metal-organic compounds

Similar documents
metal-organic compounds

metal-organic compounds

metal-organic compounds

Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement

metal-organic compounds

= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

b = (13) Å c = (13) Å = (2) V = (19) Å 3 Z =2 Data collection Refinement

metal-organic compounds

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 92 parameters

organic papers 2,6-Diamino-3,5-dinitro-1,4-pyrazine 1-oxide Comment

metal-organic compounds

= (3) V = (4) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = 1.

metal-organic compounds

= (1) V = (12) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

2-Methoxy-1-methyl-4-nitro-1H-imidazole

CIF access. Redetermination of biphenylene at 130K. R. Boese, D. Bläser and R. Latz

metal-organic compounds

metal-organic compounds

Z =8 Mo K radiation = 0.35 mm 1. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

metal-organic compounds

organic papers Malonamide: an orthorhombic polymorph Comment

Experimental. Crystal data. C 18 H 22 N 4 O 6 M r = Monoclinic, P2=n a = (5) Å b = (4) Å c = (5) Å = 104.

inorganic compounds Chromous hydrazine sulfate

metal-organic compounds

(+-)-3-Carboxy-2-(imidazol-3-ium-1-yl)- propanoate

b = (9) Å c = (7) Å = (1) V = (16) Å 3 Z =4 Data collection Refinement

metal-organic compounds

metal-organic compounds

metal-organic compounds

metal-organic compounds

metal-organic compounds

organic papers Acetone (2,6-dichlorobenzoyl)hydrazone: chains of p-stacked hydrogen-bonded dimers Comment Experimental

metal-organic compounds

addenda and errata [N,N 0 -Bis(4-bromobenzylidene)-2,2-dimethylpropane-j Corrigendum Reza Kia, a Hoong-Kun Fun a * and Hadi Kargar b

metal-organic compounds

Diammonium biphenyl-4,4'-disulfonate. Author. Published. Journal Title DOI. Copyright Statement. Downloaded from. Link to published version

Sodium 3,5-dinitrobenzoate

2. Experimental Crystal data

4-(4-Hydroxymethyl-1H-1,2,3-triazol-1-yl)benzoic acid

organic papers 2-Iodo-4-nitro-N-(trifluoroacetyl)aniline: sheets built from iodo nitro and nitro nitro interactions

metal-organic compounds

organic compounds Melaminium acetate acetic acid solvate monohydrate

metal-organic papers Di-l-pyridyl-1:2j 2 N:C 2 ;2:1j 2 N:C 2 -l-tetrahydrofuran-j magnesium(ii)] tetrahydrofuran hemisolvate

Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 155 parameters 10 restraints

metal-organic compounds

V = (14) Å 3 Z =8 Cu K radiation. Data collection. Refinement

metal-organic compounds

metal-organic compounds

A two-dimensional Cd II coordination polymer: poly[diaqua[l 3-5,6-bis(pyridin-2-yl)pyrazine-2,3- dicarboxylato-j 5 O 2 :O 3 :O 3,N 4,N 5 ]cadmium]

Experimental. Crystal data

electronic papers catena-poly[[bis(nitrato)(pyrimidine)copper(ii)]-l-pyrimidine-n:n 0 ] Ivonne Riggio et al.

electronic reprint 2-Hydroxy-3-methoxybenzaldehyde (o-vanillin) revisited David Shin and Peter Müller

metal-organic papers Bis[1,1,3,3-tetramethyl-1,3-bis(dichloroacetato)distannoxane]

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

2. Experimental Crystal data

metal-organic compounds

metal-organic compounds

Methyl acetoacetate at 150 K. The crystal structure of methyl acetoacetate, C 5 H 8 O 3, at 150 K contains discrete molecules.

inorganic compounds Hexagonal ammonium zinc phosphate, (NH 4 )ZnPO 4,at10K

organic compounds 2,4,6-Trimethylphenyl isocyanide

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 245 parameters 2 restraints

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

metal-organic papers Bis(acetato-O)diaqua(2,2 0 -bipyridyl-n,n 0 )cobalt(ii) (OC-13): a two-dimensional material Comment

= 0.09 mm 1 T = 294 (2) K. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

metal-organic papers catena-[l 6-1,2,4,5-Benzenetetracarboxylatotetraaqua-dinickel(II)] Comment

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

metal-organic compounds

organic compounds 2-(3-Nitrophenylaminocarbonyl)- benzoic acid: hydrogen-bonded sheets of R 4 4 (22) rings Comment

Z =4 Mo K radiation = 0.17 mm 1. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 205 parameters

catena-poly[[[bis(cyclohexyldiphenylphosphine-»p)silver(i)]-μ-cyano-» 2 N:C-silver(I)-μ-cyano-» 2 C:N] dichloromethane solvate]

Tarek Ben Rhaiem* and Habib Boughzala

organic papers 2-[(Dimethylamino)(phenyl)methyl]benzoic acid

Prakash S Nayak, B. Narayana, Jerry P. Jasinski, H. S. Yathirajan and Manpreet Kaur

organic compounds Comment

metal-organic compounds

= mm 1 T = 298 K. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 290 parameters 9 restraints

Experimental. Crystal data. C 18 H 18 N 2 O 4 S M r = Monoclinic, P2 1 =n a = (3) Å b = (2) Å c = (5) Å = 104.

