A New Method for Complex Decision Making Based on TOPSIS for Complex Decision Making Problems with Fuzzy Data

Similar documents
Fuzzy Systems for Multi-criteria Decision Making with Interval Data

A New Fuzzy Positive and Negative Ideal Solution for Fuzzy TOPSIS

Extension of TOPSIS for Group Decision-Making Based on the Type-2 Fuzzy Positive and Negative Ideal Solutions

A METHOD FOR SOLVING DUAL FUZZY GENERAL LINEAR SYSTEMS*

Fuzzy efficiency: Multiplier and enveloping CCR models

Determination of Economic Optimal Strategy for Increment of the Electricity Supply Industry in Iran by DEA

Numerical Method for Fuzzy Partial Differential Equations

A Grey-Based Approach to Suppliers Selection Problem

SOLVING FUZZY LINEAR SYSTEMS OF EQUATIONS

A buyer - seller game model for selection and negotiation of purchasing bids on interval data

Multiattribute decision making models and methods using intuitionistic fuzzy sets

Mathematical foundations of the methods for multicriterial decision making

Symmetric Error Structure in Stochastic DEA

Using AHP for Priority Determination in IDEA

Ranking Decision Making Units with Negative and Positive Input and Output

Sensitivity and Stability Analysis in DEA on Interval Data by Using MOLP Methods

Application of Rough Set Theory in Performance Analysis

Developing a Data Envelopment Analysis Methodology for Supplier Selection in the Presence of Fuzzy Undesirable Factors

Numerical Solution of Fuzzy Differential Equations of 2nd-Order by Runge-Kutta Method

A Slacks-base Measure of Super-efficiency for Dea with Negative Data

A New Group Data Envelopment Analysis Method for Ranking Design Requirements in Quality Function Deployment

A METHOD FOR SOLVING 0-1 MULTIPLE OBJECTIVE LINEAR PROGRAMMING PROBLEM USING DEA

New Weighted Sum Model

Research Article Deriving Weights of Criteria from Inconsistent Fuzzy Comparison Matrices by Using the Nearest Weighted Interval Approximation

On approximation of the fully fuzzy fixed charge transportation problem

Fully fuzzy linear programming with inequality constraints

A new parametric method for ranking fuzzy numbers based on positive and negative ideal solutions

A new approach to solve fuzzy system of linear equations by Homotopy perturbation method

An Implicit Method for Solving Fuzzy Partial Differential Equation with Nonlocal Boundary Conditions

A New Method for Solving General Dual Fuzzy Linear Systems

Chapter 2 An Overview of Multiple Criteria Decision Aid

DIFFERENCE METHODS FOR FUZZY PARTIAL DIFFERENTIAL EQUATIONS

A Data Envelopment Analysis Based Approach for Target Setting and Resource Allocation: Application in Gas Companies

Finding the strong defining hyperplanes of production possibility set with constant returns to scale using the linear independent vectors

PRIORITIZATION METHOD FOR FRONTIER DMUs: A DISTANCE-BASED APPROACH

International Journal of Information Technology & Decision Making c World Scientific Publishing Company

Research Article Solution of Fuzzy Matrix Equation System

Evaluation of Fuzzy Linear Regression Models by Parametric Distance

Dr. Y. İlker TOPCU. Dr. Özgür KABAK web.itu.edu.tr/kabak/

Linear System of Equations with Trapezoidal Fuzzy Numbers

Computing Efficient Solutions of Nonconvex Multi-Objective Problems via Scalarization

Bi-level Multi-objective Programming Problems with Fuzzy Parameters: Modified TOPSIS Approach

Homotopy method for solving fuzzy nonlinear equations

Int. J. Industrial Mathematics (ISSN ) Vol. 5, No. 1, 2013 Article ID IJIM-00188, 5 pages Research Article. M. Adabitabarfirozja, Z.

Two Successive Schemes for Numerical Solution of Linear Fuzzy Fredholm Integral Equations of the Second Kind

A New Innovative method For Solving Fuzzy Electrical Circuit Analysis

General Dual Fuzzy Linear Systems

Ensemble determination using the TOPSIS decision support system in multi-objective evolutionary neural network classifiers

MULTI-COMPONENT RETURNS TO SCALE: A DEA-BASED APPROACH

H. Zareamoghaddam, Z. Zareamoghaddam. (Received 3 August 2013, accepted 14 March 2014)

Sensitivity and Stability Radius in Data Envelopment Analysis

Sensitivity and Stability Analysis in Uncertain Data Envelopment (DEA)

Fuzzy Multiple Criteria Decision Making Methods

Ranking Multicriteria Alternatives: the method ZAPROS III. Institute for Systems Analysis, 9, pr. 60 let Octjabrja, Moscow, , Russia.

