SOLUTION SET. Chapter 6 RADIATION AND THERMAL EQUILIBRIUM - ABSORPTION AND STIMULATED EMISSION "LASER FUNDAMENTALS" Second Edition

Similar documents
SOLUTION SET. Chapter 8 LASER OSCILLATION ABOVE THRESHOLD "LASER FUNDAMENTALS" Second Edition

SOLUTION SET. Chapter 9 REQUIREMENTS FOR OBTAINING POPULATION INVERSIONS "LASER FUNDAMENTALS" Second Edition. By William T.

A L A BA M A L A W R E V IE W

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

APPH 4200 Physics of Fluids

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

rhtre PAID U.S. POSTAGE Can't attend? Pass this on to a friend. Cleveland, Ohio Permit No. 799 First Class

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. l"l. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S l"l. \ (?

Einstein s Approach to Planck s Law

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

l [ L&U DOK. SENTER Denne rapport tilhører Returneres etter bruk Dokument: Arkiv: Arkivstykke/Ref: ARKAS OO.S Merknad: CP0205V Plassering:

Answers to questions on exam in laser-based combustion diagnostics on March 10, 2006

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS

Higher -o-o-o- Past Paper questions o-o-o- 3.4 Spectra

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Executive Committee and Officers ( )

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009

Introduction to Infrared Radiation.

::::l<r/ L- 1-1>(=-ft\ii--r(~1J~:::: Fo. l. AG -=(0,.2,L}> M - &-c ==- < ) I) ~..-.::.1 ( \ I 0. /:rf!:,-t- f1c =- <I _,, -2...

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.5: Optical Absorption. Ron Reifenberger Professor of Physics Purdue University

T h e C S E T I P r o j e c t

ATMO/OPTI 656b Spring 2009

Experiment 4 Radiation in the Visible Spectrum

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f

'NOTAS"CRITICAS PARA UNA TEDRIA DE M BUROCRACIA ESTATAL * Oscar Oszlak

high temp ( K) Chapter 20: Atomic Spectroscopy

2. Discrete means unique, that other states don t overlap it. 3. Electrons in the outer electron shells have greater potential energy.

NO. 13, LIGHT BULB: NUMERICAL AND EXPERIMENTAL EVALUATION OF THE EFFICIENCY. Reza Montazeri Namin a Alireza Tahmaseb Zadeh b

A/P Warrants. June 15, To Approve. To Ratify. Authorize the City Manager to approve such expenditures as are legally due and

ECE430 Name 5 () ( '-'1-+/~ Or"- f w.s. Section: (Circle One) 10 MWF 12:30 TuTh (Sauer) (Liu) TOTAL: USEFUL INFORMATION

QM all started with - - The Spectrum of Blackbody Radiation

R e p u b lic o f th e P h ilip p in e s. R e g io n V II, C e n tra l V isa y a s. C ity o f T a g b ila ran

Tausend Und Eine Nacht

9.9 L1N1F_JL 19bo. G)&) art9lej11 b&bo 51JY1511JEJ11141N0fM1NW15tIr1

Chapter 13. Phys 322 Lecture 34. Modern optics

fur \ \,,^N/ D7,,)d.s) 7. The champion and Runner up of the previous year shall be allowed to play directly in final Zone.

i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s

Chap. 3. Elementary Quantum Physics

= (fundamental constants c 0, h, k ). (1) k


Modern Physics. Unit 1: Classical Models and the Birth of Modern Physics Lecture 1.4: Blackbody Radiation and Photoelectric Effect

Chapter 5 Light and Matter: Reading Messages from the Cosmos. What is light? Properties of Waves. Waves. The Electromagnetic Spectrum

J. Org. Chem., 1997, 62(12), , DOI: /jo961896m

FOR TESTING THill POWER PLANT STANLEY STEAM AUTOMOBILE SOME TESTS MADE WITH IT. A Thesis surmitted to the

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place.