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 184 parameters 1 restraint

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Jimmy U. Franco, Marilyn M. Olmstead and Justin C. Hammons

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 106 parameters 2 restraints

Tris{2-[(2,6-dimethylphenyl)amino]ethyl}amine

electronic reprint Masanari Hirahara, Shigeyuki Masaoka and Ken Sakai Crystallography Journals Online is available from journals.iucr.

organic compounds Hydrogen-bonding adducts of benzenepolycarboxylic acids with N,N-dimethylformamide: benzene-

metal-organic compounds

Structures of substituted pyridine N-oxide with manganese(ii) acetate

electronic reprint (P)-Tetra-μ 3 -iodido-tetrakis[(cyclohexyldiphenylphosphine-»p)silver(i)] John F. Young and Glenn P. A. Yap

organic papers Zwitterionic 2-(methylamino)ethanesulfonic acid

2. Experimental Crystal data

research papers V 2 O 2 F 4 (H 2 O) 2 H 2 O: a new V 4+ layer structure related to VOF 3 publcif Cameron Black and Philip Lightfoot* Abstract

metal-organic compounds

electronic reprint (2,4,6-Trinitrophenyl)guanidine Graham Smith, Urs D. Wermuth and Jonathan M. White Editors: W. Clegg and D. G.

A single crystal investigation of L-tryptophan with Z = 16

Experimental. Crystal data. C 10 H 12 N 6 C 2 H 6 O M r = Monoclinic, C2=c a = (19) Å b = (2) Å c = (3) Å = 101.

electronic reprint Sr 5 (V IV OF 5 ) 3 F(H 2 O) 3 refined from a non-merohedrally twinned crystal Armel Le Bail, Anne-Marie Mercier and Ina Dix

metal-organic compounds

Supporting Information

organic compounds Dimethyl (1-methyl-1,3-benzimidazol- 5-yl)aminomethylenepropanedioate monohydrate Comment

Experimental. Crystal data

Transcription:

metal-organic compounds Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701 Cu 2 (dien) 2 Ag 5 (CN) 9 containing the one-dimensional polymeric cation [Cu(dien)Ag(CN) 2 ] n n+ and the unusual [Ag 2 (CN) 3 ] anion (dien is diethylenetriamine) Juraj C Ï ernaâk, a * Jozef ChomicÏ a and Werner Massa b a Department of Inorganic Chemistry, P. J. SÆafaÂrik University, Moyzesova 11, 041 54 KosÏice, Slovakia, and b Fachbereich Chemie der UniversitaÈt Marburg, Hans-Meerwein Straûe, D-35043 Marburg, Germany Correspondence e-mail: cernakju@kosice.upjs.sk Received 3 July 2002 Accepted 23 July 2002 Online 21 September 2002 Meim) 4 Ag(CN) 2 ][Ag(CN) 2 ](N-Meim is N-methylimidazole; Soma & Iwamoto, 1996), although it can also act as a terminal ligand, e.g. in the dinuclear compound [N(Ph) 4 ][ClPh 3 Sn±NC± AgCN] (Carcelli et al., 1992). In addition, it can simply play the role of a counter-ion, as in [Ni(en) 3 ][Ag(CN) 2 ] 2 (en is ethylenediamine; Kappenstein et al., 1988). A more complicated role is that which the cyanoargentate anion plays as part of the polymeric [Ag 3 (CN) 5 ] 2 anion (Zhang et al., 1999). We are interested in the preparation, crystal chemistry and magnetic properties of low-dimensional cyano complexes. It is known that the Cu II cation in these cyano complexes, apart from the usual 4+2 coordination, often exhibits pentacoordination. This property can be used in the synthetic design of one-dimensional polymeric species; when three coordination sites are blocked by a suitable 3N-donor ligand, the presence of cyanometallate anions can lead to the formation of onedimensional structures, e.g. in [Cu(dien)] 3 [Fe(CN) 6 ] 2 6H 2 O (Kou et al., 1997). Following this idea, we reacted dien as a 3Ndonor ligand with Cu II, and added dicyanoargentate anions with the intention that they would act as a bridging species. By this reaction, the title compound, (I), was formed and herein we report its crystal structure. From the 1:1 system of [Cu(dien) 2 ](NO 3 ) 2 and K[Ag(CN) 2 ] in water (dien is diethylenetriamine, C 4 H 13 N 3 ), the novel compound catena-poly[bis[[-cyano-1:2 2 C:N-diethylenetriamine-2 3 N-copper(II)silver(I)]--cyano-1:2 0 2 C:N] dicyanosilver(i) tricyanodisilver(i)], [CuAg(CN) 2 (dien)] 2 [Ag(CN) 2 ]- [Ag 2 (CN) 3 ], has been isolated. The structure is formed from positively charged [±Cu(dien)±NC±Ag±CN±] n+ n chains and two isolated centrosymmetric [Ag(CN) 2 ] and [Ag 2 (CN) 3 ] anions. In the cationic chains, the Cu atoms are linked by bridging dicyanoargentate groups, and the deformed squarepyramidal coordination polyhedron of the Cu II cation is formed from a tridentate chelate-like bonded dien ligand and two N-bonded bridging cyano groups. One of the bridging cyano groups occupies the apical (ap) position [mean CuÐN eq = 2.02 (2) A Ê, and CuÐN ap = 2.170 (3) A Ê ; eq is equatorial]. Short argentophilic interactions in the range 3.16±3.30 A Ê are present in the crystal structure. Comment The magnetic properties of cyano complexes are currently the subject of intensive study (Verdaguer et al., 1999; Dunbar & Heintz, 1997). These complexes are suitable model compounds for the study of magnetic phenomena, due to the favourable properties of cyanometallate anions, viz. the geometric and magnetic variability of the anions with various central atoms, the rigidity and stability of the anions, and the Lewis basicity of the N atoms, which facilitates the bridging function of the cyano group. The dicyanoargentate anion [NC±Ag±CN], with a linear geometry, may exhibit a bridging function, e.g. in the one-dimensional compound [Cd(N- The structure of (I) is formed from [±Cu(dien)±NC±Ag± CN±] n+ n cationic zigzag chains running parallel along the y axis (Fig. 1). The positive charge of these chains is counterbalanced by two different non-coordinated centrosymmetric cyanoargentate anions lying on special positions (1), namely one dicyanoargentate anion, [Ag(CN) 2 ] (Ag2), and one tricyanodiargentate anion, [Ag 2 (CN) 3 ] (Ag3). The Cu II cation exhibits pentacoordination in a form close to a deformed square pyramid, as is indicated by the the parameter of 10.2 (Addison et al., 1984). As expected, three coordination sites in the basal plane are occupied by the chelate-bonded dien ligand, and the remaining two sites, one in the basal plane and the apical site, are occupied by the N atoms of the bridging cyano groups. The CuÐN distances in the basal plane (Table 1) are very similar despite the different nature of the ligands, with a mean value of 2.02 (2) A Ê, while the ligand in the apical position is at a longer distance of 2.170 (3) A Ê. The Cu atom is displaced by 0.3052 (4) A Ê from the mean basal plane toward the apical ligand. The geometric parameters of the dien ligand in (I) are similar to those found in similar compounds (Rodriguez et al., 1999). The presence of the dien ligand manifests itself in the form of various IR absorption bands due to (NH 2 ), (CH 2 ) and other types of vibrations; these are listed in the Experimental section. It is interesting to note that the electronic spectrum in the solid state exhibits only a single absorption band at 16 300 cm 1. This displays only very weak asymmetry, which may indicate the presence of a shoulder on the lower energy side, as expected in such coordination (Lever, 1984). The possible m490 # 2002 International Union of Crystallography DOI: 10.1107/S0108270102013240 Acta Cryst. (2002). C58, m490±m493

metal-organic compounds assignment(s) to the observed absorption band envelope can be given as 2 E 2 B 1 and 2 B 2 B 1. The tricyanodiargentate anion is found as a bridging species in some cyano complexes with Cd, e.g. [Cd(4-Mepy) 4 - Ag 2 (CN) 3 ] (4-Mepy is 4-methylpyridine; Soma & Iwamoto, 1994) and [Cd(pyz){Ag 2 (CN) 3 }{Ag(CN) 2 }] (pyz is pyrazine; Soma et al., 1994). In (I), the tricyanodiargentate anion is `unbound' and is centrosymmetric. As a consequence, the cyano group linking the two Ag atoms is disordered [label (C,N)32]. The geometric parameters associated with the dicyanoargentate and tricyanodiargentate anions in (I) are unremarkable (Soma & Iwamoto, 1994). The Ag2 anion is perfectly linear (Ag2 lies on the symmetry centre), while the Ag1 and Ag3 anions are somewhat bent at atoms Ag1 and Ag3, respectively. The presence of crystallographically different cyano groups can be seen in the IR spectrum of (I). The absorption bands at 2118 and 2133 cm 1 can be ascribed to the stretching vibrations of terminal cyano groups, while the remaining two absorption bands at 2156 and 2165 cm 1 are due to the presence of bridging cyano groups. Argentophilic interactions (Omary et al., 1998) are responsible for the supramolecular architecture of the structure of (I) (Fig. 2). The AgAg distances are relatively short (Table 1) compared with the AgÐAg distance of 2.89 A Ê in metallic silver (Wells, 1984), but are comparable with those found in similar compounds (Meske & Babel, 1988). If we also take into consideration the Ag2Ag3 contacts of 3.5373 (5) A Ê, the Ag atoms form chains based on interconnected hexagons and extended along the c direction. Besides these argentophilic interactions, weak NÐHN hydrogen bonds between the terminal N atoms of the cyano groups and the NH groups of the amine ligand contribute to the packing mode of the structure (Table 2). The outstanding feature of the structure of (I) is the onedimensional character of the polymeric cation. This can be classi ed as of the CT type (C Ï ernaâk et al., 2002), as the bridging cyano groups are in neighbouring cis positions at the pentacoordinated Cu II cation and in trans positions (forced by the geometry of the anion) on the Ag I cation. Such a type of chain among dicyanoargentates was previously found only in [Cu(bipy) 2 Ag 2 (CN) 4 ]H 2 O, where the cis positions of the bridging cyano groups in the 4+1+1-type coordination polyhedron of the Cu atom are forced by the presence of sterically demanding bipy ligands (bipy is 2,2 0 -bipyridine; C Ï ernaâk et al., 1993). Figure 1 A view of the basic structural units of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii [symmetry codes: (i) 1 2 x, y 1 2, 1 2 z; (ii) 1 2 x, 1 2 + y, 1 2 z; (iii) x, 1 y, z; (iv) x, 1 y, 1 z]. Acta Cryst. (2002). C58, m490±m493 Juraj CÏ ernaâk et al. [CuAg(CN) 2 (C 4 H 13 N 3 )] 2 [Ag(CN) 2 ][Ag 2 (CN) 3 ] m491

