EE5311- Digital IC Design

Similar documents
EE5311- Digital IC Design

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

The CMOS Inverter: A First Glance

THE INVERTER. Inverter

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

EEE 421 VLSI Circuits

CMOS Inverter (static view)

ECE 342 Solid State Devices & Circuits 4. CMOS

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

Integrated Circuits & Systems

VLSI Design and Simulation

The CMOS Inverter: A First Glance

Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Lecture 4: CMOS review & Dynamic Logic

Integrated Circuits & Systems

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

DC and Transient Responses (i.e. delay) (some comments on power too!)

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

Digital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman

Digital Integrated Circuits 2nd Inverter

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

EE115C Digital Electronic Circuits Homework #3

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

Digital Integrated Circuits

ECE 546 Lecture 10 MOS Transistors

Lecture 5: DC & Transient Response

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

DC & Transient Responses

EE5780 Advanced VLSI CAD

MOSFET and CMOS Gate. Copy Right by Wentai Liu

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ECE321 Electronics I

Lecture 6: DC & Transient Response

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Lecture 4: DC & Transient Response

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look

4.10 The CMOS Digital Logic Inverter

9/18/2008 GMU, ECE 680 Physical VLSI Design

Digital Integrated Circuits A Design Perspective

Lecture 5: DC & Transient Response

CMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.

EE141Microelettronica. CMOS Logic

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Topic 4. The CMOS Inverter

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: CMOS Inverter: Visual VTC. Review: CMOS Inverter: Visual VTC

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

Lecture 12 Circuits numériques (II)

Dynamic operation 20

EECS 141: FALL 05 MIDTERM 1

The Physical Structure (NMOS)

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

High-to-Low Propagation Delay t PHL

EE115C Digital Electronic Circuits Homework #4

B.Supmonchai July 5th, q Quantification of Design Metrics of an inverter. q Optimization of an inverter design. B.Supmonchai Why CMOS Inverter?

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

MOS Transistor Theory

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

COMP 103. Lecture 10. Inverter Dynamics: The Quest for Performance. Section 5.4.2, What is this lecture+ about? PERFORMANCE

CMOS Technology for Computer Architects

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Digital Integrated Circuits A Design Perspective

5. CMOS Gate Characteristics CS755

COMP 103. Lecture 16. Dynamic Logic

THE CMOS INVERTER CHAPTER. Quantification of integrity, performance, and energy metrics of an inverter Optimization of an inverter design

CMOS Logic Gates. University of Connecticut 181

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

MOS Transistor Theory

EE40 Lec 20. MOS Circuits

COMBINATIONAL LOGIC. Combinational Logic

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Power Dissipation. Where Does Power Go in CMOS?

ESE 570 MOS INVERTERS STATIC (DC Steady State) CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania, updated 12Feb15

Integrated Circuit Design ELCT 701 (Winter 2017) Lecture 2: Resistive Load Inverter

Where Does Power Go in CMOS?

Based on slides/material by. Topic 3-4. Combinational Logic. Outline. The CMOS Inverter: A First Glance

Properties of CMOS Gates Snapshot

! Inverter Power. ! Dynamic Characteristics. " Delay ! P = I V. ! Tricky part: " Understanding I. " (pairing with correct V) ! Dynamic current flow:

Digital Integrated Circuits A Design Perspective

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp

CMOS Logic Gates. University of Connecticut 172

Announcements. EE141- Spring 2003 Lecture 8. Power Inverter Chain

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018

Integrated Circuits & Systems

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

EE5311- Digital IC Design

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

Digital Microelectronic Circuits ( ) Ratioed Logic. Lecture 8: Presented by: Mr. Adam Teman

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Transcription:

EE5311- Digital IC Design Module 3 - The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 6, 2017 Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 1/30

Learning Objectives Explain the functioning of a CMOS inverter Explain the Voltage Transfer Characteristics of an inverter Derive an expression for the trip point of an inverter Derive an expression for the delay of an inverter driving a load Derive expressions for Static, Dynamic and Short Circuit power of an inverter. Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 2/30

Outline Switch Model Transfer Characteristics Switching Threshold Noise Margin Supply Voltage Scaling Propagation Delay Power Dynamic Short circuit Leakage Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 3/30

Switch Model V in = 0 V in = V DD Vin V out R p R n C L Figure: The CMOS Inverter The high and low logic levels are V DD and GND(0) Logic levels are independent of sizes - Ratioless Logic Low output impedance (kω) - Immune to noise Large input impedance - Infinite fanout No conduction path from supply to ground in steady state Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 4/30

Load Line V in G S D Vout D S Figure: The CMOS Inverter I DSp = I DSn V GSn = V in V GSp = V in V DD V DSn = V out V DSp = V out V DD Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 5/30

Load Line I Dn V in = 0 V in = 0.4V DD V in = V DD V in = 0.7V DD V in = 0.5V DD V in = 0.7V DD V in = 0.4V DD V in = V DD V in = 0 V out Figure: Solid lines- NMOS, Dashed lines - PMOS Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 6/30

Voltage Transfer Characterisitcs V out V in V out V in = V Out = V M C L 1 2 3 4 5 V in Figure: VTC of a CMOS Inverter Region NMOS PMOS 1 Off Lin 2 Sat Lin 3 Sat Sat 4 Lin Sat 5 Lin Off Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 7/30

Switching Threshold V out V in V out V in = V Out = C L 1 2 3 4 5 V in Figure: Switching Threshold Both NMOS and PMOS are in saturation Assume velocity saturation Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 8/30

