ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Similar documents
Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: CMOS Inverter: Visual VTC. Review: CMOS Inverter: Visual VTC

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

! Inverter Power. ! Dynamic Characteristics. " Delay ! P = I V. ! Tricky part: " Understanding I. " (pairing with correct V) ! Dynamic current flow:

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

ECE321 Electronics I

THE INVERTER. Inverter

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

! Dynamic Characteristics. " Delay

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

EE5311- Digital IC Design

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

ECE 342 Solid State Devices & Circuits 4. CMOS

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

The CMOS Inverter: A First Glance

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

The Physical Structure (NMOS)

EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania

The CMOS Inverter: A First Glance

EEE 421 VLSI Circuits

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: Two-Input NOR Gate (NOR2)

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

MOSFET and CMOS Gate. Copy Right by Wentai Liu

VLSI Design and Simulation

EE5311- Digital IC Design

Lecture 12 Circuits numériques (II)

9/18/2008 GMU, ECE 680 Physical VLSI Design

Practice 7: CMOS Capacitance

Integrated Circuits & Systems

High-to-Low Propagation Delay t PHL

! Energy Optimization. ! Design Space Exploration. " Example. ! P tot P static + P dyn + P sc. ! Steady-State: V in =V dd. " PMOS: subthreshold

DC and Transient Responses (i.e. delay) (some comments on power too!)

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

CMOS Inverter (static view)

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Restore Output. Pass Transistor Logic. How compare.

Digital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Total Power. Energy and Power Optimization. Worksheet Problem 1

ECE 546 Lecture 10 MOS Transistors

EECS 141: FALL 05 MIDTERM 1

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

DC & Transient Responses

Dynamic operation 20

Lecture 6: DC & Transient Response

Lecture 5: DC & Transient Response

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Integrated Circuits & Systems

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

COMP 103. Lecture 16. Dynamic Logic

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

Digital Microelectronic Circuits ( ) Ratioed Logic. Lecture 8: Presented by: Mr. Adam Teman

EE141Microelettronica. CMOS Logic

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

Digital Integrated Circuits A Design Perspective

Lecture 4: DC & Transient Response

Digital Microelectronic Circuits ( )

EECS 141 F01 Lecture 17

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since

MOS Transistor Theory

Lecture 4: CMOS review & Dynamic Logic

Integrated Circuits & Systems

Power Dissipation. Where Does Power Go in CMOS?

Features Y Wide supply voltage range 3 0V to 15V. Y High noise immunity 0 45 VDD (typ ) Y Low power TTL fan out of 2 driving 74L

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

Lecture 5: DC & Transient Response

Electronic Devices and Circuits Lecture 15 - Digital Circuits: Inverter Basics - Outline Announcements. = total current; I D

CMOS Inverter. Performance Scaling

4.10 The CMOS Digital Logic Inverter

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018

EE5780 Advanced VLSI CAD

Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter

! Delay when A=1, B=0? ! CMOS Gates. " Dual pull-down and pull-up networks, only one enabled at a time

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Properties of CMOS Gates Snapshot

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

Integrated Circuits & Systems

B.Supmonchai July 5th, q Quantification of Design Metrics of an inverter. q Optimization of an inverter design. B.Supmonchai Why CMOS Inverter?

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

Transcription:

ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 10: February 16, 2016 MOS Inverter: Dynamic Characteristics

Lecture Outline! Review: Symmetric CMOS Inverter Design! Inverter Power! Dynamic Characteristics " Delay 2

Review: CMOS Inverter: Visual VTC -1 V out = V in - V T0p V th V T0p V out = V in - V T0n V th V th V T0n -V T0n V IL -1 V th V IH V DD 3

Review: CMOS Inverter: Visual VTC -1 V out = V in - V T0p V th V T0p V out = V in - V T0n V th V th V T0n -V T0n V IL -1 V th V IH V DD 4

Review: CMOS Inverter: Design/Sizing V th = V T 0n + 1 k R 1+ ( V DD +V T 0 p ) 1 k R " k R = V +V V DD T 0 p th $ # V th % ' & 2 Important design Eq. for CMOS inverter VTC. If V th is set to ideal case: V th = 1 2 V DD " k R = V +V 1 2V % DD T 0 p DD $ ' # 1 2V DD & 2 " = 1 2V +V % DD T 0 p $ ' # 1 2V DD & If V T0n = -V T0p = -V T0 (symmetric CMOS) 2 ideal V th " k R = V +V 1 2V DD T 0 p DD $ 1 2V DD If, # also % ' & 2 " = 1 2V +V DD T 0 $ # 1 2V DD +V T 0 % ' & 2 k R symetric = 1 =1 1= µ W n n W p = µ n µ p W p W n µ p 5