metal-organic compounds Crystal data [CuAg(CN) 2 (C 4 H 13 N 3 )] 2 - [Ag(CN) 2 ][Ag 2 (CN) 3 ] M r = 1106.96 Monoclinic, P2 1 =n a = 12.5588 (12) A Ê b = 17.8070 (12) A Ê c = 6.9608 (6) A Ê = 90.794 (11) V = 1556.5 (2) A Ê 3 Z =2 D x = 2.362 Mg m 3 D m = 2.36 (1) Mg m 3 D m measured by otation in a mixture of bromoform and acetone Mo K radiation Cell parameters from 8000 re ections = 2.8±30.3 = 4.45 mm 1 T = 293 (2) K Parallelepiped, blue 0.33 0.15 0.05 mm Data collection Stoe IPDS diffractometer ' scans Absorption correction: numerical (SHELXTL; Sheldrick, 1995) T min = 0.414, T max = 0.809 18 169 measured re ections 4462 independent re ections 2988 re ections with I > 2(I) R int = 0.056 max = 30.3 h = 17! 17 k = 25! 25 l = 8! 9 Re nement Re nement on F 2 R[F 2 >2(F 2 )] = 0.031 wr(f 2 ) = 0.067 S = 0.88 4462 re ections 219 parameters All H-atom parameters re ned w = 1/[ 2 (F o 2 ) + (0.0352P) 2 ] where P =(F o 2 +2F c 2 )/3 (/) max < 0.001 max = 0.83 e A Ê 3 min = 0.65 e A Ê 3 Figure 2 (a) The cationic zigzag chains along b and the argentophilic interactions along c between the Ag atoms in the anions of (I) (dotted lines). (b) A view of the structure of (I) projected approximately along [001]. H atoms have been omitted for clarity. Experimental The preparation of (I) was carried out as follows: a blue solution containing aqueous [Cu(dien) 2 ] 2+ cations, formed by mixing a 0.1 M solution of copper nitrate (10 ml, 1 mmol) and dien (0.22 ml, 2 mmol), was mixed with a colourless solution of K[Ag(CN) 2 ], formed by dissolving AgNO 3 (0.34 g, 2 mmol) in a 0.4 M solution of KCN (10 ml, 4 mmol). The resulting blue solution was left to crystallize. Blue single crystals of (I) suitable for X-ray analysis were obtained after 1±2 d; these were ltered off and dried in air. Analysis calculated for C 17 H 26 Ag 5 Cu 2 N 15 : C 18.45, H 2.35, N 18.98, Cu 11.48, Ag 48.72%; found: C 18.72, H 2.42, N 19.42, Cu 11.42, Ag 49.20%. An IR spectrum (KBr disc) was measured on a Nicolet 510 FT±IR spectrometer from 4000 to 400 cm 1 with absorption bands (cm 1 )at 3309 (vs), 3268 (vs), 3238 (vs), 3157 (s), 2165 (s), 2156 (vs), 2133 (s), 2118 (s), 1606 (s), 1598 (s), 1467 (m), 1457 (m), 1429 (m), 1257 (m), 1141 (s), 1086 (vs), 1057 (m), 1021 (vs), 946 (s), 835 (m), 710 (m), 645 (m), 533 (s) and 442 (vs). The electronic spectrum was measured by re ectance using a Specord M40 Instrument (Zeiss Jena) from 30 000 to 11 000 cm 1 (BaSO 4 standard). Table 1 Selected geometric parameters (A Ê, ). Ag1Ag2 3.2970 (4) Ag1Ag3 3.1635 (6) Ag1ÐC11 2.074 (4) Ag1ÐC12 2.075 (3) Ag2ÐC21 2.082 (4) Ag3ÐC31 2.065 (4) CuÐN1 2.014 (3) CuÐN2 2.032 (3) C11ÐAg1ÐC12 169.69 (15) N11ÐCuÐN1 95.89 (13) N11ÐCuÐN3 91.11 (13) N1ÐCuÐN3 158.13 (15) N11ÐCuÐN2 164.12 (14) N1ÐCuÐN2 84.36 (13) N3ÐCuÐN2 83.34 (14) Symmetry code: (i) 1 2 x; y 1 2 ; 1 2 z. CuÐN3 2.026 (3) CuÐN11 1.988 (3) CuÐN12 2.170 (3) N11ÐC11 1.152 (5) N12ÐC12 i 1.143 (4) N21ÐC21 1.142 (5) N31ÐC31 1.141 (5) N11ÐCuÐN12 102.07 (13) N1ÐCuÐN12 100.33 (14) N3ÐCuÐN12 98.41 (14) N2ÐCuÐN12 93.47 (13) C11ÐN11ÐCu 164.2 (3) C12 i ÐN12ÐCu 167.7 (3) Table 2 Hydrogen-bonding and short intermolecular contact geometry (A Ê, ). DÐHA DÐH HA DA DÐHA N1ÐH1AN21 i 0.89 (5) 2.29 (5) 3.119 (5) 154 (4) N1ÐH1BN31 ii 0.86 (5) 2.20 (5) 3.055 (5) 175 (4) N2ÐH2N12 0.97 (4) 2.70 (5) 3.061 (5) 103 (3) N3ÐH3BN31 0.85 (5) 2.39 (5) 3.194 (5) 159 (4) N3ÐH3AN21 iii 0.88 (5) 2.35 (5) 3.189 (5) 161 (4) Symmetry codes: (i) x; 1 y; 1 z; (ii) x 1 2 ; 1 2 y; z 1 2 ; (iii) 1 2 x; y 1 2 ; 1 2 z. m492 Juraj CÏ ernaâk et al. [CuAg(CN) 2 (C 4 H 13 N 3 )] 2 [Ag(CN) 2 ][Ag 2 (CN) 3 ] Acta Cryst. (2002). C58, m490±m493

