Principles of Physics I

Similar documents
b) (5) What average force magnitude was applied by the students working together?

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

Dynamics of Rotational Motion

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session.

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed?

Exam 3: Equation Summary

Physics 1114: Unit 5 Hand-out Homework (Answers)

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions )

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

Rotational Motion: Statics and Dynamics

PHYS 1114, Lecture 21, March 6 Contents:

From Newton to Einstein. Mid-Term Test, 12a.m. Thur. 13 th Nov Duration: 50 minutes. There are 20 marks in Section A and 30 in Section B.

OSCILLATIONS AND GRAVITATION

Chapter 13: Gravitation

Department of Physics, Korea University Page 1 of 5

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block?

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart

Exam 3: Equation Summary


Potential Energy and Conservation of Energy

Chapter 12. Kinetics of Particles: Newton s Second Law

Translation and Rotation Kinematics

Chapter 2: Basic Physics and Math Supplements

Chapter 7-8 Rotational Motion

Chapter 13 Gravitation

Momentum is conserved if no external force

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws.

Mark answers in spaces on the answer sheet

Experiment 09: Angular momentum

Central Force Problem. Central Force Motion. Two Body Problem: Center of Mass Coordinates. Reduction of Two Body Problem 8.01 W14D1. + m 2. m 2.

1121 T Question 1

Central Force Motion

Physics 2001 Problem Set 5 Solutions

Pendulum in Orbit. Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ (December 1, 2017)

Lecture 19 Angular momentum. Chapter

10. Force is inversely proportional to distance between the centers squared. R 4 = F 16 E 11.

Physics 201 Lecture 18

Physics 181. Assignment 4

When a mass moves because of a force, we can define several types of problem.

PS113 Chapter 5 Dynamics of Uniform Circular Motion

ω = θ θ o = θ θ = s r v = rω

Physics 231 Lecture 21

PHYSICS NOTES GRAVITATION

Physics 201 Homework 4

Easy. r p 2 f : r p 2i. r p 1i. r p 1 f. m blood g kg. P8.2 (a) The momentum is p = mv, so v = p/m and the kinetic energy is

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once.

KEPLER S LAWS AND PLANETARY ORBITS

PHYSICS 1210 Exam 2 University of Wyoming 14 March ( Day!) points

Circular-Rotational Motion Mock Exam. Instructions: (92 points) Answer the following questions. SHOW ALL OF YOUR WORK.

Lecture 1a: Satellite Orbits

MAGNETIC FIELD INTRODUCTION

Chapter 8. Accelerated Circular Motion

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law

Gravitation. Chapter 12. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6

CIRCULAR MOTION. Particle moving in an arbitrary path. Particle moving in straight line

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer.

PHYSICS 220. Lecture 08. Textbook Sections Lecture 8 Purdue University, Physics 220 1

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible)

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Gravitation. AP/Honors Physics 1 Mr. Velazquez

Chap 5. Circular Motion: Gravitation

Circular Motion. Mr. Velazquez AP/Honors Physics

Wheel : MC, IC, rc. Pendulum : MB, IB, LB

Physics 107 TUTORIAL ASSIGNMENT #8

Physics: Dr. F. Wilhelm E:\Excel files\130\m3a Sp06 130a solved.doc page 1 of 9

ROTATORY MOTION HORIZONTAL AND VERTICAL CIRCULAR MOTION

Newton s Laws, Kepler s Laws, and Planetary Orbits

Chapter. s r. check whether your calculator is in all other parts of the body. When a rigid body rotates through a given angle, all

Tutorial Exercises: Central Forces

m1 m2 M 2 = M -1 L 3 T -2

AP * PHYSICS B. Circular Motion, Gravity, & Orbits. Teacher Packet

21 MAGNETIC FORCES AND MAGNETIC FIELDS

Static equilibrium requires a balance of forces and a balance of moments.

