VLSI Design I; A. Milenkovic 1

Similar documents
VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1

CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look

CMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.

CPE/EE 427, CPE 527 VLSI Design I L07: CMOS Logic Gates, Pass Transistor Logic. Review: CMOS Circuit Styles

CMOS Inverter (static view)

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

CPE/EE 427, CPE 527 VLSI Design I Pass Transistor Logic. Review: CMOS Circuit Styles

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

CPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective

EEE 421 VLSI Circuits

Pass-Transistor Logic

Based on slides/material by. Topic 3-4. Combinational Logic. Outline. The CMOS Inverter: A First Glance

Properties of CMOS Gates Snapshot

DC and Transient Responses (i.e. delay) (some comments on power too!)

B.Supmonchai August 1st, q In-depth discussion of CMOS logic families. q Optimizing gate metrics. q High Performance circuit-design techniques

CMOS Digital Integrated Circuits Lec 10 Combinational CMOS Logic Circuits

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

CPE/EE 427, CPE 527 VLSI Design I L18: Circuit Families. Outline

The CMOS Inverter: A First Glance

9/18/2008 GMU, ECE 680 Physical VLSI Design

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance

Digital Integrated Circuits A Design Perspective

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

ECE 342 Solid State Devices & Circuits 4. CMOS

Lecture 4: DC & Transient Response

EE141Microelettronica. CMOS Logic

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Integrated Circuits & Systems

Lecture 5: DC & Transient Response

5. CMOS Gate Characteristics CS755

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

THE INVERTER. Inverter

EE5780 Advanced VLSI CAD

ECE 546 Lecture 10 MOS Transistors

MOSFET and CMOS Gate. Copy Right by Wentai Liu

CMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering

VLSI Design I; A. Milenkovic 1

MOS Transistor Theory

Lecture 6: DC & Transient Response

COMBINATIONAL LOGIC. Combinational Logic

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic

Lecture 5: DC & Transient Response

DC & Transient Responses

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Homework #2 10/6/2016. C int = C g, where 1 t p = t p0 (1 + C ext / C g ) = t p0 (1 + f/ ) f = C ext /C g is the effective fanout

Digital Integrated Circuits A Design Perspective

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Static CMOS Circuits

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

MOS Transistor Theory

EECS 141 F01 Lecture 17

Digital EE141 Integrated Circuits 2nd Combinational Circuits

Integrated Circuits & Systems

EE141. Administrative Stuff

VLSI Circuit Design (EEC0056) Exam

COMP 103. Lecture 16. Dynamic Logic

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Motivation for Lecture. For digital design we use CMOS transistors. Gate Source. CMOS symboler. MOS transistor. Depletion. A channel is created

VLSI Design I; A. Milenkovic 1

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

4.10 The CMOS Digital Logic Inverter

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Lecture 12 Circuits numériques (II)

VLSI Design and Simulation

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

ECE321 Electronics I

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

VLSI Design I; A. Milenkovic 1

EE115C Digital Electronic Circuits Homework #4

VLSI Design I; A. Milenkovic 1

Lecture 4: Implementing Logic in CMOS

Important! EE141- Fall 2002 Lecture 5. CMOS Inverter MOS Transistor Model

CMOS Technology for Computer Architects

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Restore Output. Pass Transistor Logic. How compare.

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ENEE 359a Digital VLSI Design

Digital Integrated Circuits

Topic 4. The CMOS Inverter

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

Chapter # 3: Multi-Level Combinational Logic

EE5311- Digital IC Design

EE40 Lec 20. MOS Circuits

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model

EE 330 Lecture 6. Improved Switch-Level Model Propagation Delay Stick Diagrams Technology Files

VLSI Design I; A. Milenkovic 1

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

Digital Microelectronic Circuits ( ) Ratioed Logic. Lecture 8: Presented by: Mr. Adam Teman

EE 434 Lecture 33. Logic Design

Power Dissipation. Where Does Power Go in CMOS?