Numerical Solution of Fuzzy Differential Equations

Approximations by interval, triangular and trapezoidal fuzzy numbers

Basic Properties of Metric and Normed Spaces

INEFFICIENCY EVALUATION WITH AN ADDITIVE DEA MODEL UNDER IMPRECISE DATA, AN APPLICATION ON IAUK DEPARTMENTS

Similarity-based Classification with Dominance-based Decision Rules

EFFICIENCY ANALYSIS UNDER CONSIDERATION OF SATISFICING LEVELS

SOME RESULTS CONCERNING THE MULTIVALUED OPTIMIZATION AND THEIR APPLICATIONS

Completion Time of Fuzzy GERT-type Networks with Loops

Selective Measures under Constant and Variable Returns-To- Scale Assumptions

A DIMENSIONAL DECOMPOSITION APPROACH TO IDENTIFYING EFFICIENT UNITS IN LARGE-SCALE DEA MODELS

(c) For each α R \ {0}, the mapping x αx is a homeomorphism of X.

A New Hesitant Fuzzy Linguistic TOPSIS Method for Group Multi-Criteria Linguistic Decision Making

Interactive Random Fuzzy Two-Level Programming through Possibility-based Fractile Criterion Optimality

Multicriteria Framework for Robust-Stochastic Formulations of Optimization under Uncertainty

SOLVING FUZZY DIFFERENTIAL EQUATIONS BY USING PICARD METHOD

The newsvendor problem with convex risk

A New Approach to Find All Solutions of Fuzzy Nonlinear Equations

B best scales 51, 53 best MCDM method 199 best fuzzy MCDM method bound of maximum consistency 40 "Bridge Evaluation" problem

Optimization of WEDM Parameters for Super Ni-718 using Neutrosophic Sets and TOPSIS Method

Uniqueness of the Solutions of Some Completion Problems

Groups performance ranking based on inefficiency sharing

AN IMPROVED APPROACH FOR MEASUREMENT EFFICIENCY OF DEA AND ITS STABILITY USING LOCAL VARIATIONS

The Comparison of Stochastic and Deterministic DEA Models

The General Solutions of Fuzzy Linear Matrix Equations

ON A HYBRID PROXIMAL POINT ALGORITHM IN BANACH SPACES

A SATISFACTORY STRATEGY OF MULTIOBJECTIVE TWO PERSON MATRIX GAMES WITH FUZZY PAYOFFS

Multicriteria Decision Making Based on Fuzzy Relations

Generalized Triangular Fuzzy Numbers In Intuitionistic Fuzzy Environment

SUPPLIER SELECTION USING DIFFERENT METRIC FUNCTIONS

Application of Technique for Order Preference Method by Similarity to Ideal Solution (TOPSIS) Priority of KORPRI Housing Recipient

Intelligent Decision Support for New Product Development: A Consumer-Oriented Approach

Fuzzy Distance Measure for Fuzzy Numbers

Group Decision-Making with Incomplete Fuzzy Linguistic Preference Relations

On Fuzzy Internal Rate of Return

44 CHAPTER 2. BAYESIAN DECISION THEORY

A method for solving first order fuzzy differential equation

ORDER STABILITY ANALYSIS OF RECIPROCAL JUDGMENT MATRIX

ABSTRACT INTRODUCTION

IN many real-life situations we come across problems with

CONTROLLABILITY OF NONLINEAR DISCRETE SYSTEMS

Ranking of Intuitionistic Fuzzy Numbers by New Distance Measure

A DEA-TOPSIS method for multiple criteria decision analysis in emergency management

... . :. ***

The ELECTRE method based on interval numbers and its application to the selection of leather manufacture alternatives

Wave equation on manifolds and finite speed of propagation

A SIMULATION AIDED SOLUTION TO AN MCDM PROBLEM. Ferenc Szidarovszky Abdollah Eskandari

Transcription:

Applied Mathematical Sciences, Vol 1, 2007, no 60, 2981-2987 A New Method for Complex Decision Making Based on TOPSIS for Complex Decision Making Problems with Fuzzy Data F Hosseinzadeh Lotfi 1, T Allahviranloo, M Alimardani Jondabeh, and N A Kiani Dept of Math Science and Research Branch, Islamic Azad University, Tehran, Iran Dept of Math, Tehran-North Branch, Islamic Azad University, Tehran, Iran Abstract The aim of this paper is to extend the TOPSIS method for decisionmaking problems with Fuzzy data By this extension of TOPSIS method, an algorithm for determining the most preferable choice among all possible choices in the case of fuzzy data is presented To illustrate the performance of the proposed algorithm, a decision-making problem is solved at the end of paper Keywords: TOPSIS; Fuzzy number; Ranking; Fuzzy distance 1 Introduction Fuzzy set theory has been successfully applied and implemented in production management [3]The use of fuzzy set theory as methodology for modeling and analyzing decision systems is particularly interesting to researchers concerned with complex decision-making problems[2,3,6] Decision making is an integral part of any business organization The process involves selecting the best among several decisions through a proper evaluation of the parameters of each decision environment The types of decisions can be classified into following categories: 1 Decision under certainty 1 Corresponding author: Farhad Hosseinzadeh Lotfi, E-mail: hosseinzadeh lotfi@yahoocom, Tel: +98-21-44804172, Fax: +98-21-44804172

2982 F Hosseinzadeh Lotfi et al 2 Decision under risk 3 Decision under uncertainty Most of decisions in the strategic level of management belong to categories (2) and (3) However, research on the application of fuzzy TOPSIS is lacking In this paper we want to extend one of the methods which is used to deciding under certainty to solving problems under uncertainty Hwang and Yoon proposed the TOPSIS (Techniques for Order Preference by Similarity to an Ideal Solution) method which is a multiple criteria method to identify solution from finite set of points The basic principle is that the chosen points should have the shortest distance from the positive ideal and the farthest distance from the negative ideal solution In their TOPSIS model,the measurement of weights and qualitative attributes did not consider the uncertainty associated with the mapping of human perception to a number[4] The concept of applying fuzzy numbers to TOPSIS was first suggested by Negi and Chenand Hwang[6],but their fuzzy TOP- SIS algorithms are incomplete The main steps of multiple criteria-attribute (complex) decision-making are as following: a) Establishing system evaluation criteria that relate system capabilities to goals b) Developing alternative systems for attaining the goals (generating alternative) c) Evaluating alternative in terms of criteria(the values of the criterion functions) d) Applying a normative multi-criteria analysis method e) Accepting one point as optimal f) If the final solution is not accepted, gather new information and go into the next iteration of multi-criteria optimization Steps (a) and (e) are performed at the upper level, where decision makers have the central role, and the other are mostly engineering tasks For steps d and a decision maker should express her/his idea about importance of criteria to determining weights of criteria These weights do not have clear economic significance, but they match model with actual concepts of decision making By considering this fact that in many cases determining precisely the exact value of the attribute respect to criteria is difficult, their valuesare considered as fuzzy data Therefore the concept of TOPSIS is extended to solving problems under uncertainty

New method for complex decision making 2983 At the rest of this paper, in section 2, briefly introducing of fuzzy numbers is brought, in section 3, extended TOPSIS methodology is presented and finally, in section 4, a numerical example is solved 2 Preliminaries An arbitrary fuzzy number is represented by an ordered pair of functions (U l (r),u u (r)), 0 r 1, which satisfy the following requirement: 1 U u (r) is a bounded left continuous non increasing function over [0,1] 2 U l (r) is a bounded left continuous non increasing function over [0,1] 3 U l (r) U u (r), (0 r 1) A crisp number α is simply represented by U l (r) =U u (r) =α, 0 r 1 By appropriate definitions the fuzzy numbers space {U l (r),u u (r)} becomes a convex cone E which is then embedded isomorphically and isometrically in to a Banach space Let D n denote the set of upper semi continues (USC) normal fuzzy sets on R n with compact support That is, U D n, then U : R n [0, 1] is USC, Supp(U) = {x R n : U(x) > 0} is compact and there exists at least one ε Supp(U) for which U(ε) =1 21 Fuzzy number operations 1 x =ỹ if and only if x l (r) =y l (r) and x u (r) =y u (r) (0 r 1) 2 x +ỹ =(x l (r)+y l (r),x u (r)+y u (r)) { (kx 3 K x = l (r),kx u (r)) k 0 (kx u (r),kx l (r)) k 0 Definition 21 The distance of two fuzzy numbers x and ỹ is defined as D( x, ỹ) =( 1 0 ( xl (r) y l (r) 2 + x u (r) y u (r) 2 )dr Definition 22 The distance of two fuzzy number vector U =(ũ 1,, ũ n ) where ũ i =(u l i (r),uu i (r)), 1 i n, 0 r 1 and Z =( z 1,, z n ) where z i =(z l i(r),z u i (r)), 1 i n, 0 r 1 is defined as follows: D(Z, U) = ( 1 0 n ([u l i (r) zl i (r)]2 +[u u i (r) zu i (r)]2 )dr i=1

