/58585 Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Diode-Pumped Cryogenic Yb 3+ :YLF Laser of 100-W Output Power with High Beam Quality* Luis E. Zapata, Daniel E. Miller, Daniel J. Ripin, and Tso Yee Fan MIT Lincoln Laboratory, 244 Wood St., Lexington, MA, USA 02420 ABSTRACT A cryogenically cooled Yb:YLF laser with 224-W output power at 995 nm, linearly polarized along the c-axis, has been demonstrated, and laser oscillation has also been obtained polarized along the a-axis. The beam quality had an M 2 ~ 1.1 at 60-W output and M 2 ~ 2.6 at 180-W output for c-axis polarization. This level of average power is approximately two orders of magnitude higher than demonstrated previously in cryogenic Yb:YLF. A cryogenic Yb:YLF mode-locked oscillator is under development, which will be used to as the input to a Yb:YLF amplifier to generate a short pulses at high average power. Keywords: Yb lasers, ultrashort pulse lasers, cryogenic lasers 1. INTRODUCTION Cryogenic cooling of Yb:YAG lasers to liquid nitrogen temperature has enabled high-average-power operation (to multikw power) with excellent beam quality in simple laser geometries. 1-6 Operation at cryogenic temperature has the fundamental advantages relative to room-temperature operation of much better thermo-optic properties and dramatically reduced thermal population of the lower laser level that have led to the excellent performance. However, in short-pulse operation the gain bandwidth in cryogenic Yb:YAG limits the pulsewidth to a few ps. 7 Cryogenic Yb:YLF offers similar improvements in fundamental properties with larger gain bandwidth than YAG, which has enabled sub-ps pulse generation. 8-10 However, demonstrations of cryogenic Yb:YLF have been limited to Watt-class average power. Here, we report on scaling of Yb:YLF to the >100-W average power level with good beam quality, limited only by the pump power, which leads the way to high-average-power, sub-ps laser systems. Here we report on a large advance in averagepower performance and work to develop a mode-locked oscillator on a path to high-average-power femtosecond laser systems. 2. PROPERTIES OF YB:YLF The thermo-optic and spectroscopic properties of Yb:YLF at cryogenic temperature are attractive for high-averagepower short-pulse operation. The thermo-optic properties improvements in YLF at cryogenic temperature relative to room temperature are large. 11 The thermal conductivity increases, the magnitude of dn/dt decreases, and the coefficient of thermal expansion decreases, all of which are favorable for average-power scaling. Some of this data are shown in Fig. 1. The thermal conductivity in undoped YLF is 24 W/mK at 100 K compared with 5.3 W/mK at 300 K along the a- axis and 34 W/mK at 100 K compared with 7.2 W/mK at 300 K along the c-axis. At 100 K, dn o /dt is -0.5 ppm/k and dn e /dt is -1.8 ppm/k compared with -4.6 ppm/k and -6.6 ppm/k respectively at 300 K. The coefficient of thermal expansion is 2.4 ppm/k along the a-axis and 3.2 ppm/k along the c-axis at 100 K compared with 14 ppm/k and 10 ppm/k respectively at 300 K. YLF is also attractive as a host material because it is uniaxial, which means that stressinduced birefringence is negligible compared to its natural birefringence. The spectroscopic properties of cryogenic Yb:YLF have been reported previously, 1,9 and they attractive for high-power short-pulse lasers. Figure 2 shows the absorption cross section for the two polarizations at 80 K. The 960-nm absorption feature is attractive for pumping because of its strength and the relatively low quantum defect heating, although it is relatively narrow at 3-nm full-width half maximum (FWHM). The polarized cryogenic gain spectrum is shown in Fig. 3, with a high-gain line at 995 nm and a lower gain, but broader, pedestal extending out to a peak at 1020 nm. The relatively broad gain bandwidth for the E a polarization is particularly attractive for fs-laser operation. Laser Technology for Defense and Security VI, edited by Mark Dubinskii, Stephen G. Post, Proc. of SPIE Vol. 7686, 768607 2010 SPIE CCC code: 0277-786X/10/$18 doi: 10.1117/12.853196 Proc. of SPIE Vol. 7686 768607-1

Figure 1. Thermal conductivity (individual data points) and dn/dt of YLF as a function of temperature. Data from ref. 11. Figure 2. Polarized absorption spectrum of Yb:YLF. Proc. of SPIE Vol. 7686 768607-2