ESE 570 MOS INVERTERS STATIC (DC Steady State) CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania, updated 12Feb15

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

Low Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Field-Effect (FET) transistors

The CMOS Inverter: A First Glance

Transcription:

ourse dministration PE/EE 47, PE 57 VLI esign I L6: omplementary MO Logic Gates epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) www.ece.uah.edu/~milenka/cpe57-5f Instructor: leksandar Milenkovic milenka@ece.uah.edu www.ece.uah.edu/~milenka E 7-L Mon. 5:3 PM 6:3 PM, Wen. :3 3:3 PM URL: http://www.ece.uah.edu/~milenka/cpe57-5f T: Joel Wilder Labs: Lab# posted (due 9/3/5) Text: MO VLI esign, 3 rd ed., Weste, Harris Review: Introduction, esign Metrics, I Fabrication (Read hapter ); I Fabrication (hapter 3) Today: MO Non-ideal IV, MO Inverter (hapter ) 9/4/5 VLI esign I;. Milenkovic MO Inverter VT eta Ratio NMO off PMO res.5 NMO sat PMO res If β p / β n, switching point will move from / alled skewed gate Other gates: collapse into equivalent inverter (V).5 NMO sat PMO sat.5 NMO res PMO sat NMO res PMO off.5.5.5 β p. β = n β p β = n.5 (V) 9/4/5 VLI esign I;. Milenkovic 3 9/4/5 VLI esign I;. Milenkovic 4 Noise Margins How much noise can a gate input see before it does not recognize the input? Logic Levels To maximize noise margins, select logic levels at Logical High Output Range Output haracteristics Input haracteristics V OH NM H V IH Indeterminate V Region IL Logical High Input Range β p /β n > Logical Low Output Range V OL NM L Logical Low Input Range 9/4/5 VLI esign I;. Milenkovic 5 9/4/5 VLI esign I;. Milenkovic 6 VLI esign I;. Milenkovic

V OL Logic Levels MO Inverter: witch Model of ynamic ehavior To maximize noise margins, select logic levels at unity gain point of transfer characteristic R p Unity Gain Points V OH lope = - L L β p /β n > R n = = V tn V IL V V IH - V tp 9/4/5 VLI esign I;. Milenkovic 7 9/4/5 VLI esign I;. Milenkovic 8 MO Inverter: witch Model of ynamic ehavior Relative Transistor izing R p L R n L When designing static MO circuits, balance the driving strengths of the transistors by making the PMO section wider than the NMO section to maximize the noise margins and obtain symmetrical characteristics = = Gate response time is determined by the time to charge L through R p (discharge L through R n ) 9/4/5 VLI esign I;. Milenkovic 9 9/4/5 VLI esign I;. Milenkovic witching Threshold V M where = (both PMO and NMO in saturation since V = V G ) V M r /( + r) where r = k p V Tp /k n V Tn witching threshold set by the ratio r, which compares the relative driving strengths of the PMO and NMO transistors Want V M = / (to have comparable high and low noise margins), so want r (W/L) p k n V Tn (V M -V Tn -V Tn /) = (W/L) n k p V Tp ( -V M +V Tp +V Tp /) witch Threshold Example In our generic.5 micron MO process, using the process parameters from slide L3.5, a =.5V, and a minimum size NMO device ((W/L) n of.5) NMO PMO (W/L) p (W/L) n = V T (V).43 -.4 γ(v.5 ).4 -.4 V T (V).63 - k (/V ) 5 x -6-3 x -6 λ(v - ).6 -. 9/4/5 VLI esign I;. Milenkovic 9/4/5 VLI esign I;. Milenkovic VLI esign I;. Milenkovic