metal-organic compounds The C,N site was re ned as a 50:50 mixture of both C and N atoms. The Ag3(C,N)32 distance is 2.082 (3) A Ê and the (C,N)32Ð(C,N)32 distance is 1.141 (7) A Ê, similar to normal CÐN bond lengths. The H-atom positions were re ned with common isotropic displacement parameters for the NH 2 and CH 2 groups, respectively, giving CÐH distances in the range 0.77 (5)±1.07 (5) A Ê and NÐH distances in the range 0.86 (5)±0.97 (4) A Ê. There is a short contact between N2ÐH2 and a symmetry-related Ag3 atom, such that H2Ag3 is 2.73 (4) A Ê. Data collection: EXPOSE in IPDS (Stoe & Cie, 1999); cell re nement: CELL in IPDS; data reduction: INTEGRATE in IPDS; program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to re ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); program used for geometrical analysis: PARST (Nardelli, 1995). This work was supported by the Slovak Grant Agency VEGA (1/7426/20). One of the authors (JC Ï ) thanks DAAD for its support of a study visit to the University of Marburg. Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG1124). Services for accessing these data are described at the back of the journal. References Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349±1356. Brandenburg, K. (1999). DIAMOND. Release 2.1c. Crystal Impact GbR, Bonn, Germany. Carcelli, M., Ferrari, C., Pelizzi, C., Pelizzi, G., Predieri, G. & Solinas, C. (1992). J. Chem. Soc. Dalton Trans. pp. 2127±2128. C Ï ernaâk, J., GeÂrard, F. & ChomicÏ, J. (1993). Acta Cryst. C49, 1294±1297. C Ï ernaâk, J., OrendaÂcÏ, M., PotocÏnÏ aâk, I., ChomicÏ, J., OrendaÂcÏovaÂ, A., SkorsÏepa, J. & Feher, A. (2002). Coord. Chem. Rev. 224, 51±66. Dunbar, K. R. & Heintz, R. A. (1997). Prog. Inorg. Chem. 45, 283±391. Kappenstein, C., Ouali, A., Guerin, M., C Ï ernaâk, J. & ChomicÏ, J. (1988). Inorg. Chim. Acta, 147, 189±197. Kou, H.-Z., Liao, D.-Z., Cheng, P., Jiang, Z.-H., Yan, S.-P., Wang, G.-L., Yao, X.-K. & Wang, H.-G. (1997). J. Chem. Soc. Dalton Trans. pp. 1503±1506. Lever, A. B. P. (1984). Inorganic Electronic Spectroscopy, 2nd ed., pp. 568±569. Amsterdam: Elsevier. Meske, W. & Babel, D. (1988). Z. Naturforsch. Teil B, 43, 1167±1173. Nardelli, M. (1995). J. Appl. Cryst. 28, 659. Omary, M. A., Webb, T. R., Shankle, G. E. & Paterson, H. H. (1998). Inorg. Chem. 37, 1380±1386. Rodriguez, V., Gutierrez-Zorilla, J. M., Vitoria, P., Luque, A., RomaÂn, P. & Martinez-Ripoll, M. (1999). Inorg. Chim. Acta, 290, 57±63. Sheldrick, G. M. (1985). SHELXS86. University of GoÈttingen, Germany. Sheldrick, G. M. (1995). SHELXTL. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Sheldrick, G. M. (1997). SHELXL97. University of GoÈttingen, Germany. Soma, T. & Iwamoto, T. (1994). Chem. Lett. pp. 821±824. Soma, T. & Iwamoto, T. (1996). Inorg. Chem. 35, 1849±1856. Soma, T., Yuge, H. & Iwamoto, T. (1994). Angew. Chem. Int. Ed. Engl. 33, 1665±1666. Stoe & Cie (1999). IPDS. Version 2.90. Stoe & Cie, Darmstadt, Germany. Verdaguer, M., Bleuzen, A., Marvaud, V., Vaissermann, J., Seuleiman, M., Desplanches, C., Scuiller, A., Train, C., Garde, R., Gelly, G., Lomenech, C., Rosenman, I., Veillet, P., Cartier, C. & Villain, F. (1999). Coord. Chem. Rev. 1023, 190±192. Wells, A. F. (1984). Structural Inorganic Chemistry, 5th ed., p. 1098. Oxford: Clarendon Press. Zhang, H.-X., Chen, Z.-N., Su, C.-Y., Ren, C. & Kang, B.-S. (1999). J. Chem. Crystallogr. 29, 1239±1243. Acta Cryst. (2002). C58, m490±m493 Juraj CÏ ernaâk et al. [CuAg(CN) 2 (C 4 H 13 N 3 )] 2 [Ag(CN) 2 ][Ag 2 (CN) 3 ] m493

