Instantaneous velocity field of a round jet

Similar documents
A Kolmogoroff-type Scaling for the Fine Structure of Drainage Basins

Detailed Validation Assessment of Turbine Stage Disc Cavity Rotating Flows. Shezan Kanjiyani

VEKTORANALYS FLUX INTEGRAL LINE INTEGRAL. and. Kursvecka 2. Kapitel 4 5. Sidor 29 50

PHY126 Summer Session I, 2008

COMPLEMENTARY ENERGY METHOD FOR CURVED COMPOSITE BEAMS

CFD Investigations of Spatial Arc Kinetic Influence on Fuel Burning- Out in the Tornado Combustor

Chapter 8. Linear Momentum, Impulse, and Collisions

Publication 2006/01. Transport Equations in Incompressible. Lars Davidson

Rotary motion

Review of Vector Algebra and Vector Calculus Operations

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

Set of square-integrable function 2 L : function space F

Chapter Fifiteen. Surfaces Revisited

Complex atoms and the Periodic System of the elements

3.1 Electrostatic Potential Energy and Potential Difference

Friction and Ocean Turbulence Part I

Chapter IV Vector and Tensor Analysis IV.2 Vector and Tensor Analysis September 29,

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

Angular Momentum About Spin Axis

4.4 Continuum Thermomechanics

3. A Review of Some Existing AW (BT, CT) Algorithms

Dynamics of Rigid Bodies

Energy in Closed Systems

Introduction to Turbulence Modelling

Stellar Astrophysics. dt dr. GM r. The current model for treating convection in stellar interiors is called mixing length theory:

Multistage Median Ranked Set Sampling for Estimating the Population Median

Chapter 23: Electric Potential

Correlation, Spectrum, and Scales. The longitudinal correlation coefficient is defines as. = u

Physics 207 Lecture 16

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

1. Starting with the local version of the first law of thermodynamics q. derive the statement of the first law of thermodynamics for a control volume

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4

Stellar Structure and Evolution

24-2: Electric Potential Energy. 24-1: What is physics

Mechanics Physics 151

Rigid Bodies: Equivalent Systems of Forces

A Brief Guide to Recognizing and Coping With Failures of the Classical Regression Assumptions

Turbulence and hot-wire measurements Mek 4600

Consequences of Long Term Transients in Large Area High Density Plasma Processing: A 3-Dimensional Computational Investigation*

CHAPTER 4 EVALUATION OF FORCE-CONSTANT MATRIX

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. "Flux": = da i. "Force": = -Â g a ik k = X i. Â J i X i (7.

Event Shape Update. T. Doyle S. Hanlon I. Skillicorn. A. Everett A. Savin. Event Shapes, A. Everett, U. Wisconsin ZEUS Meeting, October 15,

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41.

3.3 Properties of Vortex Structures

Chapter IV Vector and Tensor Analysis IV.2 Vector and Tensor Analysis September 23,

Using DP for hierarchical discretization of continuous attributes. Amit Goyal (31 st March 2008)

PHYS 2421 Fields and Waves

1.050 Engineering Mechanics I. Summary of variables/concepts. Lecture 27-37

Applied Statistical Mechanics Lecture Note - 13 Molecular Dynamics Simulation

Physics 2A Chapter 11 - Universal Gravitation Fall 2017

An Analytical Approach to Turbulent Flow Through Smooth Pipes

19 The Born-Oppenheimer Approximation

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Isotope Effect in Nuclear Magnetic Resonance Spectra of Germanium Single Crystals.

TEST-03 TOPIC: MAGNETISM AND MAGNETIC EFFECT OF CURRENT Q.1 Find the magnetic field intensity due to a thin wire carrying current I in the Fig.

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles

Do not turn over until you are told to do so by the Invigilator.

Rogerio Fernandes Brito Member, ABCM

One-dimensional kinematics

Unit_III Complex Numbers: Some Basic Results: 1. If z = x +iy is a complex number, then the complex number z = x iy is

Review. Physics 231 fall 2007

MHD Oscillatory Flow in a Porous Plate

PHYS Week 5. Reading Journals today from tables. WebAssign due Wed nite

chemical model has a profound impact on the flame size, shape, and ignition location. However, without quantitative experimental data, it is

Chapter 3 Waves in an Elastic Whole Space. Equation of Motion of a Solid

1 Similarity Analysis

Is there a magnification paradox in gravitational lensing?

Supplementary material for the paper Platonic Scattering Cancellation for Bending Waves on a Thin Plate. Abstract

Section 11. Timescales Radiation transport in stars

9/12/2013. Microelectronics Circuit Analysis and Design. Modes of Operation. Cross Section of Integrated Circuit npn Transistor

Capítulo. Three Dimensions

Slide 1. Quantum Mechanics: the Practice

CSU ATS601 Fall Other reading: Vallis 2.1, 2.2; Marshall and Plumb Ch. 6; Holton Ch. 2; Schubert Ch r or v i = v r + r (3.

