The heteronuclear Efimov scenario in an ultracold Bose-Fermi mixture

Similar documents
The few-boson problem near unitarity: recent theory and experiments Chris Greene, Purdue University

Evidence for Efimov Quantum states

Experiments with an Ultracold Three-Component Fermi Gas

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

Perfect screening of the Efimov effect by the dense Fermi sea

Few-Body physics with ultracold K and Rb: Efimov physics and the Bose polaron

ENERGY, SCATTERING LENGTH, AND MASS DEPENDENCE

Heteronuclear Efimov resonances in ultracold quantum gases

Three-body recombination at vanishing scattering lengths in an ultracold Bose gas Shotan, Z.; Machtey, O.; Kokkelmans, S.J.J.M.F.; Khaykovich, L.

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

A Pure Confinement Induced Trimer in quasi-1d Atomic Waveguides

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

arxiv: v2 [cond-mat.quant-gas] 1 Sep 2010

Universal van der Waals Physics for Three Ultracold Atoms

Lecture 3. Bose-Einstein condensation Ultracold molecules

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Fluids with dipolar coupling

Efimov states with strong three-body losses

1. Cold Collision Basics

YbRb A Candidate for an Ultracold Paramagnetic Molecule

Efimov Physics and Universality

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

F. Chevy Seattle May 2011

Bose-Bose mixtures in confined dimensions

NanoKelvin Quantum Engineering

Lecture 4. Feshbach resonances Ultracold molecules

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5

Three-body recombination at vanishing scattering lengths

Path of Momentum Integral in the Skorniakov-Ter-Martirosian Equation

Effective Field Theory and Ultracold Atoms

Cold fermions, Feshbach resonance, and molecular condensates (II)

(Biased) Theory Overview: Few-Body Physics

Super Efimov effect. Sergej Moroz University of Washington. together with Yusuke Nishida and Dam Thanh Son. Tuesday, April 1, 14

FOUR-BODY EFIMOV EFFECT

Universality in Four-Boson Systems

Resonant energy transport in aggregates of ultracold Rydberg-Atoms

A Mixture of Bose and Fermi Superfluids. C. Salomon

Ultracold molecules - a new frontier for quantum & chemical physics

Universal Aspects of Dipolar Scattering Christopher Ticknor. May 15 at INT UNCLASSIFIED

Open Effective Field Theories and Universality

A study of the BEC-BCS crossover region with Lithium 6

Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics

Ultracold Fermi Gases with unbalanced spin populations

Depicted: A big universal molecule with 4 atoms, attached to a 3-body Efimov state. Thanks, to NSF and the AFOSR- MURI!

Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?"

arxiv:cond-mat/ v2 [cond-mat.other] 2 Feb 2006

POLAR MOLECULES NEAR QUANTUM DEGENERACY *

arxiv: v2 [cond-mat.quant-gas] 9 Jan 2017

Pionless EFT for Few-Body Systems

Universal Loss Processes in Bosonic Atoms with Positive Scattering Lengths

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics

Confining ultracold atoms on a ring in reduced dimensions

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate

Production of Efimov molecules in an optical lattice

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

6. Interference of BECs

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Observation of Feshbach resonances in ultracold

arxiv: v1 [cond-mat.quant-gas] 8 Jan 2019

arxiv: v1 [cond-mat.quant-gas] 20 Aug 2016

Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations?

A few issues on molecular condensates

Few-body problems in ultracold alkali-earth atoms and superfluid Boson-Fermion mixture

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014

Lectures on Quantum Gases. Chapter 5. Feshbach resonances. Jook Walraven. Van der Waals Zeeman Institute University of Amsterdam

Effective Field Theory for Cold Atoms IV

A Mixture of Bose and Fermi Superfluids. C. Salomon

Dipolar Fermi gases. Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam. Outline

Ytterbium quantum gases in Florence

Disordered Ultracold Gases

Emergence of chaotic scattering in ultracold lanthanides.

Design and realization of exotic quantum phases in atomic gases

Superfluidity in interacting Fermi gases

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Fermi Condensates ULTRACOLD QUANTUM GASES

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Why ultracold molecules?

Universal Behavior of Small Two-Component Fermi Gases with Equal Masses

Superfluidity of a 2D Bose gas (arxiv: v1)

BEC and superfluidity in ultracold Fermi gases

Lecture I: (magnetic) dipolar gases. Lecture II: Rydberg Rydberg interaction. Lecture III : Rydberg ground state interaction

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang

Collision dynamics of molecules and rotational excitons! in an ultracold gas confined by an optical lattice!