Switching Threshold I DSp = I DSn V GSn = V in V GSp = V in V DD V DSn = V out V DSp = V out V DD V in = V out Both NMOS and PMOS are in saturation Assume velocity saturation Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 9/30

Switching Threshold Ignoring channel length modulation I DSn = k n W n L (V M V Tn V DSATn 2 I DSp = k p W p L (V M V DD V Tp V DSATp 2 )V DSATn )V DSATp V M = V Tn + V DSATn 2 +r(v DD +V Tp + V DSATp 2 ) 1+r r = k p(w p /L)V DSATp k n(w n /L)V DSATn = W pv satp W n v satn V M r r +1 V DD Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 10/30

Switing Threshold V out V in = V Out = V M Increasing r Figure: VTC Trip Point V in Ratio of Wp W n determines V M Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 11/30

Switing Threshold Without Velocity Saturation Left as an exercise V M = V Tn +r(v DD +V Tp ) 1+r kp r = k n Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 12/30

Noise Margin V out V OH V OL V IL V IH Vin V OH V OL NM H NM L V IH V IL Figure: Noise Margin of a CMOS Inverter Logic levels from the driver should be recognized by the load Points of slope -1 provide the noise margin levels NM H = V OH V IH NM L = V IL V OL Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 13/30

Noise Margin Approximation V out V M V IL V IH V in Figure: Noise Margin approximation of a CMOS Inverter Extend the tangent at V M Slope is the gain (g) of the VTC NM H = V DD V IH = V DD V M V M g NM L = V IL = V M + V DD V M g Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 14/30

Noise Margin Calculations Need to consider channel length modulation Slope is the gain (g = dvout dv in ) of the VTC I DSn = I no clm DSn (1+λ n V out ) I DSp = I no clm DSp (1+λ p (V out V DD )) g = 1 k n V DSATn +k p V DSATp I D (V M ) λ n λ p 1+r g (V M V Tn V DSATn /2)(λ n λ p ) r = k pv DSATp k n V DSATn Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 15/30

Inverters - Robust Configuration V DD 0 V DD V Tp V DD V DD 0 V DD V Tn 0 V DD Pull down to GND with NMOS Pull up to V DD with PMOS Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 16/30

Pass Transistors V D v C (0 ) = 0 V D V G v C (0 ) = V DD V G v C (t) = min(v G V Tn,V D ) v C (t) = max(v G V Tp,V D ) Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 17/30

Switch Model Dynamic Behaviour V in 0 V in V DD R p C L R n C L Low High High Low Figure: Dynamic Behaviour of CMOS Inverter τ rise = R p C L τ fall = R n C L Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 18/30

Delay Propagation Delay - 50% input to 50% output Rise delay. Output goes from L H - tplh Fall delay. Output goes from H L - tphl Propagation delay is defined as tp = t phl+t plh 2 Slew Rise time - Time taken for output to go from 10% to 90% Fall time - TIme taken for output to go from 90% to 10% Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 19/30

Delay V in V out V in V out C L t phl t plh t Figure: Delay t phl = R eqn C L t plh = R eqp C L t p = C L R eqn +R eqp 2 Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 20/30

Transistor Sizing - Symmetric delay Rising propagation delay should be identical to falling propagation delay. This also ensures a symmeteric VTC t phl = t plh R eqn = R eqp C L V DD 2I DSATn = C LV DD 2I DSATp W n µ n = W p µ p W p 2W n Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 21/30

Transistor Sizing - Minimum delay C L = C dp1 +C dn1 +C gn2 +C gp2 +C wire t p = C L R eqn +R eqp 2 t p = (0.5)[(1+β)(C gn2 +C dn1 )+C wire ]R eqn (1+ α β ) β opt = α = k nv DSATn /k pv DSATp t p β = 0 ( ) C wire α 1+ C dn1 +C gn2 Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 22/30

Power Dissipation Energy lost as heat disspation in the devices Dynamic - Charge/ Discharging of cpacitance Short Circuit - Conductive path from V DD GND Static - Leakage even when no activity happens Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 23/30

Dynamic Power V in 0 V in V DD R p C L R n C L Low High High Low Figure: Capacitor charge and discharge E VDD = E C = 0 0 L H i VDD (t)v DD dt i VDD (t)v out dt Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 24/30

Dynamic Power E VDD = E VDD = E VDD = 0 0 VDD 0 L H i VDD (t)v DD dt dv out C L V DD dt dt C L V DD dv out E VDD = C L V 2 DD E C = C LV 2 DD 2 Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 25/30

Dynamic Power L H - Load capacitor charges and disspates C LV 2 DD 2 in PMOS H L - Load capacitor discharges and disspates C LV 2 DD 2 in NMOS Note that the energy dissipated is independent of size Depends on Probability of switching (P0 1 ) - Activity factor Frequency of operation (f) P dyn = C L V 2 DDf 0 1 P dyn = C L V 2 DDP 0 1 f Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 26/30

Short Circuit Power V DD V T V in I sc V out V T I peak C L Figure: Both NMOS and PMOS conduct I peak t sc I Peak t sc E sc = V DD +V DD 2 2 P sc = t sc V DD I peak f t sc = V DD +V Tp V Tn t s V DD Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 27/30

Static Power 0 ON V DD V DD 0 ON I subn I subp Figure: NMOS or PMOS leaks current P stat = I stat V DD P tot = P dyn +P sc +P stat P tot = (C L V 2 DD +V DD I peak t s )f 0 1 +V DD I leak Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 28/30