supporting information supporting information [doi:10.1107/s0108270102013240] Cu 2 (dien) 2 Ag 5 (CN) 9 containing the one-dimensional polymeric cation [Cu(dien)Ag(CN) 2 ] n+ n and the unusual [Ag 2 (CN) 3 ] anion (dien is diethylenetriamine) Juraj Černák, Jozef Chomič and Werner Massa Computing details Data collection: EXPOSE in IPDS (Stoe & Cie, 1999); cell refinement: CELL in IPDS; data reduction: INTEGRATE in IPDS; program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999). catena-poly[bis[[µ-cyano-1:2κ 2 C:N-diethylenetriamine- 2κ 3 N-copper(II)silver(I)]-µ-cyano-1:2 κ 2 C:N] dicyanosilver(i) tricyanodisilver(i)] Crystal data [Cu(C 4 H 13 N 3 )Ag(CN) 2 ] 2 [Ag(CN) 2 ][Ag 2 (CN) 3 ] M r = 1106.96 Monoclinic, P2 1 /n Hall symbol: -P 2yn a = 12.5588 (12) Å b = 17.8070 (12) Å c = 6.9608 (6) Å β = 90.794 (11) V = 1556.5 (2) Å 3 Z = 2 F(000) = 1052 Data collection Stoe IPDS diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ scans Absorption correction: numerical (SHELXTL; Sheldrick, 1995) T min = 0.414, T max = 0.809 Refinement Refinement on F 2 Least-squares matrix: full R[F 2 > 2σ(F 2 )] = 0.031 wr(f 2 ) = 0.067 S = 0.88 4462 reflections D x = 2.362 Mg m 3 D m = 2.36 (1) Mg m 3 D m measured by flotation Mo Kα radiation, λ = 0.71073 Å Cell parameters from 8000 reflections θ = 2.8 30.3 µ = 4.45 mm 1 T = 293 K Parallelepiped, blue 0.33 0.15 0.05 mm 18169 measured reflections 4462 independent reflections 2988 reflections with I > 2σ(I) R int = 0.056 θ max = 30.3, θ min = 2.8 h = 17 17 k = 25 25 l = 8 9 219 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map sup-1