First Observations of an S-wave Contact on the Repulsive Side of a Feshbach Resonance. Scott Smale University of Toronto

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length

Vladimir S. Melezhik. Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia

Search. Search and Discovery Ultracold Fermionic Atoms Team up as Molecules: Can They Form Cooper Pairs as Well? 1 of 10 11/12/2003 4:57 PM

A Chromium BEC in strong RF fields

Range eects on Emov physics in cold atoms

Nature of spinor Bose-Einstein condensates in rubidium

MRSEC. Inflation and coherent dynamics in a Bose-Einstein condensate driven across a quantum critical point. Cheng Chin. Funding:

Ultracold Molecules and Cold Controlled Chemistry. Roman Krems University of British Columbia


Transcription:

The heteronuclear Efimov scenario in an ultracold Bose-Fermi mixture Juris Ulmanis, Stephan Häfner, Rico Pires, Eva Kuhnle, and Matthias Weidemüller http://physi.uni-heidelberg.de/forschung/qd RUPRECHT-KARLS- UNIVERSITÄT HEIDELBERG University of Excellence

Efimov s scenario Phys. Lett. B 33, 563 564 (1970) universal trimers with relevance for nuclear physics molecular physics atomic physics

Efimov s scenario scattering states a ± a r 0 λ = 22. 7 effective 1/R 2 potential infinite number of bound states discrete scaling symmetry ψ n R = ψ n 1 λr E n = λ 2 E n 1 1/a < 0: only trimers 1/a > 0: universal threshold BB+B

Experimental observation in ultracold gases Physics Today 63, 40 (2010)

Recent experiments 1 0 = 21. 0(1.3) More experiments at (homo- and heteronuclear): Aarhus, Chicago, ENS, Heidelberg, Houston, JILA, LENS, Pennsylvania, Ramat-Gan, Tokio, Tübingen

Enhancing observability of Efimov s scenario a ± a ± a r 0 a r 0 λ = λ m B m X System λ 6 Li - Cs 2 4.877 6 Li - Rb 2 6.83 Equal masses 22.7

Finite intraparticle scattering lengths Li-Cs system: a 3 r 0 a a a 15 r 0 a a = 0 λ = λ m B? m X Short-range effects Finite intraspecies scattering lengths

Heteronuclear Efimov scenario a < 0 a > 0 Initial concept with vdw potentials: Wang et al., Phys. Rev. Lett. 109 243201 (2012)

Mixing Li and Cs at nk temperatures Li MOT Loading in an optical dipole trap Forced evaporative cooling Cs MOT Degenerate Raman sideband cooling Mixing of Li and Cs in the ODT

Tuning scattering length in Li-Cs Feshbach resonances: coupled-channels calculations by Eberhard Tiemann Repp et al., Phys. Rev. A 87, 010701(R) (2013); see also: Tung et al., ibid., 010702(R) Pires et al., Phys. Rev. A 90, 012710 (2014)

Three-body loss rate coefficient Rate equations: n Cs = L Cs 1 n Cs 2L 3 n Li n 2 Cs 2L LiLiCs 3 n 2 Li n Cs L Cs 3 3 n Cs n Li = L Li 1 n Li L 3 n Li n 2 Cs 2L LiLiCs 3 n 2 Li n Cs L Li 3 3 n Li Assumptions: Fermionic Li suppression of L 3 LiLiCs and L 3 Li constant temperature L 3 Cs constant Li+Cs+Cs Li+Cs 2 LiCs+Cs

Successive Efimov resonances 1 1 1 0 = 5. 8(0.1) stat(0.2) sys (1.0) rf 4. 88? T 400 nk 0 R. Pires et al., PRL 112, 250404 (2014); see also: S. Tung et al. (Chin group), PRL 113, 240402 (2014) Single Efimov resonance in Li-Rb: R.A.W. Mayer et al., PRL 115, 043201 (2015)

Tuning scattering length in Li-Cs Feshbach resonances: Mapping a LiCs (B) and a Cs (B) Cs-Cs interactions (Grimm group): Berninger et al., Phys. Rev. A 87, 032517 (2013) a Cs < 0 a Cs > 0 Li-Cs interactions (our work): Repp et al., Phys. Rev. A 87, 010701(R) (2013) Pires et al., Phys Rev. A 90, 012710 (2014) Ulmanis et al., New J. Phys. 17, 055009 (2015) Li-Cs interactions (Chicago): Tung et al., Phys. Rev. A 87, 010702(R) (2013)

rf association of (universal) LiCs dimers a(b) B FR = 842.829 (23) G Δ = 58.21 G a bg = 29.4 a 0 B = 842.040 G coupled-channels calculations by Eberhard Tiemann Ulmanis et al., New J. Phys. 17, 055009 (2015)

Reaching lower temperatures Mixed species condensation Gravitional sag due to large Cs mass Factor of 4 difference in polarizability at 1070 nm Solution: bichromatic dipole trap Tunable optical dipole trap @ 921 nm o Polarizability α Cs = 12 α Li o Almost independent spatial control of Li and Cs o Compensation of gravitational sag

Observation of three Efimov resonances 2 0 1 J. Ulmanis et al., PRA 93, 022707 (2016)

Zero-range model zero-range finite temperature model: D. Petrov and F. Werner, PRA 92, 022704 (2015) o S-Matrix formalism o Parameters: s 11 dependent on ka LiCs, ka Cs and mass ratio Scaling factor exp(π/s 0 ) Temperature T Inelasticity parameter η Three-body parameter R 0 Alternative method using optical potentials: M. Mikkelsen et al, J. Phys. B. 48, 085301 (2015)