Physics 2212 GH Quiz #2 Solutions Spring 2016

Recap. Centripetal acceleration: v r. a = m/s 2 (towards center of curvature)

Physics 1C Fall 2011: Quiz 1 Version A 1

Chapter 5. Uniform Circular Motion. a c =v 2 /r

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 6: motion in two and three dimensions III. Slide 6-1

Classical Mechanics Homework set 7, due Nov 8th: Solutions

Advanced Subsidiary GCE (H157) Advanced GCE (H557) Physics B (Advancing Physics) Data, Formulae and Relationships Booklet

Chapter 4. Newton s Laws of Motion

Ch 13 Universal Gravitation

HW Solutions # MIT - Prof. Please study example 12.5 "from the earth to the moon". 2GmA v esc

Physics 111 Lecture 10. SJ 8th Ed.: Chap Torque, Energy, Rolling. Copyright R. Janow Spring basics, energy methods, 2nd law problems)

Between any two masses, there exists a mutual attractive force.

F(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces.

Math Notes on Kepler s first law 1. r(t) kp(t)

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

Chapter 1: Mathematical Concepts and Vectors

Centripetal Force. Lecture 11. Chapter 8. Course website:

Physics. Rotational Motion.

Motion in Two Dimensions

Lab #9: The Kinematics & Dynamics of. Circular Motion & Rotational Motion

Physics 111 Lecture 5 Circular Motion

Fri Angular Momentum Quiz 10 RE 11.a; HW10: 13*, 21, 30, 39 Mon , (.12) Rotational + Translational RE 11.b Tues.

Modeling Ballistics and Planetary Motion

Force of gravity and its potential function

Objective Notes Summary

Transcription:

Pinciples of Physics I J. M. Veal, Ph. D. vesion 8.05.24 Contents Linea Motion 3. Two scala equations........................ 3.2 Anothe scala equation...................... 3.3 Constant acceleation....................... 3.4 Homewok Execises........................ 3 2 Vectos 3 2. Basics................................ 3 2.2 Unit vectos............................. 3 2.3 Addition: geometic, components................. 3 2.4 Multiplication: scala & vecto poducts............. 3 2.5 Homewok Execises........................ 3 3 Thee-Dimensional Motion 3 3. Basics................................ 3 3.2 Pojectiles: tajectoy, ange................... 3 3.3 Cicles: centipetal acceleation.................. 3 3.4 Galilean elativity......................... 4 3.5 Homewok Execises........................ 4 4 Newton s Laws of Motion 4 4. st law................................ 4 4.2 2 nd law............................... 4 4.3 3 d law: nomal & tension foces................. 4 4.4 Mass vs. weight........................... 4 4.5 What is mass?........................... 4 4.6 Homewok Execises........................ 4 5 Thee Paticula Foces 4 5. Fiction: static, kinetic....................... 4 5.2 Dag................................. 4 5.3 Teminal speed........................... 4 5.4 Centipetal............................. 4 5.5 Homewok Execises........................ 4 5.6 Exam............................... 4 6 Wok 4 6. Basics................................ 4 6.2 Kinetic enegy........................... 4 6.3 Gavity............................... 5 6.4 Vaiable foce............................ 5 6.5 Spings & Hooke s law....................... 5 6.6 Kinetic enegy........................... 5 6.7 Powe................................ 5 6.8 Homewok Execises........................ 5 7 Enegy 5 7. Potential enegy.......................... 5 7.2 Path independence......................... 5 7.3 Gavity, sping........................... 5 7.4 Implied foce............................ 5 7.5 Homewok Execises........................ 5 8 Consevation of Enegy 5 8. Mechanical enegy......................... 5 8.2 Themal enegy of sliding..................... 5 8.3 Total enegy............................. 5 8.4 Homewok Execises........................ 5 9 Linea Momentum 6 9. Basics................................ 6 9.2 Cente of mass........................... 6 9.3 Solid bodies............................. 6 9.4 Newton s 2 nd law.......................... 6