Figure 3. Polarized stimulated emission cross section of Yb;YLF. 3. LASER EXPERIMENTS We are working toward high-average power femtosecond sources and are currently demonstrating two aspects separately: short-pulse operation from a low-power oscillator and power scalability of cryogenic Yb:YLF using a cw power oscillator. These two aspects will then be combined to demonstrate a high-power short-pulse system using a master-oscillator power-amplifier (MOPA) architecture. 3.1 High-power cw oscillator An end-pumped geometry was used as shown in Fig. 4. The laser gain element was composed of an AR coated 1%- doped Yb:YLF crystal 10 mm in length with an undoped end-cap. The c-axis of the YLF was oriented normal to the axis of the resonator. Figure 4. Schematic of cw laser oscillator demonstration. The laser gain element was pumped by a fiber-coupled (400-µm core diameter, 0.22-NA fiber) diode array, which had a spectrum centered at 960 nm with 2.2 nm FWHM. The pump beam was imaged to a spot in the Yb:YLF approximately Proc. of SPIE Vol. 7686 768607-3

1.2 mm in diameter. The pump beam transmitted through the cavity back-mirror, which had dichroic coating of 98% transmittance at 960 nm and 97.5% reflectivity at 995 nm. The back-mirror was placed 5 cm from the gain element and had a concave radius of 40 cm. The output coupler was flat and had 44% reflectivity. The cavity length was approximately 20 cm. With this laser, we obtained a maximum of 224-W laser output power at 995 nm polarized along the c-axis as shown in Fig. 5. The slope efficiency relative to the absorbed power was 68% and 57% relative to the incident pump power. There is no departure from linearity in the output power up to the maximum input power available, and the output power was limited only by the diode pump power of 396 W of 960-nm radiation incident on the gain element. This laser transition terminates at the third Stark level of the lower 2 F 7/2 electronic manifold at 218 cm -1 (ref. 13) and exhibits the largest Stark emission cross section in Yb 3+ :YLF. At cryogenic temperatures the lower laser level has a favorable occupation factor (2.6% at 100 K) making the π-polarized transition at 995 nm the strongest free running line in cryogenic Yb:YLF lasers in low Q resonators. With a higher reflectivity output coupler, laser oscillation has been observed on the π-polarized transition at 1019 nm and σ-polarized transition at 1017 nm with the addition of a Brewster plate in the resonator. Figure 5. Laser output power at 995 nm pumping at 960 nm. Cryogenic operation enables laser operation with very low quantum defect. 14 Pumping at 960 nm in Yb:YLF is preferred because it exhibits the strongest absorption and low quantum defect (3.6% for 960 nm pumping, 995 nm lasing). The diode pump had diode bars with a FWHM that varied from 1.5 nm FWHM at low powers to 2.6 nm FWHM at 396 W of output power. The narrow spectral profile of the absorption (3.0 nm FWHM) is a challenge for temperature tuning of the pump wavelength, but the development of grating-stabilized, high-power diode arrays 15,16 should ease this difficulty. A high-reflector with curvature of 40 cm produced a nearly perfect Gaussian beam with a measured M 2 ~ 1.1 as the laser produced 60-W output. With the same resonator configuration, the M 2 value was seen to increase up to M 2 ~ 2.6 at 180- W output. This reduction in beam quality can be explained by excitation of higher order modes as the thermally induced negative lens in the YLF gain medium influenced the resonator at higher pump powers. The measured data supports our theoretical estimates for the absorption, laser output and thermo-optic effects; absorption data shows that during lasing, 71% and 84% of the pump power was absorbed in the gain medium while pumping with pure E a and with both polarizations respectively. These numbers are consistent with our calculations including the 960-nm pump and Yb:YLF absorption spectra. An aperture-averaged ground-level depletion of 7% was used in our 2-level, Boltzman-occupied laser energetics model in order to fit our calculations to the laser output data of Fig. 5. Assuming only quantum defect heating, the temperature rise across the pumped region is estimated to be 5 K. A simple calculation following the formulae in Koechner 17 showed that a temperature rise between 5 and 10 K within the confines of a 10-mm-long rod-like region in YLF with 1.2 mm diameter would result in about 1 to 2 diopter lens due to the effect of dn e /dt. However, a Proc. of SPIE Vol. 7686 768607-4