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then

Parts Manual. EPIC II Critical Care Bed REF 2031

SOLUTION SET. Chapter 11 LASER CAVITY MODES "LASER FUNDAMENTALS" Second Edition

5. Light-matter interactions: Blackbody radiation

ATMOS 5140 Lecture 7 Chapter 6

Vlaamse Overheid Departement Mobiliteit en Openbare Werken

Determination of Stefan-Boltzmann Constant.

necessita d'interrogare il cielo

Homework 04 - Electromagnetic Radiation

Take away concepts. What is Energy? Solar Radiation Emission and Absorption. Energy: The ability to do work

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

2.' -4-5 I fo. - /30 + ;3, x + G: ~ / ~ ) ~ ov. Fd'r evt.'i') cutckf' ()y\e.._o OYLt dtt:vl. t'"'i ~ _) y =.5_21/2-+. 8"'- 2.

z E z *" I»! HI UJ LU Q t i G < Q UJ > UJ >- C/J o> o C/) X X UJ 5 UJ 0) te : < C/) < 2 H CD O O) </> UJ Ü QC < 4* P? K ll I I <% "fei 'Q f

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

P a g e 5 1 of R e p o r t P B 4 / 0 9

What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light

Thermal Radiation By: Prof. K M Joshi

Atomic Physics 3 ASTR 2110 Sarazin

OPTICAL GAIN AND LASERS

Laser heating of noble gas droplet sprays: EUV source efficiency considerations

5. Light-matter interactions: Blackbody radiation

,\ I. . <- c}. " C:-)' ) I- p od--- -;::: 'J.--- d, cl cr -- I. ( I) Cl c,\. c. 1\'0\ ~ '~O'-_. e ~.\~\S

EE 119 Introduction to Optical Engineering Fall 2010 Final Exam

1 Radiative transfer etc

35H MPa Hydraulic Cylinder 3.5 MPa Hydraulic Cylinder 35H-3

Lecture 2 Blackbody radiation

Laser-produced extreme ultraviolet (EUV) light source plasma for the next generation lithography application

fl W12111 L5N

MPM 2D Final Exam Prep 2, June b) Y = 2(x + 1)2-18. ~..: 2. (xl- 1:'}")( t J') -' ( B. vi::: 2 ~ 1-'+ 4 1<. -t-:2 -( 6! '.

Housing Market Monitor

I N A C O M P L E X W O R L D

Fine Structure Calculations of Atomic Data for Ar XVI

,.*Hffi;;* SONAI, IUERCANTII,N I,IMITDII REGD- 0FFICE: 105/33, VARDHMAN GotD[N PLNLA,R0AD No.44, pitampura, DELHI *ffigfk"

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7

AP Calculus AB. Sample Student Responses and Scoring Commentary. Inside: Free Response Question 1. Scoring Guideline.

r(j) -::::.- --X U.;,..;...-h_D_Vl_5_ :;;2.. Name: ~s'~o--=-i Class; Date: ID: A

INTRODUCTION TO MICROWAVE REMOTE SENSING - II. Dr. A. Bhattacharya

Experimental Basis for QM Ch3

STEEL PIPE NIPPLE BLACK AND GALVANIZED

Minimum Bias Events at ATLAS

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

III Illl i 111 III illlllill 111 Illlll

ASTR-1010: Astronomy I Course Notes Section IV

Electromagnetic Radiation. Physical Principles of Remote Sensing

Hint: unit of energy transferred is equal to: hν = hc

Radiative Hydrodynamic Simulation of Laser-produced Tin Plasma for Extreme Ultraviolet Lithography

S U E K E AY S S H A R O N T IM B E R W IN D M A R T Z -PA U L L IN. Carlisle Franklin Springboro. Clearcreek TWP. Middletown. Turtlecreek TWP.

Ranking accounting, banking and finance journals: A note

Chapter 39. Particles Behaving as Waves

Transcription:

SOLUTION SET Chapter 6 RADIATION AND THERMAL EQUILIBRIUM - ABSORPTION AND STIMULATED EMISSION "LASER FUNDAMENTALS" Second Edition By William T. Silfvast

Cll ~ 1. Calculate the number of radiation modes in a cube 1 mm on a side for a spread of \ 0.001 nm centered at 514.5 nm and a spread of 0.01 µm centered at 10.6 µm. : dp(v)_ ~1T7/' d '").J - c. 3 ~ "'l u ~ b.e.v " f ~ks w, n t11 t{_ v f) I u ~ v a..._ef f ye-0 ~~L~ Wt ctn. Av ; ~: ''-- -! ] " JD VV\ ( b)