supporting information Hydrogen site location: inferred from neighbouring sites All H-atom parameters refined w = 1/[σ 2 (F o2 ) + (0.0352P) 2 ] where P = (F o 2 + 2F c2 )/3 (Δ/σ) max < 0.001 Δρ max = 0.83 e Å 3 Δρ min = 0.65 e Å 3 Special details Experimental. D=50 mm, Φ 0 200, ΔΦ 1.0, 1 min/rec Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wr and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > σ(f 2 ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2 ) x y z U iso */U eq Occ. (<1) Ag1 0.21171 (3) 0.419404 (15) 0.19494 (5) 0.03281 (8) Ag2 0.0000 0.5000 0.0000 0.03470 (11) Ag3 0.17822 (2) 0.440834 (16) 0.64119 (5) 0.03363 (8) Cu 0.19075 (3) 0.18433 (2) 0.61891 (6) 0.02184 (10) N1 0.0331 (3) 0.17241 (19) 0.6590 (5) 0.0296 (7) H1A 0.012 (4) 0.218 (3) 0.690 (7) 0.034 (5)* H1B 0.003 (4) 0.160 (2) 0.559 (7) 0.034 (5)* N2 0.2048 (3) 0.12959 (19) 0.8741 (5) 0.0321 (7) H2 0.232 (4) 0.080 (2) 0.839 (6) 0.034 (5)* N3 0.3431 (3) 0.21506 (18) 0.6773 (5) 0.0285 (7) H3A 0.379 (4) 0.208 (2) 0.572 (7) 0.034 (5)* H3B 0.341 (4) 0.261 (3) 0.704 (7) 0.034 (5)* N11 0.1780 (3) 0.26263 (16) 0.4163 (5) 0.0282 (7) N12 0.2231 (3) 0.08427 (17) 0.4517 (5) 0.0303 (7) N21 0.0163 (3) 0.6725 (2) 0.1352 (6) 0.0439 (9) N31 0.4001 (3) 0.3815 (2) 0.8151 (6) 0.0444 (9) C32 0.0398 (3) 0.48861 (19) 0.5275 (5) 0.0329 (8) 0.50 N32 0.0398 (3) 0.48861 (19) 0.5275 (5) 0.0329 (8) 0.50 C11 0.1877 (3) 0.31622 (19) 0.3255 (6) 0.0287 (8) C12 0.2544 (3) 0.52626 (19) 0.1053 (6) 0.0271 (8) C21 0.0148 (3) 0.6121 (2) 0.0803 (6) 0.0338 (9) C31 0.3236 (3) 0.4062 (2) 0.7514 (6) 0.0315 (9) C1 0.0155 (4) 0.1164 (3) 0.8136 (7) 0.0400 (10) H1C 0.019 (4) 0.068 (3) 0.754 (7) 0.049 (5)* H1D 0.041 (4) 0.123 (3) 0.870 (8) 0.049 (5)* C2 0.0994 (4) 0.1303 (3) 0.9690 (7) 0.0453 (12) H2A 0.093 (4) 0.186 (3) 1.022 (7) 0.049 (5)* H2B 0.100 (4) 0.098 (3) 1.043 (8) 0.049 (5)* C3 0.2951 (4) 0.1616 (3) 0.9827 (7) 0.0418 (10) sup-2

supporting information H3C 0.309 (4) 0.127 (3) 1.081 (8) 0.049 (5)* H3D 0.268 (4) 0.208 (3) 1.019 (7) 0.049 (5)* C4 0.3840 (3) 0.1728 (3) 0.8441 (7) 0.0387 (10) H4A 0.432 (4) 0.204 (3) 0.912 (8) 0.049 (5)* H4B 0.410 (4) 0.121 (3) 0.795 (7) 0.049 (5)* Atomic displacement parameters (Å 2 ) U 11 U 22 U 33 U 12 U 13 U 23 Ag1 0.04474 (18) 0.02123 (12) 0.03246 (19) 0.00092 (11) 0.00121 (12) 0.00723 (11) Ag2 0.0415 (2) 0.0328 (2) 0.0298 (3) 0.00204 (17) 0.00086 (18) 0.00180 (16) Ag3 0.03189 (16) 0.03372 (14) 0.0351 (2) 0.00696 (11) 0.00694 (12) 0.00175 (12) Cu 0.0265 (2) 0.02080 (18) 0.0182 (2) 0.00041 (15) 0.00066 (16) 0.00275 (15) N1 0.0297 (17) 0.0350 (17) 0.024 (2) 0.0026 (13) 0.0061 (13) 0.0005 (13) N2 0.0332 (18) 0.0361 (17) 0.027 (2) 0.0042 (13) 0.0004 (14) 0.0079 (14) N3 0.0281 (17) 0.0259 (15) 0.032 (2) 0.0018 (12) 0.0005 (14) 0.0012 (13) N11 0.0357 (18) 0.0218 (14) 0.0272 (19) 0.0028 (12) 0.0019 (14) 0.0021 (12) N12 0.0402 (18) 0.0241 (14) 0.027 (2) 0.0018 (13) 0.0033 (14) 0.0005 (12) N21 0.046 (2) 0.043 (2) 0.043 (3) 0.0013 (16) 0.0066 (17) 0.0014 (16) N31 0.040 (2) 0.050 (2) 0.042 (3) 0.0078 (16) 0.0081 (17) 0.0064 (17) CN32 0.0368 (19) 0.0371 (18) 0.025 (2) 0.0106 (15) 0.0008 (15) 0.0013 (14) C11 0.035 (2) 0.0258 (16) 0.025 (2) 0.0011 (14) 0.0008 (15) 0.0008 (14) C12 0.036 (2) 0.0248 (16) 0.021 (2) 0.0018 (14) 0.0006 (15) 0.0001 (14) C21 0.037 (2) 0.038 (2) 0.027 (2) 0.0025 (16) 0.0026 (17) 0.0025 (16) C31 0.036 (2) 0.0295 (18) 0.029 (2) 0.0061 (15) 0.0073 (16) 0.0076 (15) C1 0.031 (2) 0.055 (3) 0.034 (3) 0.0067 (19) 0.0025 (18) 0.010 (2) C2 0.035 (2) 0.074 (3) 0.027 (3) 0.003 (2) 0.0037 (18) 0.021 (2) C3 0.037 (2) 0.063 (3) 0.026 (3) 0.007 (2) 0.0044 (18) 0.001 (2) C4 0.031 (2) 0.052 (3) 0.034 (3) 0.0059 (18) 0.0073 (17) 0.0041 (19) Geometric parameters (Å, º) Ag1 Ag2 3.2970 (4) N31 C31 1.141 (5) Ag1 Ag3 3.1635 (6) C12 N12 i 1.143 (4) Ag1 C11 2.074 (4) C1 C2 1.520 (7) Ag1 C12 2.075 (3) C3 C4 1.499 (7) Ag2 C21 2.082 (4) N1 H1B 0.86 (5) Ag3 C31 2.065 (4) N1 H1A 0.89 (4) Cu N1 2.014 (3) N2 H2 0.97 (4) Cu N2 2.032 (3) N3 H3A 0.88 (5) Cu N3 2.026 (3) N3 H3B 0.85 (5) Cu N11 1.988 (3) C1 H1C 0.96 (5) Cu N12 2.170 (3) C1 H1D 0.83 (5) N1 C1 1.486 (5) C2 H2A 1.07 (5) N2 C2 1.487 (5) C2 H2B 0.77 (5) N2 C3 1.469 (6) C3 H3C 0.94 (5) N3 C4 1.470 (5) C3 H3D 0.92 (5) N11 C11 1.152 (5) C4 H4A 0.94 (5) sup-3