good estimate for thermal lens associated with stress-optic effects cannot be made because the stress-optic tensor elements for YLF have not been reported. Assuming only thermal lensing caused by dn e /dt, this loaded cavity optical power when added to the resonator s ABCD formalism shows decreasing stability and mode-selection properties explaining at least qualitatively the reduction in beam quality. 3.2 Femtosecond oscillator A passively mode locked Yb:YLF laser at room temperature has been previously demonstrated using saturable absorber to provide loss modulation. 19 In our work, we have instead chosen a master oscillator design based on Kerr-lens mode locking (KLM). Pulses with high peak intensity experience a lensing effect due to the nonlinear index of refraction, which CW light does not. The cavity is designed such that this changes the laser mode, improving the pump overlap (soft aperture) or reducing loss at an aperture (hard aperture). The KLM mechanism is extremely fast, and can saturate fully. This avoids the tendency to passively Q-switch which can be a challenging obstacle in lasers mode locked by semiconductor saturable absorbing mirrors (SESAM). Solidstate lasers, which have long lifetimes and small emission cross sections, are particularly susceptible to this instability. KLM has the added advantage that the gain and mode locking mechanism are independent. We use SF57 glass, which has a nonlinear index of refraction 30 times that of YLF, to obtain Kerr lensing. This relaxes a number of constraints on the cavity design. A much larger focus can be used in the gain, which reduces the effects of thermal distortions. The additional working distance is also more accommodating to a cryogenic dewar. Experiments have begun on this laser. * This work was sponsored by the High-Energy-Laser Joint Technology Office under Air Force contract number FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors, and are not necessarily endorsed by the United States Government. REFERENCES [1] T. Y. Fan, T. Crow, and B. Hoden, Cooled Yb;YAG for high power solid-state lasers, Proc. SPIE 3381, 200-205 (1998). [2] D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, 165-W cryogenically cooled Yb:YAG laser, Opt. Lett. 29, 2154-2156 (2004). [3] D. J. Ripin, J. Ochoa, R. L. Aggarwal, and T. Y. Fan, 300-W cryogenically cooled Yb:YAG laser, IEEE J. Quantum Electron. 41, 1274-1277 (2005). [4] T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, Cryogenic Yb 3+ - doped solid-state lasers, IEEE J. Sel. Top. Quantum Electron. 13, 448-459 (2007). [5] D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, Kilowatt class high-power CW Yb:YAG cryogenic laser, Proc. SPIE 6952, 69520K (2008). [6] Jason K. Brasseur, Akheelesh K. Abeeluck, Andrew R. Awtry, Lei S. Meng, Kevin E. Shortoff, Nicholas J. Miller, Richard K. Hampton, Michael H. Cuchiara, and David K. Neumann, 2.3-kW continuous operation cryogenic Yb:YAG laser, Proc. SPIE 6952, 69520L (2008). [7] K. H. Hong, A. Siddiqui, Jeffrey Moses, Juliet Gopinath, John Hybl, F. Ömer Ilday, Tso Yee Fan, and Franz X. Kärtner, Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system, Opt. Lett. 33, 2473 (2008). [8] J. Kawanaka, K. Yamakawa, H. Nishioka, and K. Ueda, 30-mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier, Opt. Lett. 28, 2121-2123, 2003. [9] J. Kawanaka, K. Yamakawa, H. Nishioka, K. Ueda, Improved high-field laser characteristics of a diode-pumped Yb : LiYF 4 crystal at low temperature, Opt. Express 10, 455-460 (2002). [10] J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature, Laser Physics 13, 1306-1312 (2005). Proc. of SPIE Vol. 7686 768607-5

[11] R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, Measurement of thermo-optic properties of Y 3 Al 5 O 12, Lu 3 Al 5 O 12, YAlO 3, LiYF 4, LiLuF 4, BaY 2 F 8, KGd(WO 4 ) 2, and KY(WO 4 ) 2 laser crystals in the 80 300 K temperature range, J. Appl. Phys. 98, 103514 (2005). [12] Y. Akahane, M. Aoyama, A. Sugiyama, R. Kubo, K. Ogawa, K. Tsuji, and K. Yamakawa, High-energy diodepumped picosecond regenerative amplification at 999 nm in wavelength with a cryogenically cooled Yb : LuLiF 4 crystal, Opt. Lett. 33, 494-496 (2008). [13] A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, G. Boulon, Growth of Yb 3+ -doped YLiF 4 laser crystal by the Czochralski method. Attempt of Yb 3+ energy level assignment and estimation of the laser potentiality, Optical Materials 26 (2004) 375 383. [14] N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, Ultralow quantum-defect eye-safe Er:Sc 2 O 3 laser, Opt. Lett. 33, 1524-1526 (2008). [15] C. Schnitzler, S. Hambuecker, O. Ruebenach, V. Sinhoff, G. Steckman, L. West, C. Wessling, D. Hoffmann, Wavelength stabilization of HPDL array fast-axis collimation optic with integrated VHG, Proc. SPIE 6456, paper 645612 (2007). [16] B. Köhler; T. Brand; M. Haag; J. Biesenbach; "Wavelength stabilized high-power diode laser modules"; Proc. SPIE Vol.7198, 719810 (2009) [17] W. Koechner, Solid-State Laser Engineering, third edition, Springer-Verlag, chapter 7. [18] N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, "Diode-pumped passively modelocked Yb:YLF laser," Opt. Express 16, 2922-2927 (2008). Proc. of SPIE Vol. 7686 768607-6