witch Threshold Example imulated Inverter V M In our generic.5 micron MO process, using the process parameters, a =.5V, and a minimum size NMO device ((W/L) n of.5) NMO PMO V T (V).43 -.4 γ(v.5 ).4 -.4 V T (V).63 - k (/V ) 5 x -6-3 x -6 λ(v - ).6 -. (W/L) p 5 x -6.63 (.5.43.63/) = x x (W/L) n -3 x -6 = 3.5 -. (.5.4./) (W/L) p = 3.5 x.5 = 5.5 for a V M of.5v V M (V).5.4.3...9.8. ~3.4 (W/L) p /(W/L) n Note: x-axis is semilog V M is relatively insensitive to variations in device ratio setting the ratio to 3,.5 and gives V M s of.v,.8v, and.3v Increasing the width of the PMO moves V M towards Increasing the width of the NMO moves V M toward 9/4/5 VLI esign I;. Milenkovic 3 9/4/5 VLI esign I;. Milenkovic 4 3 V OH = V OL = Noise Margins etermining V IH and V IL VIL V M piece-wise linear approximation of VT VIH y definition, V IH and V IL are where d /d = - (= gain) NM H = -V IH NM L = V IL - pproximating: V IH = V M -V M /g V IL = V M + ( -V M )/g o high gain in the transition region is very desirable 9/4/5 VLI esign I;. Milenkovic 5 (V).5.5.5 MO Inverter VT from imulation.5.5.5 (V).5um, (W/L) p /(W/L) n = 3.4 (W/L) n =.5 (min size) =.5V V M.5V, g = -7.5 V IL =.V, V IH =.3V NM L = NM H =. (actual values are V IL =.3V, V IH =.45V NM L =.3V & NM H =.5V) Output resistance low-output =.4kΩ high-output = 3.3kΩ 9/4/5 VLI esign I;. Milenkovic 6 gain - -4-6 -8 - - -4-6 -8.5.5 Gain eterminates Gain is a strong function of the slopes of the currents in the saturation region, for = V M (+r) g ---------------------------------- (V M -V Tn -V Tn /)(λ n - λ p ) etermined by technology parameters, especially channel length modulation (λ). Only designer influence through supply voltage and V M (transistor sizing). 9/4/5 VLI esign I;. Milenkovic 7 Impact of Process Variation on VT urve (V).5.5.5 ad PMO Good NMO.5.5.5 (V) Good PMO ad NMO Nominal process variations (mostly) cause a shift in the switching threshold 9/4/5 VLI esign I;. Milenkovic 8 VLI esign I;. Milenkovic 3

caling the upply Voltage.5..5 (V).5 (V).5 Gain=-.5..5..5 (V).5.5 (V) evice threshold voltages are evice threshold voltages are kept (virtually) constant kept (virtually) constant 9/4/5 VLI esign I;. Milenkovic 9..5 tatic MO Logic MO ircuit tyles tatic omplementary MO tatic complementary MO - except during switching, output connected to either V or via a lowresistance path high noise margins full rail to rail swing VOH and VOL are at V and, respectively low output impedance, high input impedance no steady state path between V and (no static power consumption) delay a function of load capacitance and transistor resistance comparable rise and fall times (under the appropriate transistor sizing conditions) ynamic MO - relies on temporary storage of signal values on the capacitance of high-impedance circuit nodes simpler, faster gates increased sensitivity to noise 9/4/5 VLI esign I;. Milenkovic Pull-up network () and pull-down network (PN) In In In N In In In N PN PMO transistors only pull-up: make a connection from to F when F(In,In, In N ) = F(In,In, In N ) pull-down: make a connection from F to when F(In,In, In N ) = NMO transistors only and PN are dual logic networks 9/4/5 VLI esign I;. Milenkovic Threshold rops Threshold rops V G -V Tn L L L L PN L L PN L V G L V Tp 9/4/5 VLI esign I;. Milenkovic 3 9/4/5 VLI esign I;. Milenkovic 4 VLI esign I;. Milenkovic 4