le!... IL/ ~-'l. _,_r ""-' NR.-.:. ~' ~?x ID e - i. ~<t/xio = /, ~s-x /(.) = 0

. c~~ 2. Consider a I-mm-diameter surface area of carbon (graphite). Calculate how many. I atoms would exist in energy levels from which they could emit radiation at wave- I lengths shorter than 700 nm (visible light and shorter wavelengths) for surface : temperatures of 300 K, 1,000 K, and 5,000 K when the solid is in thermal equilib-! rium at those temperatures. Assume that only those atoms within a depth of 10 nm of the material surface can emit observable radiation... ' N == 2 1-17-,_ $ (p >< 10 ardha.4/hulir, 2.25"'f~ /()fpc_.1-c._ =:- /./]X/029(1,fD~ I 1- q "'"'- / ~u_ C..&M. 3 ~ ~ "11 ~ l1 '- ( ~ f\l y-=-- To!iJ.-:B: "f et.tc~!.. :=. N V == /,I 3X Jo TT { O, D6oS) ""'- ID- ~ IA-\. J [ t.77e\/ -f.7~tj - f'-1,.. o - e -::. -e_ - 1.77 ~T J~T

3 (_~,) ( e (), 01 'f '0_ r.._;_ I ) L 2.x1D 7 AA AA = I tjoo I<- / -.._ - '1 w...1 o we v-- -i., l> 47 x I D I o o D le_ - 2 7, ~ w r f ~ 0 I v I "-7 f Q,,.. p () Vilt'. "!A..,-..., A... I D I Ys f'jo w-e~ =- N A h v ( o, s) (o, tjod fjl) For )OOk. (Cb we.~ ::: 7. If x 10.. "L~ <-(,}ftj)(t6-s' Fer- f 00() I::.._ Po we... v-- ::: w t.f.f-o v-- $'S'1 W ~ cj~'fer Thew-.. ()' T r;-0 & 0 I::-_ Po we v- :: ft..- ~ wo.-u-e I~~ ~s ~ : Co II/ s/'~ ~ ~,,l1.t u po p 'A, I~ Tio I;\_

CN ~ 3. In Problem 2, if the excited atoms that emit visible radiation decay in 10-13 s and if only 0.002o/o of them decay radiatively (quantum yield of 2% ), how much power would be radiated from that surface at the aforementioned temperatures? Assume that half of the atoms that radiate emit into the 2n solid angle that would result in their leaving the surface of the material, and assume an average visible photon 1 energy of 2.5 ev. Also compute the total amount of power that could be radiated (over all wavelengths) from the surface at the given temperatures using the Stefan Boltzmann law (eqn. 6.15). Speculate as to why the two approaches for computing the radiated power are inconsistent at a temperature of 5,000 K.,. r, >-- T = s--oo ><I 0 -'1 IM. 3 ()() t:.. = /,D</ {)-'1 Yr;.. k A T -=- s-oo x 1 o-'1 k-\ I tjl!jo k... = ~ x 10 'i 1A-i. I<. ~ -~ >-- T::: 5'{)0 ><ID- kt s-0001<.= 2,!:,X/{) 1-tt k

C. /-1 (p 4. How much power is radiated from a 1-mm 2 surface of a body at temperature T when \ the peak measured wavelength is that of green light at 500 nm? ;. I -~ ;;:-oox10 ~ ' ( " I fo ) I / I --------~ S-CJo ><to - ~ Vi-\.. A.ssu~ c~ =I favavt 1~J b I a_c.k. hod~ ltt-\ L_ 1''.._ G,.'-/OXI0 7 vj Vt-\ 1._ f o.,,.. I ~ ~ i =- I D - ~ ~ "2.. Po V)er ::: I x a ~Cl -::. i I Lf? x I() 7 }!! I 0-4'~ L = t,, t./w V"t '1.. -

C II (p 5. Determine the number of modes in a 1-cm 3 box for frequencies in the visible s~ec- / trum between 400 and 700 nm. Compare that value to the number of modes 1n a i i sodium streetlamp. that emits over a wavelength interval of 3 nm at a center wave- \ length of 589 nm. Assume that the streetlamp is a cylinder of radius 0.5 cm and length 10 cm. ' Lfoo &.1.~ a..-..,~t 76ti ~!A--\ 1 s (b) 5' ool c 4, ""-.s T ~t I"- ""-f VO I u... e =- ( o. 9 (",M "2.!> rr" mx1/'hl [_ - ~ rr-... - ~ rr J x /,CJ, x io-(pw,. 3 ~ (!~7.~XIO-"t)} 3 ( S-'70,S-x10-')~ t:{ fj ~ v. v ~~ tg rr JJ "- &.. /) v_ ~ rr c L. 4 JJ, v CfiJ c_ 'J t.. 3 Ai... -- - - VI AA ' v A LJ <(, -rr c 3 x1a-, >(t. = 11,x 10-(p) 1. 23.x, o I l. ~.tt-s cr-rei )( 10-1 )Lf t11t s lr.ecl- ftii.u.y;