J. M. Veal, Pinciples of Physics I 2 9.5 Intenal enegy........................... 6 9.6 Homewok Execises........................ 6 0 Consevation of Linea Momentum 6 0. Basics................................ 6 0.2 Vaiable mass............................ 6 0.3 Homewok Execises........................ 6 Collisions 6. Bouncing a ball........................... 6.2 Impulse............................... 6.3 Inelastic............................... 6.4 Elastic................................ 6.5 Cente of mass........................... 7.6 Two dimensions........................... 7.7 Homewok Execises........................ 7.8 Exam 2............................... 7 2 Rotation 7 2. Basics................................ 7 2.2 Constant angula acceleation................... 7 2.3 Kinetic enegy........................... 7 2.4 Moment of intetia......................... 7 2.5 Paallel axis theoem........................ 7 2.6 Fomulae.............................. 7 2.7 Homewok Execises........................ 7 3 Toque 8 3. Basics................................ 8 3.2 Newton s angula 2 nd law..................... 8 3.3 Wok................................. 8 3.4 Vecto................................ 8 3.5 Homewok Execises........................ 8 4 Rolling 8 4. Basics................................ 8 4.2 Kinetic enegy........................... 8 4.3 Ramp................................ 8 4.4 Homewok Execises........................ 8 5 Angula Momentum 8 5. Basics................................ 8 5.2 Newton s angula 2 nd law..................... 8 5.3 Homewok Execises........................ 8 6 Consevation of Angula Momentum 8 6. Basics................................ 8 6.2 Pecession.............................. 8 6.3 Coiolis effect............................ 8 6.4 Consevation of linea momentum................ 8 6.5 Homewok Execises........................ 8 7 Similaities 9 7. Tanslation vs. otation...................... 9 8 Static Equilibium 9 8. Basics................................ 9 8.2 Homewok Execises........................ 9 9 Oscillations 9 9. Simple hamonic motion...................... 9 9.2 Diff. eq. 0........................... 9 9.3 Hooke s law............................. 9 9.4 Enegy................................ 9 9.5 Thee pendulums.......................... 9 9.6 Damping.............................. 9 9.7 Resonance.............................. 9 9.8 Homewok Execises........................ 9 20 Gavitation 9 20. Newton s law............................ 9 20.2 Shell theoems........................... 0 20.3 Potential enegy.......................... 0 20.4 Keple s laws............................ 0 20.5 Obital enegy........................... 0 20.6 Thee masses............................ 0 20.7 Einstein s theoy.......................... 0 20.8 Homewok Execises........................ 0 20.9 Exam 3............................... 0 20.0Final Exam............................. 0 A All Fomulae 0

J. M. Veal, Pinciples of Physics I 3 Linea Motion Given the definition of a deteminant, show that. Two scala equations a b pa y b z a z b y qî pa x b z a z b x qĵ pa x b y a y b x qˆk. Given the definition a 9v, show that Given v v 0 v v 0 at. at and the definition v 9x, show that x x 0.2 Anothe scala equation v 0 t 2 at2. Given v v 0 at and x x 0 v 0 t at 2 {2, show that.3 Constant acceleation v 2 v 2 0 2apx x 0q. Given v v 0 at and x x 0 v 0 t at 2 {2, show that x x 0 2 pv 0 vqt. Given v v 0 at and x x 0 v 0 t at 2 {2, show that.4 Homewok Execises x x 0 vt 2 at2. View The Mechanical Univese and Beyond, 2. The Law of Falling Bodies. Read you text, chapte 2: Motion Along a Staight Line. 2 Vectos 2. Basics 2.2 Unit vectos 2.5 Homewok Execises View The Mechanical Univese and Beyond, 5. Vectos. Read you text, chapte : Units, Physical Quantities, and Vectos. 3 Thee-Dimensional Motion 3. Basics 3.2 Pojectiles: tajectoy, ange Given the equations fo linea motion with constant acceleation, choose two of them appopiately and show that the tajectoy of a pojectile is given by y x tan θ 0 2 gx2 pv 0 cos θ 0 q 2, whee x and y ae the hoizontal and vetical coodinates, espectively, of the pojectile s position elative to the launching point, θ 0 is the pojectile s launch angle, and g is the acceleation due to gavity. Given that a pojectile s tajectoy equation is given by y x tan θ 0 pgx 2 {2qpv 0 cos θ 0 q 2, show that the ange is given by R v2 0 g sin 2θ 0. 3.3 Cicles: centipetal acceleation Conside unifom cicula motion with adius and constant speed v in the xy plane. Assume the cicle is centeed at the oigin. If a is the acceleation and px, yq is the position of the moving paticle, show that 2.3 Addition: geometic, components 2.4 Multiplication: scala & vecto poducts Given a a x î a y ĵ a zˆk and a b ab cos θ, show that a b a x b x a y b y a z b z. Futhemoe, show that a v2 2 pxî a v2. yĵq.