Comparison with zero-range model 0 2 1 Fit of zero-range theory o Resonance width η = 0. 6 0. 8 o Three-body parameter R 0 = 125 a 0 o Absolute loss-rate J. Ulmanis et al., PRA 93, 022707 (2016)

Comparison with zero-range model 2 0 Extraction of resonance positions and scaling factors from zero-range theory by setting T 0, η 0: 1 o Consistent description of excited state recombination resonances o Deviation from universal scaling factor of 4.877 o Non-universal ground state resonance 0 J. Ulmanis et al., PRA 93, 022707 (2016)

Simplistic Born-Oppenheimer picture universal Cs 2 vdw dimer universal Cs 2 Li Efimov trimer a ± a Cs = 1500 a 0 (4.9) 2 (4.9) 2

Simplistic Born-Oppenheimer picture Cs 2 Li Efimov trimer w/ short-range contribution a ± a Cs = 1500 a 0 > (4.9) 2 (4.9) 2

Three-body recombination: a < 0 2 1 0 vdw scaling factors: λ 1 = 5.3 ± 0.1 λ 2 = 5.1 ± 0.2 Universal zero-range theory: λ 1 = 5.08 λ 2 = 5.18 Universal van der Waals model: Yujun Wang and Chris Greene Wang et al., Phys. Rev. Lett. 109 243201 (2012)

Three-body recombination: a < 0 2 1 0 Power law for a LiCs a Cs 2 2 L 3 a LiCs a Cs Here: a Cs 1500 a 0 Power laws for XXY and XYZ systems: J. D Incao and B. Esry, Phys. Rev. Lett. 103, 083202 (2009)

Efimov s universal function Trimer energies at the unitarity are universally related to the recombination E T = ħ2 k 2 m = C k C = 1. 56 a < 0 a > 0 E. Braaten and H. W. Hammer, Physics Reports 428, 259 (2016)

Simplistic Born-Oppenheimer picture (4.9) 2 (4.9) 2 (4.9) 2 (5.6) 2 C = 1. 9

Tuning scattering length in Li-Cs Feshbach resonances: Mapping a LiCs (B) and a Cs (B) Cs-Cs interactions (Grimm group): Berninger et al., Phys. Rev. A 87, 032517 (2013) a Cs < 0 a Cs > 0 Li-Cs interactions (our work): Repp et al., Phys. Rev. A 87, 010701(R) (2013) Pires et al., Phys Rev. A 90, 012710 (2014) Ulmanis et al., New J. Phys. 17, 055009 (2015) Li-Cs interactions (Chicago): Tung et al., Phys. Rev. A 87, 010702(R) (2013)

Three-body recombination: a > 0 2 1 Ground state resonance missing! vdw scaling factor: +0.5 λ 2 = 4.3 0.4 Power law for a LiCs 4 L 3 a LiCs a Cs preliminary Here: a Cs 200 a 0

Efimov spectrum for Li-Cs-Cs Three-body energy spectrum for attractive Li-Cs interactions (a LiCs < 0) Universal van der Waals model: Y. Wang et al., Phys. Rev. Lett. 109 243201 (2012) 2 1 0 a Cs < 0 a Cs > 0 Ground state merges with the Li + Cs 2 threshold! Calculations with the hyperspherical formalism by Chris Greene and Yujun Wang

Dissappearance of the resonance a ± a 200 a 0?

Simplistic Born-Oppenheimer picture (4.9) 2 (4.9) 2 (4.9) 2 (5.6) 2 C = 1. 9 C = 3. 1 Influence of the dimer state?

Summary Heteronuclear Efimov physics with large mass imbalance Observation of a series of 3 consecutive heteronuclear Efimov resonances in three-body losses for negative Cs scattering length Observation of two Efimov resonances and missing lowest resonance for positive Cs scattering length Role of short-range interactions (universal and nonuniversal regimes) Influence of the heavy-heavy scattering length Repp et al., Phys. Rev. A 87, 010701(R) (2013) Pires et al., PRL 112, 250404 (2014) Pires et al., Phys. Rev. A 90, 012710 (2014) Ulmanis et al., New J. Phys.17, 055009 (2015) Ulmanis et al., Phys. Rev. A 93, 022707 (2016) Ulmanis et al., National Science Reviews, in press Ulmanis et al., to be published

Outlook

Li-Cs team Cooperations John Bohn (JILA) Chris Greene (Purdue) Dima Petrov (Paris Sud) Tobias Tiecke (Harvard) Eberhard Tiemann (Hannover) Yujun Wang (Kansas) Felix Werner (ENS) : DAAD IMPRS-QD CQD BWS Prof. Matthias Weidemüller (PI) Stephan Häfner (PhD) Manuel Gerken (master student) Robin Eberhard (bachelor) JU (postdoc) Former members: Eva Kuhnle (postdoc) Rico Pires (PhD, postdoc) Carmen Renner (Lehramt) Alda Arias (master student) Marc Repp (PhD, postdoc) Arthur Schönhals (master student) Robert Heck (master student)