2984 F Hosseinzadeh Lotfi et al and the metric D(U, 0) is defined as ( 1 n D(U, 0) = [(u l i(r)) 2 +(u u i (r)) 2 ]dr 0 i=1 3 TOPSIS method for decision making under uncertainly Suppose A 1,A 2,,A m are m possible points which decision makers have to choose, C 1,C 2,,C n are criteria, x ij is the rating of point A i with respect to criterion C j and is not known exactly and only we know x ij =(x l ij (r),xu ij (r)), i =1, 2,,m, j =1, 2,, n and 0 r 1 This problem with fuzzy data can be expressed in matrix format as C 1 C 2 C n A 1 (x l 11(r),x u 11(r)) (x l 12(r),x u 12(r)) (x l 1n(r),x u 1n(r)) A 2 (x l 21 (r),xu 21 (r)) (xl 22 (r),xu 22 (r)) (xl 2n (r),xu 2n (r)) A m (x l m1(r),x u m1(r)) (x l m2(r),x u m2(r)) (x l mn(r),x u mn(r)) where w j is the weight of criterion C j 31 the proposed algorithmic method A systematic approach to extend the TOPSIS to use fuzzy data is proposed in this section The normalized values n l ij(r)and n u ij(r) are calculated as / n l ij (r) =xl ij (r) ( 1 m 0 i=1 [(xl ij (r))2 +(x u ij (r))2 ]dr / n u ij (r) =xu ij (r) ( 1 m 0 i=1 [(xl ij (r))2 +(x u ij (r))2 ]dr ; where 0 r 1, i =1,,m, j =1,,n The normalization method mentioned above is to preserve the property that ranges of normalized fuzzy numbers belongs to [0,1] The weighted normalized fuzzy numbers decision matrix to notify the different importance of each criterion is constructed as V ij(r) l =W j n l ij(r),i=1,, m, j =1,, n, 0 r 1 V ij u(r) =W j n u ij (r),i=1,, m, j =1,, n, 0 r 1

New method for complex decision making 2985 Where W j is the weighted of the j-th attribute or criterion and W j =1 Then positive ideal solution and negative solution are defined as Ā + =( V 1 +,, V n + )= ( u l (max i V ij (0) j I), (min i V ij (0) j J) ) Ā =( V 1,, V n )=( (min i V l ij (0) j I), (max i V u ij (0) j J)) ; since if r = 0 then the fuzziness value is more than other cases Where I and J are associated respectively with benefit and cost criteria After positive and negative ideal solution are considered as two fuzzy vector with fuzzy number as follows: where which and which à + =(Ā+l (r), Ā+u (r)), 0 r 1 Ā +l (r) =( V 1 + l (r), V 2 + l (r),, V n + l (r)), 0 r 1 V i + l (r) =ε(r 1) + V i +, i =1,,n; Ā +u (r) =( V 1 + u (r), V 2 + u (r),, V n + u (r)), 0 r 1 V i + u (r) =ε(1 r)+ V i +, i =1,,n; à is defined in a similar way The separation of each point from positive and negative ideal solution calculated by using the n-th dimensional Euclidean distance as ( d + 1 i = ( 0 j I [ vl +l ij (r) V j (r)] 2 + j J [ vu ij d i = ( 1 0 ( j I [ vu ij u (r) V j (r)] 2 + j J [ vl ij (r) V +u j (r)] 2 )dr l (r) V j (r)] 2 )dr where i =1,,m A relative closeness coefficient ( R i ) is defined to determine the ranking order of all points To determining the relative closeness coefficient d + i and d i of each point A j are calculated, then R i = d i /( d + i + d i ); i =1,,m 4 Numerical example A hypothetical complex decision-making problem is applied to demonstrate the computational process of the proposed fuzzy TOPSIS model Assume that a compony needs to select a consumer as the best oneafter an