J. M. Veal, Pinciples of Physics I 4 3.4 Galilean elativity 5.2 Dag v pa v pb v BA D 2 CρAv2 3.5 Homewok Execises View The Mechanical Univese and Beyond, 4. Inetia. Read you text, chapte 3: Motion in Two o Thee Dimensions. 4 Newton s Laws of Motion 4. st law 4.2 2 nd law F net m a A foce F F x î given by F y ĵ acts on a mass m. Show that the acceleation is a F x m î F y m ĵ. 5.3 Teminal speed Given that the dag foce can be expessed as D 2 CρAv2, show that the teminal speed fo an object falling though a fluid is given by d 2F g v t CρA. 5.4 Centipetal F c mv2 5.5 Homewok Execises View The Mechanical Univese and Beyond,. Intoduction. Read you text, chapte 5: Applying Newton s Laws. 4.3 3 d law: nomal & tension foces 4.4 Mass vs. weight 4.5 What is mass? 4.6 Homewok Execises View The Mechanical Univese and Beyond, 6. Newton s Laws. Read you text, chapte 4: Newton s Laws of Motion. 5.6 Exam 6 Wok 6. Basics W F d Exam coves mateial up to hee. 5 Thee Paticula Foces 5. Fiction: static, kinetic 6.2 Kinetic enegy K 2 mv2 f s µ s N f k µ k N Given v 2 v 2 0 2a x, F ma, and K 2 mv2, show that W K.

J. M. Veal, Pinciples of Physics I 5 6.3 Gavity 6.4 Vaiable foce W» f i F d 6.5 Spings & Hooke s law F k l Given W is given by ³ f i F d and F k l, show that the wok done by a sping W s 2 kpx2 i x2 f q. Include a justification of the esult of the dot poduct. 6.6 Kinetic enegy Given W 6.7 Powe P dw dt ³ f i 6.8 Homewok Execises F pq d and F ma, show that, in geneal, W K. Read you text, chapte 6: Wok and Kinetic Enegy. 7 Enegy 7. Potential enegy U W 7.2 Path independence 7.3 Gavity, sping Given U W, show that gavitational potential enegy is given by U pyq mgy. Given U W, show that a sping s potential enegy is given by 7.4 Implied foce U pxq 2 kx2. Given U W, show that potential enegy implies a foce accoding to 7.5 Homewok Execises du pxq F pxq dx. View The Mechanical Univese and Beyond, 3. Consevation of Enegy. Read you text, chapte 7: Potential Enegy and Enegy Consevation (sections - 3). 8 Consevation of Enegy 8. Mechanical enegy E mec K U Given E mec K U, W K, and U W, show that mechanical enegy is conseved: E mec 0. 8.2 Themal enegy of sliding E th f k d 8.3 Total enegy E E mec E th E int 8.4 Homewok Execises View The Mechanical Univese and Beyond, 4. Potential Enegy. Read you text, chapte 7: Potential Enegy and Enegy Consevation (sections 4-5).

J. M. Veal, Pinciples of Physics I 6 9 Linea Momentum 9. Basics p m v F d p dt 9.2 Cente of mass com com V M ņ i m i i» dv 9.3 Solid bodies 9.4 Newton s 2 nd law F net M a com 9.5 Intenal enegy 9.6 Homewok Execises Read you text, chapte 8: Momentum, Impulse, and Collisions (Sections & 5). 0 Consevation of Linea Momentum 0. Basics P 0 0.2 Vaiable mass Conside a vaiable-mass system such as an acceleating ocket. With no net extenal foce, it s tue that P 0. Let M and a be the mass and acceleation of the ocket, espectively, let v exh be the speed of the exhaust elative to the ocket, and let 9M be the fuel consumption ate. a) Show that the thust of the ocket is descibed by Ma 9 Mv exh. b) As the ocket consumes some amount of fuel, m M i M f, its speed inceases. Show that this incease in speed is given by 0.3 Homewok Execises v v exh ln p m{m f q. View The Mechanical Univese and Beyond, 5. Consevation of Momentum. Read you text, chapte 8: Momentum, Impulse, and Collisions (Sections 2, 3, & 6). Collisions. Bouncing a ball.2 Impulse J» tf t i p J F ptqdt.3 Inelastic.4 Elastic In an elastic collision, thee is no themal enegy: E th 0. Conside such a collision in one dimension with two masses m and m 2 taveling at initial speeds v i and v 2i. Show that the speeds afte the collision ae given by and v m m 2 f v i v 2m 2f v i 2m 2 v 2i, m 2 m v 2i.