Review: Noise Margin Example Compute the noise margins for a symmetric CMOS inverter has been designed to achieve V th = V DD /2, where V DD = 5 V and V T0n = - V T0p = 1 V. NM H = NM L = 2.125 RECALL (with V DD = 5 V) 1. NM H, NM L > V DD /4 = 1.25 V 2. Ideal NM => NM H = NM L = 2.5 V > V DD /2 6

Inverter Power

Power! P = I V! Tricky part: " Understanding I " (pairing with correct V) 8

Static Current! P = I static V DD 9

Switching Currents! Dynamic current flow:! If both transistor on: " Current path from V dd to Gnd " Short circuit current 10

Currents Summary! I changes over time! At least two components " I static no switching " I switch when switching " I dyn and I sc 11

Currents Summary! I changes over time! At least two components " I static no switching " I switch when switching " I dyn and I sc CLK φ ramp_enable V RAMP 12

Switching Dynamic Power 13

Switching Currents! I switch (t) = I sc (t) + I dyn (t)! I(t) = I static (t)+i switch (t) I dyn I static I sc 14

Charging! I dyn (t) " I ds = f(v ds,v gs ) " and V gs, V ds changing I DS = k n ( 2 V GS V ) 2 T I DS = k n " # 2 2 V V GS T ( 2 )V DS V DS $ % 15

Switching Energy focus on I dyn (t) I dyn I static I sc 16

Switching Energy focus on I dyn (t) I dyn E = P(t)dt = I(t)V dd dt = V dd I(t)dt 17

Switching Energy! Do we know what this is? I dyn (t)dt I dyn E = P(t)dt = I(t)V dd dt = V dd I(t)dt 18

Switching Energy! Do we know what this is? Q = I dyn (t)dt I dyn E = P(t)dt = I(t)V dd dt = V dd I(t)dt 19

Switching Energy! Do we know what this is? Q = I dyn (t)dt! What is Q? I dyn E = P(t)dt = I(t)V dd dt = V dd I(t)dt 20

Switching Energy! Do we know what this is? Q = I dyn (t)dt! What is Q? I dyn E = P(t)dt Q = CV = I(t)dt = I(t)V dd dt = V dd I(t)dt 21

Switching Energy! Do we know what this is? Q = I dyn (t)dt! What is Q? I dyn E = P(t)dt Q = CV = I(t)dt = I(t)V dd dt = V dd I(t)dt E = CV dd 2 Capacitor charging energy 22

Switching Power! Every time output switches 0#1 pay: " E = CV 2! P dyn = (# 0#1 trans) CV 2 / time! # 0#1 trans = ½ # of transitions! P dyn = (# trans) ½CV 2 / time 23

Switching Short Circuit Power 24

Short Circuit Power! Between V TN and V dd - V TP " Both N and P devices conducting! Roughly: I sc 25

Peak Current! I peak around V dd /2 " If V TN = V TP and sized equal rise/fall I DS = k n ( 2 V GS V T ) 2 26

Peak Current! I peak around V dd /2 " If V TN = V TP and sized equal rise/fall I DS = k n ( 2 V GS V T ) 2 I(t)dt I t % ' 1( peak sc & 2 * ) 27

Peak Current! I peak around V dd /2 " If V TN = V TP and sized equal rise/fall I DS = k n ( 2 V GS V T ) 2 I(t)dt I t % ' 1( peak sc & 2 * ) # E = V dd I peak t sc % 1& ( $ 2' 28

Dynamic Characteristics 29

Inverter Delay! Caused by charging and discharging the capacitive load " What is the load? 30

Inverter Delay 31

Inverter Delay 32

Inverter Delay C gb = C gbn + C gbp C load = C # dbn + C# dbp + C# gdn + C# gdp + C int + C gb 33

Inverter Delay Usually C db >> C gd C sb >> C gs C load C # dbn + C# dbp + C int + C gb 34

Inverter Delay n = fan-out 1 C load C dbn + C dbp + C int + nc gb 35

Propogation Delay Definitions V DD 0 t V DD 0 V 50% = V DD /2 36

Propogation Delay Definitions t 37

Propogation Delay Definitions 38

Rise/Fall Times 39

MOS Inverter Dynamic Performance! ANALYSIS (OR SIMULATION): For a given MOS inverter schematic and C load, estimate (or measure) the propagation delays! DESIGN: For given specs for the propagation delays and C load*, determine the MOS inverter schematic METHODS: 1. Average Current Model τ PHL C load ΔV HL I avg,hl = C load V OH V 50% I avg,hl τ PLH C load ΔV LH I avg,lh = C load V 50% V OL I avg,lh Assume V in ideal 40