2986 F Hosseinzadeh Lotfi et al initial screening,four alternative are chosen for further evaluation Consider V ij (0) as below : V 11 =(04433, 07500, 07500, 09344, 00400, 02667, 00089, 01933) V 12 =(01100, 02833, 02833, 05367, 00400, 01333, 00400, 02933) V 13 =(02078, 04300, 04344, 07156, 00400, 01867, 00333, 03144) V 14 =(05289, 06800, 06800, 07304, 00000, 01511, 00000, 00500) V 15 =(02333, 04333, 04333, 06333, 00000, 02000, 00000, 02000) V 21 =(04433, 07500, 07500, 09344, 00400, 02667, 00089, 01933) V 22 =(01344, 03211, 03211, 05878, 00400, 01467, 00400, 03067) V 23 =(01833, 03967, 03967, 06644, 00400, 01733, 00333, 03011) V 24 =(06026, 07747, 07747, 08321, 00000, 01722, 00000, 00574) V 25 =(01795, 03333, 03333, 04872, 00000, 01538, 00000, 01538) V 31 =(01633, 03900, 03900, 06122, 00400, 01867, 00133, 02356) V 32 =(01344, 03211, 03211, 05878, 00400, 01467, 00400, 03067) V 33 =(01100, 02833, 02833, 05367, 00400, 01333, 00400, 02933) V 34 =(05471, 07034, 07034, 07555, 00000, 01563, 00000, 00521) V 35 =(01496, 02778, 02778, 04060, 00000, 01282, 00000, 01282) V 41 =(03967, 06900, 06900, 09022, 00400, 02533, 00111, 02233) V 42 =(02078, 04344, 04344, 07156, 00400, 01867, 00333, 03144) V 43 =(01833, 03967, 03967, 06644, 00400, 01733, 00333, 03011) V 44 =(07000, 09000, 09000, 09667, 00000, 02000, 00000, 00667) V 45 =(02094, 03889, 03889, 05684, 00000, 01795, 00000, 01795) by Equations the ideal fuzzy solution and negative ideal can be obtained and the closeness coefficients is : A 1 05890 11417 06597 A 2 06984 11309 06182 A 3 16119 01464 00833 A 4 02578 15473 08572 the closeness in above table make it obvious that the ranking order for the four alternative is A 4, A 1, A 2 and A 3 Therefore, the decision- makers can recommend A 4 as the best costumer 5 Conclusion In this paper, a new method when the availability of information for decision environment is not exact is presented Under such situation The Fuzzy TOPSIS method by considering the estimate

New method for complex decision making 2987 data as fuzzy data help decision-makers to rank their choices The interpretation of some factors as weight as economical component is not clear in general but in the numerical example interpretation are presented just for similar situation References [1] SJChen,CLHwang,1992,Fuzzy Multiple Attribute Decision Making:Methodes and Applications [2] TA-ChangChu,2001,fuzzy TOPSIS under group decision,internation jornal of uncertainty,10,pp687-701 [3] PAnandRaj,DNagesh Kumard, 1999, Ranking alternatives with weights using maximizing set and minimizinf set, Fuzzy Sets and Systems,105,pp365-375 [4] Makridakis S, Wheelwright SC, McGee VE Forecasting: methods and applications New York: Wiley, 1983 [5] Yeh CH, Willis RJ, Deng H, Pan H Task oriented weighting in multicriteria analysis European Journal of Operational Research 1999;119/1:in press [6] Hwang CL, Yoon KS Multiple attribute decision making: methods and applications New York: Springer, 1981 [7] Zeleny M Multiple criteria decision making New York: McGraw-Hill, 1982 [8] Fischer GW Range sensitivity of attribute weights in multiattribute value model Organizational Behavior and Human Decision Processes (1995;62:252)66 [9] Triantaphyllou E, Sanchez A A sensitivity analysis approach for some deterministic multi-criteria decision making methods Decision Sciences (1997;28/1:151)94 [10] Charnes A, Cooper WW, Rhodes E Measuring the efciency of decision making units European Journal Operational Research (1978;2:429)44 Received: August 8, 2007