J. M. Veal, Pinciples of Physics I 7.5 Cente of mass P v com.6 Two dimensions.7 Homewok Execises View The Mechanical Univese and Beyond, 0. Fundamental Foces. Read you text, chapte 8: Momentum, Impulse, and Collisions (Section 4)..8 Exam 2 2 Rotation 2. Basics θ s ω v α a t a v2 ω 2πf Exam 2 coves mateial between Exam and hee. 2.2 Constant angula acceleation ω ω 0 θ θ 0 ω 2 ω 2 0 θ θ 0 αt ω 0 t 2 αt2 2αpθ θ 0q 2 pω 0 ωqt θ θ 0 ωt 2 αt2 2.3 Kinetic enegy Given K mv 2 {2 and the definition of moment of inetia: show that 2.4 Moment of intetia» I 2 ρdv I ņ i m i 2 i, K 2 Iω2. annula cylinde paxisq I 2 mp2 2 2 q solid cylinde pdiameteq I 4 m2 2 ml2 solid sphee pdiameteq hollow sphee pdiameteq hoop pdiameteq I 2 m2 I 2 5 m2 I 2 3 m2 slab pcente, pependiculaq I 2 mpa2 b 2 q 2.5 Paallel axis theoem Given the definition of moment of inetia:» I 2 dm, deive the paallel-axis theoem: 2.6 Fomulae 2.7 Homewok Execises I I com mh 2. View The Mechanical Univese and Beyond, 9. Moving in Cicles. Read you text, chapte 9: Rotation of Rigid Bodies.

J. M. Veal, Pinciples of Physics I 8 3 Toque 3. Basics τ F sin φ 3.2 Newton s angula 2 nd law τ Iα 3.3 Wok W» θf θ i τdθ 3.4 Vecto τ F 3.5 Homewok Execises Read you text, chapte 0: Dynamics of Rotational Motion (Sections, 2, & 4). 4 Rolling 4. Basics 4.2 Kinetic enegy Show that the kinetic enegy of a olling object is given by 4.3 Ramp K 2 I comω 2 2 mv2 com. Show that an object of adius, mass m, and moment of inetia I com olling down a amp of inclination θ has an acceleation of magnitude a com g sin θ I com {m 2. 4.4 Homewok Execises Read you text, chapte 0: Dynamics of Rotational Motion (Section 3). 5 Angula Momentum 5. Basics l p L Iω 5.2 Newton s angula 2 nd law Given the definitions of momentum, angula momentum, and toque, show that Newton s second law of angula motion is given by 5.3 Homewok Execises τ d l dt. View The Mechanical Univese and Beyond, 9. Angula Momentum. Read you text, chapte 0: Dynamics of Rotational Motion (Section 5). 6 Consevation of Angula Momentum 6. Basics L 0 6.2 Pecession 6.3 Coiolis effect 6.4 Consevation of linea momentum 6.5 Homewok Execises View The Mechanical Univese and Beyond, 20. Toques and Gyoscopes.

J. M. Veal, Pinciples of Physics I 9 Read you text, chapte 0: Dynamics of Rotational Motion (Sections 6 & 7). 7 Similaities 7. Tanslation vs. otation 8 Static Equilibium 8. Basics F net 0 τ net 0 8.2 Homewok Execises Take a cusoy glance at you text chapte : Equilibium and Elasticity. 9.4 Enegy A fictionless mass is attached to a sping. Given that the wok done by a sping is W s kpx 2 i x2 f q{2, use W U to show that the mechanical enegy of the system is given by 9.5 Thee pendulums c κ ω I E 2 kx2 m. Given τ F, show that a physical pendulum of length l and otational inetia I undegoing small oscillations has an angula fequency given by c mgl ω I. ω a g{l 9 Oscillations 9. Simple hamonic motion xptq x m cos pωt φq Given that the position of an object undegoing simple hamonic motion is xptq x m cos pωt φq, show that the acceleation is given by 9.6 Damping c k xptq x m e bt{2m cos t 9.7 Resonance m 9.8 Homewok Execises b2 4m 2 φ 9.2 Diff. eq. 0 9.3 Hooke s law aptq ω 2 xptq. View The Mechanical Univese and Beyond, 6. Hamonic Motion. Read you text, chapte 4: Peiodic Motion. Given that Hooke s law is F kd and simple hamonic motion is descibed by xptq x m cos pωt φq, show that the angula fequency of oscillation is given by c k ω m. 20 Gavitation 20. Newton s law F G m m 2 2