MOS Inverter Dynamic Performance! ANALYSIS (OR SIMULATION): For a given MOS inverter schematic and C load, estimate (or measure) the propagation delays! DESIGN: For given specs for the propagation delays and C load*, determine the MOS inverter schematic METHODS: 2. Differential Equation Model i C = C load dv out dt dv dt = C out load i C dt τ PHL or τ PLH Assume V in ideal 41

MOS Inverter Dynamic Performance! ANALYSIS (OR SIMULATION): For a given MOS inverter schematic and C load, estimate (or measure) the propagation delays! DESIGN: For given specs for the propagation delays and C load*, determine the MOS inverter schematic METHODS: 3. 1 st Order RC delay Model τ PHL 0.69 C load R n τ PLH 0.69 C load R p Assume V in ideal 42

Method 1 Average Current Model

Calculation of Propagation Delays τ PHL C load ΔV HL I avg,hl = C load V OH V 50% I avg,hl τ PLH C load ΔV LH I avg,lh = C load V 50% V OL I avg,lh 44

Calculation of Propagation Delays τ PHL C load ΔV HL I avg,hl = C load V OH V 50% I avg,hl τ PLH C load ΔV LH I avg,lh = C load V 50% V OL I avg,lh 45

Calculation of Propagation Delays τ PHL C load ΔV HL I avg,hl = C load V OH V 50% I avg,hl τ PLH C load ΔV LH I avg,lh = C load V 50% V OL I avg,lh 46

Calculation of Rise/Fall Times τ fall C load ΔV 90% 10% I avg,90% 10% = C load V 90% V 10% I avg,90% 10% τ rise C load ΔV 10% 90% I avg,10% 90% = C load V 90% V 10% I avg,10% 90% 47

Calculation of Rise/Fall Times τ fall C load ΔV 90% 10% I avg,90% 10% = C load V 90% V 10% I avg,90% 10% τ rise C load ΔV 10% 90% I avg,10% 90% = C load V 90% V 10% I avg,10% 90% 48

Calculation of Rise/Fall Times τ fall C load ΔV 90% 10% I avg,90% 10% = C load V 90% V 10% I avg,90% 10% τ rise C load ΔV 10% 90% I avg,10% 90% = C load V 90% V 10% I avg,10% 90% 49

Method 2 Differential Equation Model

Calculating Propagation Delays Assume V in is an ideal step-input Two Cases 1. V in abruptly rises => V out falls => τ PHL 2. V in abruptly falls => V out rises => τ PLH i DP - i Dn 51

Case 1: V in Abruptly Rises - τ PHL 52

Case 1: V in Abruptly Rises - τ PHL 53

Case 1: V in Abruptly Rises - τ PHL 54

Case 1: V in Abruptly Rises - τ PHL 55

Case 1: V in Abruptly Rises - τ PHL V out = V DD V T0n 56

Recall: CMOS Inverter: Visual VTC -1 V out = V in - V T0p V th V T0p V out = V in - V T0n V th V th V T0n -V T0n V IL -1 V th V IH V DD 57

Case 1: V in Abruptly Rises - τ PHL C load dv out dt i Dn τ PHL = τ PHL =C load dv dt = C out load i Dn t=t 50% V out =V DD /2$ 1' dt = C t=t load & ) 0 V out =V DD % ( i Dn dv out V DD V T 0 n $ 1' V DD /2 $ 1' & ) dv V out + C load & DD ) V % ( DD V T 0 n % ( i Dn t 0 #t 1 t 1 #t 50% i Dn dv out V out = V DD V T0n 58

Case 1: V in Abruptly Rises - τ PHL saturation linear τ PHL =C load t 0 #t 1 t 1 #t 50% V DD V T 0 n " 1% V DD /2 " 1% $ ' dv V out + C load $ DD ' V # & DD V T 0 n # & i Dn i Dn dv out V out = V DD V T0n saturation: i Dn = k n 2 (V in )2 τ PHL,sat = C load τ PHL,sat = V DD V T 0 n V DD " $ $ $ # C load 1 k n 2 (V DD ) 2 % ' ' ' & dv k n 2 (V V V out DD DD T 0n )2 V DD V T 0 n dv out τ PHL,sat = 2C load V T 0n k n (V DD ) 2 59