C.Ht:> 6. Estimate the number of photons in both the box and the streetlamp of Problem 5 for temperatures of 300 K, 1,000 K, and 5,000 K. f-k V\ u IM., i1 ev () f p h 0 f0111..5 ts ~ (_# VIAA> cla. s.) X (a ueyo--c;, ~rf f / J4tf)~) ~ vev"',&>.#- -e...~""; ~ / r Mriivt. Fov bo)(.. hr I.\~ p 1"4) ~ '4-~~ ii L., -r h T -l 2, 't:f x!() e V g, '1 S x I o- 2 e ij {), 4 31 e V J=' t> V' a._ ue.v'a..~ p lw fo ""- e,vl.lyv tj U U >--= s-so~~ =? hv-=.-i."l~ev. # p~!o~ -=:..,-/._)_I _'X_I D_'_'f ( ett~r-1) /,'"(I Xlo-2-'f L/7D t;"', ~c; X /t) I/ Aue.va'JR- p ~~ e~.e.- 11'-I ~ h v I~ L.I / e v ff) Y' s. rr~ Ct-t!4Y ~p t=i- p h o!bh.,s ~ /, 2 3 x ID I 2 le "'""/i:r - I) T 360 k!,{)co K ~ ooo I< # r tu. ID~.s --~ S-: /2 'XIO-J..'-f L.,, ~ i2~x.109

CHj 7. A 100-W incandescent lamp has a tungsten filament composed of a wire, 0.05 cm in diameter and 10 cm in length, that is coiled up to fit within the light bulb. Assume '. the filament is heated to a temperature of 3,000 K when the light bulb is turned I I on. How much power (watts) is emitted within the visible spectrum from the filament, assuming that it is emitting as a blackbody? As an approximation, you could divide the visible spectral region into several segments and compute the average contribution from each segment. Then simply add the averages together (instead of trying to integrate the blackbody function over the entire visible spectral range). A (VIV'-\\ Ll~ (vt V~\) IQ< ) T::. 110 O'D t<. c..'a ';.. S:lJ ~ ~ Av-eec = (_ (), I k) rr ({),{)I) DS) /Ii-\ ;: /, :;-/ x I (J- 'i VI-\'- A.,,.. a, vt. ep.- Av~. A ~T Pl>wer ( 7... "b."') 4\ U.t1.7r~ L/OO-'-{S?) l(2~ /,2?~XID -s 2. ~ 1..1 w Lf c;-o - ;;-o D t.;7 r- /,l/l) Xfo-:, L/, tq ~ IJ.} )00 - s-s-o S-2.S- /, )?S-X l'o - 3 '7, 10 w ~7) I. 7 2 ~- X. I o - > //,ID w 5~0 - ~DD ~DD -,S.. D ~'2-~ /, ~r.js-x JO - J /'-(, 2 7 w fqs-d - 7 t> D f.o 7~ 2# l>2s-x 10-3 17, /~ IA) -r ~ r;:.1 -- 5'~ o~ W,.

Cllfe,! 8. Show that Planck's radiation law of (6.39) will lead to the Stefan-Boltzmann relationship of (6.15) if the power radiated over all wavelengths is considered. De-. termine the coefficients of the Stefan-Boltzmann constan( Hint: {oo x3 dx = ;r4. Jo ex-1 15 /,.,. f -- I~ l}'i.id'bj'1.-(f.r;,~2xio-~lf.]-s ) 1 r;',~'/ X (0-~ ~u vi,,&.. ~ '

C/10 9. An argon ion laser emits 2 W of power at 488.0 nm in a 2-mm-diameter beam. What would be the effective blackbody temperature of the output beam of that I laser radiating over the frequency width of the laser transition, given that the laser 1 linewidth is approximately one fifth of the Doppler linewidth? Assume that the laser is operating at an argon gas temperature of 1,500 K and that the laser output is uniform over the width of the beam. ~(11):: ~{'j)) - t:.. I-== f.p, 37x10 s- w;~ 1... f;;yx._ ID~/':;. -1- t6t/ h -p>"i t:: 1.. J:(~) ~ 11'"...,, 07x10-1 '.r ( to.1rxlflv) "2.. -:::- I -t-............-... _ -... _,_ (1 XID ~ )l...(/t /fl )(ltj-3) :::: I+ D,o3~'-f-:.. I, DJ~'-1 -~\ -- T :::. --