onstruction of PN NMO devices in series implement a NN function NMO devices in parallel implement a NOR function + ual and PN and PN are dual networks emorgan s theorems + = = + [!( + ) =!! or!( ) =! &!] [!( ) =! +! or!( & ) =!!] a parallel connection of transistors in the corresponds to a series connection of the PN omplementary gate is naturally inverting (NN, NOR, OI, OI) Number of transistors for an N-input logic gate is N 9/4/5 VLI esign I;. Milenkovic 5 9/4/5 VLI esign I;. Milenkovic 6 MO NN MO NN F NN F = NN(,) F = = F= = = F= = = F= = = F= 9/4/5 VLI esign I;. Milenkovic 7 9/4/5 VLI esign I;. Milenkovic 8 MO NOR MO NOR F NOR F = NOR(,) F + = = = = = F= = F= = F= = F= 9/4/5 VLI esign I;. Milenkovic 9 9/4/5 VLI esign I;. Milenkovic 3 VLI esign I;. Milenkovic 5

omplex MO Gate omplex MO Gate OUT =!( + ( + )) OUT =!( + ( + )) 9/4/5 VLI esign I;. Milenkovic 3 9/4/5 VLI esign I;. Milenkovic 3 NOR NOR/OR Implementation 9/4/5 VLI esign I;. Milenkovic 33 How many transistors in each? OR an you create the stick transistor layout for the lower left circuit? ombinational Logic ells MO logic cells N-OR-INVERT (OI) OR-N-INVERT(OI) Example: OI Z = (* + * + E) Z = OI(,,,, E) Exercise: onstruct this logic cell? Example: OI3 Z = [(++)*(+E)*F] Z = OI3(,,,, E, F) Exercise: onstruct this logic cell? OI nd Or Inverter 9/4/5 VLI esign I;. Milenkovic 34 E Z OI tandard ell Layout Methodology Routing channel E signals Z E 9/4/5 VLI esign I;. Milenkovic 35 What logic function is this? 9/4/5 VLI esign I;. Milenkovic 36 VLI esign I;. Milenkovic 6

OI Logic Graph Two tick Layouts of!( ( + )) j i =!( ( + )) i j PN uninterrupted diffusion strip 9/4/5 VLI esign I;. Milenkovic 37 9/4/5 VLI esign I;. Milenkovic 38 onsistent Euler Path n uninterrupted diffusion strip is possible only if there exists a Euler path in the logic graph Euler path: a path through all nodes in the graph such that each edge is visited once and only once. onsistent Euler Path n uninterrupted diffusion strip is possible only if there exists a Euler path in the logic graph Euler path: a path through all nodes in the graph such that each edge is visited once and only once. i i j j For a single poly strip for every input signal, the Euler paths in the and PN must be consistent (the same) 9/4/5 VLI esign I;. Milenkovic 39 For a single poly strip for every input signal, the Euler paths in the and PN must be consistent (the same) 9/4/5 VLI esign I;. Milenkovic 4 OI Logic Graph OI Layout =!((+) (+)) PN ome functions have no consistent Euler path like x =!(a + bc + de) (but x =!(bc + a + de) does!) 9/4/5 VLI esign I;. Milenkovic 4 9/4/5 VLI esign I;. Milenkovic 4 VLI esign I;. Milenkovic 7

ombinational Logic ells (cont d) The OI family of cells with 3 index numbers or less = {OI, OI, O, O}; a,b,c={,3} ell Type a a ab ab abc Total, 3, 3 ells, 33, 3, 3, 33, 333, 33, 3 Number of Unique ells 3 3 4 4 9/4/5 VLI esign I;. Milenkovic 43 V G = V V V G = V M 3 M 4 M M VT is ata-ependent F= int 9/4/5 VLI esign I;. Milenkovic 44 3 weaker.5µ/.5µ NMO.75µ /.5µ PMO,: -> =, : -> =, :-> The threshold voltage of M is higher than M due to the body effect (γ) V Tn = V Tn V Tn = V Tn + γ( ( φ F + t ) - φ F ) since V of M is not zero (when V = ) due to the presence of int tatic MO Full dder ircuit! out =! in & (!!) (! &!) tatic MO Full dder ircuit!um = out & (!!! in ) (! &! &! in ) in in in! out!um in in in! out!um in in in in out = in & ( ) ( & ) um =! out & ( in ) ( & & in ) 9/4/5 VLI esign I;. Milenkovic 45 9/4/5 VLI esign I;. Milenkovic 46 VLI esign I;. Milenkovic 8