J. M. Veal, Pinciples of Physics I 0 20.2 Shell theoems 20.0 Final Exam a g GM` R 2` 20.3 Potential enegy ³ f Given W i F pq d and W U, show that the gavitational potential enegy fo an object of mass m above sea level at a distance fom the Eath s cente (Eath s mass is M) is given by v esc c 2GM R 20.4 Keple s laws 4π T 2 2 a 3 GM 20.5 Obital enegy U GMm. Given F ma and U GMm show that the enegy of an object of mass m in an obit of semi-majo axis a about some mass M is given by 20.6 Thee masses 20.7 Einstein s theoy 20.8 Homewok Execises E GMm 2a. View The Mechanical Univese and Beyond, 8. The Apple and the Moon, and 2. Keple s Thee Laws. Read you text, chapte 3: Gavitation. 20.9 Exam 3 A All Fomulae The final exam is cumulative up to this point. Exam 3 coves mateial between Exam 2 and hee.

J. M. Veal, Pinciples of Physics I Linea Motion x x 0 v 2 v 2 0 x x 0 x x 0 v v 0 v 0 t at 2 at2 2apx x 0q 2 pv 0 vqt vt 2 at2 Vectos a b a x b x a y b y a z b z a b pa y b z a z b y qî pa x b z a z b x qĵ Thee-Dimensional Motion y x tan θ 0 2 gx2 pv 0 cos θ 0 q 2 R v2 0 g sin 2θ 0 a v2 2 pxî a v2 v pa v pb yĵq v BA pa x b y a y b x qˆk Thee Paticula Foces f s µ s N f k µ k N D 2 CρAv2 v t d 2F g CρA F c mv2 Wok W F d K 2 mv2 W W K» f i F k d P dw dt Enegy F d U W U pyq mgy Consevation of Enegy E mec K E th f k d U E E mec E th E int Linea Momentum com p m v F d p dt M com V ņ i m i i» dv F net M a com Consevation of Linea Momentum P 0 dm v exh Ma dt v v exh ln M 0 M J Collisions» tf t i p J F ptqdt Newton s Laws U pxq 2 kx2 v m m 2 f v i m 2m 2 v 2i m 2 F net m a du pxq F pxq dx v 2m 2f v i P v com m 2 m v 2i

J. M. Veal, Pinciples of Physics I 2 Rotation Toque Oscillations θ s ω v α a t a v2 ω 2πf ω ω 0 αt θ θ 0 ω 0 t 2 αt2 ω 2 ω0 2 2αpθ θ 0q θ θ 0 2 pω 0 ωqt θ θ 0 ωt 2 αt2 τ F sin φ W τ Iα» θf θ i τ F Rolling τdθ K 2 I comω 2 2 mv2 com a com,x g sin θ I com {m 2 Angula Momentum xptq x m cos pωt aptq ω 2 xptq ω c k m E 2 kx2 m ω c κ I ω a mgl{i a ω g{l c k xptq x m e bt{2m cos t m φq b2 4m 2 φ K 2 Iω2» 2 ρdv I l p L Iω Gavitation annula cylinde paxisq I 2 mp2 2 2 q solid cylinde pdiameteq I 4 m2 2 ml2 solid sphee pdiameteq hollow sphee pdiameteq I 2 5 m2 I 2 3 m2 τ d l dt Consevation of Angula Momentum L 0 F G m m 2 2 a g GM` R 2` U GMm c 2GM hoop pdiameteq I 2 m2 slab pcente, pependiculaq I 2 mpa2 b 2 q I I com mh 2 Static Equilibium F net 0 τ net 0 v esc T 2 R 4π 2 a 3 GM E GMm 2a