Cllb 10. For the laser in Problem 9, how much power would be required for the stimulated \ I emission rate to equal the radiative decay rate? rt) r [3 (A_.e '2A t-v ) /J._ l),q_ 1.A {VJ f Y'tJ W't ( ~.s- 2. J V\::. I 'ti\!'-&{ ~ - L c:. - A... 3 "I <?str ~,~2r~ x1a :rs -:: f,'i}xur'>,rs l L/ ~~XI 0"'"'1 ~ J l \Ar\] rl~j =--.-=, r t-v) = t 1.<_ v 1 (_ {.. ;,..?) -;;_ A ~ :::: r:;. /, l.f i 'X IO - I) J' ~ 5!ft.\.) 2... ft;wer- = rx a..~"-::; '2.31~/l}&.;~'- rr(j()-~/.f.c.) :: 7, 2 ' )( I 0... 2. w :::: 7 2. '1 IM w t.t; it'~i. y1a,~c.( TD ""2.. W t "- p r ""e b ~ '-J

l 11 ft, 11. A pulsed and Q-switched Nd:YAG laser is focused to a 200-µ,m-diameter spot. size on a solid fiat metal target in an attempt to produce a bright plasma source j for microlithography applications. The plasma is observed to radiate uniformly I into 2n steradians with a wavelength distribution that is approximately that of a! I blackbody. The intensity of the Nd:YAG laser is adjusted so that the peak of the ' blackbody emission occurs at a wavelength of 13.5 nm, the optimum wavelength ~ as a source for EUV microlithography. What is the temperature of the blackbody? What fraction of the total energy radiated by the blackbody would be radiated within the useful bandwidth for microlithography of 0.4 nm centered around the emission maximum? Assume that the plasma doesn't expand significantly during the 10-ns emission time (the duration of the Nd:YAG laser pulses).,., lbj f J. S" X /() -., M T "I-:: <;;;" 7x10 'l vj (_ <.1 '1 '7 vo 5 )'1 1< 'I 6;r., 1. k. 'i ~r ::: io- rt ~ L;. A = rr Qo- L'J~ : 3# I 'f Xh(~ Y'A. 2.. D. '1 l'1 ~ b"- rt..~ ~14;-~I J I ~S-"1 ~ 1 ~ ~ J, /r)( / b- i. r { 0 1 y., ~ \ ( / 3.S-J( I 0 -Cf).. ) ( e (), () 1 Y''4'. r _ I) = ~. 'I~ x l'o ''- (, 't ) = 2. 1 4 x / o ' ' W/~ 4 - '6 '- 1.1'1)( lb ~ Ex. a Er --- - -

{, 1-1"" 12. The blackbody spectral distribution curve has a maximum wavelength Am that is \ dependent upon the temperature T of the radiating body. Show that the product i A.mT is a constant for any temperature (Wien's law, eqn. 6.16). Hint: Use the frequency version of the blackbody radiation formula instead of the wavelength version to show this. n.--p - I ( e ~ -1) bj dj -= J xi. (e x_ I)- '_ X 3 12: x - 1),.. -c:. ><. = c d~ t. X.. -I X "3- x ( e - 1) e -=- o x 3 - (_I _ e -x) ::. 0 ~, ~ x =- ---- ~.,) - ~ ::;:::_ h c. ~4, 1<. r r\..k.t, t.-~.sr~µj r I >-~ T=:... - ~:Jiflll'N( ----

CH~ 13. A blue argon laser beam at 488 nm is propagating around a coliseum as part of a \ laser light show. The power is measured to be 10 W cw at a specific location with '.. a beam diameter of 5 mm. What is the energy density per unit frequency u ( v) of : the beam at that location? /6 w T = 1f (_ 2, S-X I 0-3 )-a._""- '-- ~ (v ) - T ttj) c.. r AV l. J) ~ pp&i"' w tj. ~~ L..7xto 1 1f.;: _ r- t. 1 '6/-f c::- - - ~, XlfJ ~ ::>. {'"; () 1x10 5 W/~ '2.. -~ - r. Y X l lj ~ - ;-;/I!) B' i,/~ '3, / '-f >(ID -12... S- S Wt 3