Case 1: V in Abruptly Rises - τ PHL saturation linear τ PHL =C load t 0 #t 1 t 1 #t 50% V DD V T 0 n " 1% V DD /2 " 1% $ ' dv V out + C load $ DD ' V # & DD V T 0 n # & i Dn i Dn dv out V out = V DD V T0n ( ) linear: i Dn = k n 2 (V V )V V 2 in T 0n out out " V DD /2 $ 1 τ PHL,lin = C load $ V DD V T 0 n $ k n 2 2(V DD )V out V 2 out # τ PHL,lin = 2C " V load DD /2 1 V k n $ # 2(V DD )V out V 2 DD V T 0 n out τ PHL,lin = 2C load k n ( ) ( ) 1 2(V DD ) ln " V out $ # 2(V DD ) V out ( ) % ' ' ' & % ' & % ' & dv out dv out V out =V DD /2 V out =V DD V T 0 n 60

Case 1: V in Abruptly Rises - τ PHL τ PHL,lin = 2C load k n τ PHL,lin = 1 2(V DD ) ln # V out % $ 2(V DD ) V out ( ) # C load k n (V DD ) ln 2(V DD ) V DD 2 % V DD 2 $ & ( ' V out =V DD /2 V out =V DD V T 0 n & ( ' 61

Case 1: V in Abruptly Rises - τ PHL saturation linear τ PHL =C load t 0 #t 1 t 1 #t 50% V DD V T 0 n " 1% V DD /2 " 1% $ ' dv V out + C load $ DD ' V # & DD V T 0 n # & i Dn i Dn dv out V out = V DD V T0n τ PHL,sat = 2C load V T 0n k n (V DD ) 2 τ PHL,lin = " C load k n (V DD ) ln 2(V DD ) V DD 2 $ V DD 2 # % ' & τ PHL = 2C load V T 0n k n (V DD ) 2 + " C load k n (V DD ) ln 2(V DD ) V DD 2 $ V DD 2 # % ' & 62

Case 1: V in Abruptly Rises - τ PHL saturation linear τ PHL =C load t 0 #t 1 t 1 #t 50% V DD V T 0 n " 1% V DD /2 " 1% $ ' dv V out + C load $ DD ' V # & DD V T 0 n # & i Dn i Dn dv out V out = V DD V T0n τ PHL,sat = 2C load V T 0n k n (V DD ) 2 τ PHL,lin = τ PHL = 2C load V T 0n k n (V DD ) 2 + " C load k n (V DD ) ln 2(V DD ) V DD 2 $ V DD 2 " # C load k n (V DD ) ln 2(V DD ) V DD 2 $ V DD 2 # % ' & % ' & 63

Case 1: V in Abruptly Rises - τ PHL saturation linear τ PHL =C load t 0 #t 1 t 1 #t 50% V DD V T 0 n " 1% V DD /2 " 1% $ ' dv V out + C load $ DD ' V # & DD V T 0 n # & i Dn i Dn dv out V out = V DD V T0n τ PHL,sat = 2C load V T 0n k n (V DD ) 2 τ PHL,lin = " C load k n (V DD ) ln 2(V DD ) V DD 2 $ V DD 2 # % ' & τ PHL = 2C load V T 0n k n (V DD ) 2 + " C load k n (V DD ) ln 2(V DD ) V DD 2 $ V DD 2 1 ) 2V τ PHL =C load T 0n k n (V DD ) (V DD ) + ln # 2(V V ) &, DD T 0n + % 1(. * $ V DD 2 '- # % ' & R n 64

Case 1: V in Abruptly Rises - τ PHL 1 ) 2V τ PHL =C load T 0n k n (V DD ) (V DD ) + ln # 2(V V ) &, DD T 0n + % 1(. * $ V DD 2 '- Recall from static CMOS Inverter: V th = V T 0n + 1 k R 1+ ( V DD +V T 0 p ) 1 k R " k R = V DD +V T 0 p V th $ # V th % ' & 2 DESIGN: (1) V th k R ; (2) τ PHL k n ; (3) k R & k n k p 65

Idea! P tot = P static + P dyn + P sc " Can t ignore Static Power (aka. Leakage power)! Propogation Delay " Average Current Model " Differential Equation Model " 1 st Order Model 66

Admin! HW 4 due Thursday, 2/18 " If you submit online and in-class only the online one will be graded.! Tania Office Hours on Wednesday 2-4pm! Journal Thursday " Gregory Fredeman, et. al., A 14 nm 1.1 Mb Embedded DRAM Macro With 1 ns Access, pp 230-239 67