supporting information N21 C21 1.142 (5) C4 H4B 1.04 (5) C11 Ag1 C12 169.69 (15) Cu N3 H3A 107 (3) C11 Ag1 Ag3 69.78 (11) C4 N3 H3B 110 (3) C12 Ag1 Ag3 102.90 (11) Cu N3 H3B 106 (3) C11 Ag1 Ag2 116.42 (11) H3A N3 H3B 110 (4) C12 Ag1 Ag2 71.78 (11) C11 N11 Cu 164.2 (3) Ag3 Ag1 Ag2 103.543 (14) C12 iii N12 Cu 167.7 (3) C21 Ag2 C21 ii 180.0 N11 C11 Ag1 172.6 (3) C21 Ag2 Ag1 ii 67.58 (12) N12 i C12 Ag1 177.2 (3) C21 Ag2 Ag1 112.42 (12) N21 C21 Ag2 174.3 (4) C31 Ag3 Ag1 101.54 (12) N31 C31 Ag3 174.5 (4) N11 Cu N1 95.89 (13) N1 C1 C2 107.3 (4) N11 Cu N3 91.11 (13) N1 C1 H1C 107 (3) N1 Cu N3 158.13 (15) C2 C1 H1C 115 (3) N11 Cu N2 164.12 (14) N1 C1 H1D 112 (4) N1 Cu N2 84.36 (13) C2 C1 H1D 103 (4) N3 Cu N2 83.34 (14) H1C C1 H1D 113 (5) N11 Cu N12 102.07 (13) N2 C2 C1 107.1 (4) N1 Cu N12 100.33 (14) N2 C2 H2A 104 (3) N3 Cu N12 98.41 (14) C1 C2 H2A 110 (3) N2 Cu N12 93.47 (13) N2 C2 H2B 107 (4) C1 N1 Cu 109.1 (3) C1 C2 H2B 110 (4) C1 N1 H1A 113 (3) H2A C2 H2B 118 (5) Cu N1 H1A 104 (3) N2 C3 C4 107.3 (4) C1 N1 H1B 109 (3) N2 C3 H3C 104 (3) Cu N1 H1B 115 (3) C4 C3 H3C 115 (3) H1A N1 H1B 106 (4) N2 C3 H3D 102 (3) C3 N2 C2 116.9 (4) C4 C3 H3D 109 (3) C3 N2 Cu 108.7 (3) H3C C3 H3D 117 (4) C2 N2 Cu 108.5 (3) N3 C4 C3 108.7 (4) C3 N2 H2 102 (3) N3 C4 H4A 108 (3) C2 N2 H2 116 (3) C3 C4 H4A 104 (3) Cu N2 H2 104 (3) N3 C4 H4B 108 (3) C4 N3 Cu 109.8 (2) C3 C4 H4B 110 (3) C4 N3 H3A 114 (3) H4A C4 H4B 119 (4) Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1/2, y 1/2, z+1/2. Hydrogen-bond geometry (Å, º) D H A D H H A D A D H A N1 H1A N21 iv 0.89 (5) 2.29 (5) 3.119 (5) 154 (4) N1 H1B N31 v 0.86 (5) 2.20 (5) 3.055 (5) 175 (4) N2 H2 N12 0.97 (4) 2.70 (5) 3.061 (5) 103 (3) N3 H3B N31 0.85 (5) 2.39 (5) 3.194 (5) 159 (4) N3 H3A N21 iii 0.88 (5) 2.35 (5) 3.189 (5) 161 (4) Symmetry codes: (iii) x+1/2, y 1/2, z+1/2; (iv) x, y+1, z+1; (v) x 1/2, y+1/2, z 1/2. sup-4