Heat Transfer in Hydromagnetic Fluid Flow: Study of Temperature Dependence of Fluid Viscosity

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems

Physics 1: Mechanics

Physics 111 Lecture 11

Today in Astronomy 142: the Milky Way s disk

Physics 1501 Lecture 19

Chapter 10 and elements of 11, 12 Rotation of Rigid Bodies

10/15/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101

Rotating Disk Electrode -a hydrodynamic method

Tensor. Syllabus: x x

4.4 Buoyant plume from a steady heat source

Progress of HMGC Nonlinear Simulation

Physics Exam II Chapters 25-29

PROBLEM SET 5. SOLUTIONS March 16, 2004

Part V: Velocity and Acceleration Analysis of Mechanisms

Correspondence Analysis & Related Methods

Asymptotic Solutions of the Kinetic Boltzmann Equation and Multicomponent Non-Equilibrium Gas Dynamics

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it

MULTIPOLE FIELDS. Multipoles, 2 l poles. Monopoles, dipoles, quadrupoles, octupoles... Electric Dipole R 1 R 2. P(r,θ,φ) e r

( ) α is determined to be a solution of the one-dimensional minimization problem: = 2. min = 2

PHY121 Formula Sheet

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos

Cosmology & White Holes

Chapter 3 Vector Integral Calculus

EGN 3353C Fluid Mechanics

Hybrid lattice Boltzmann finite-difference simulation of axisymmetric swirling and rotating flows

Transcription:

Fee shea flows

Instantaneos velocty feld of a ond et 3

Aveage velocty feld of a ond et 4

Vtal ogn nozzle coe Developng egon elf smla egon 5

elf smlaty caled vaables: ~ Q ξ ( ξ, ) y δ ( ) Q Q (, y) ( ) ~ If Q( ξ, ) Qˆ ( ξ ) then Q s selfmla 6

Jet cente lne velocty U ( ) ( ),, U / 7 Jet half wdth ( ) (,,)

(, ) U ( f ( ξ ) ξ / ( ) ) 8

U ( ) Cente lne velocty: elf smlaty of a ond et U B ( ) d J / d ( ) peadng ate: / d const. Jet Reynolds nmbe Re ( ) ( ) U / ν nce U and / Re const. 9

Aveage cente lne aal velocty and ms of aal velocty flctatons caled wth the cente lne velocty sqaed the flctatons wll go towads a constant vale of.5

Aveage cente lne aal velocty and ms of aal velocty flctatons caled wth the cente lne velocty sqaed the flctatons wll go towads a constant vale of.5

Velocty flctatons

Velocty flctatons Tblent netc enegy 3

Velocty flctatons Components of the Reynolds stess tenso vvv ww vv vv vv www ww vv ww ww vvv www vvv 4

The Lmley tangle b δ 3 Thee pncpal nvaants: I b II b III b b [ ( ) ] b b 6 3 3 ( b ) b b b 6η 6ξ 3 II 3III b b b b 3 Otsde the tangle: non-ealzable tblent stesses 5

Velocty flctatons The Lmley tangle 6

Momentm eqatons fo a et y v y v y p y v υ υ ρ y v v v y v v y p y v v v υ υ ρ 7

Lateal momentm eqaton p ρ y v v y p v v C ρ Bonday condton: lm p(, y) p ( ) y lm v v y p p v v ρ ρ p ρ dp ρ d v v 8

( ) y v v v y d dp y v υ ρ Aal momentm eqaton y v y y v υ Eqatons fo a ond et: v y v v υ 9

Flow ates of mass momentm and netc enegy of a ond et Mass flow ate Momentm flow ate Knetc enegy flow ate m M E ( ) π ρd ( ) π ρ d ( ) π 3 ρ d Intodce self smlaty (, ) U ( f ( ξ ) ξ / ( ) )

Flow ates of mass momentm and netc enegy of a ond et Momentm flow ate M ( ) π ρ d πρ( ) / U ξf ( ξ ) dξ Mass flow ate m ( ) π ρd πρ ( ) / / U ξf ( ξ ) dξ Knetc enegy flow ate E 3 πρ 3 dξ ( ) 3 π ρ d ( ) / U ξf ( ξ ) /

Flow ates of mass momentm and netc enegy of a ond et Momentm flow ate M ( ) ( U ) M ( ) const. / m Mass flow ate ( ) ( ) ( ) U / / m Knetc enegy 3 / / flow ate E ( ) ( U ) E ( )

Knetc enegy of a ond et, t Knetc enegy: ( ) E Decomposton of the mean ~ E, t netc enegy ( ) E Knetc eney of the mean flow (, t ) Tblent netc enegy (, t ) 3

Knetc enegy of a ond et Eqaton fo netc enegy p E t E υ υ ρ Rate of stan Aveagng ths eqaton one gets: 4

Knetc enegy of a ond et Aveagng ths eqaton one gets: ε ε υ ρ p E E t E ~ ~ ε υ ε υs s Mean ate of stan s Flctatng ate of stan Dsspaton by mean flow Dsspaton by flctatons 5

Knetc enegy of a ond et Mean flow netc enegy eqaton ε υ ρ P p E t E P Tblent netc enegy eqaton ε υ ρ P s p t podcton dsspaton Tanspot Convecton by mean flow 6

Knetc enegy of a ond et Psedo-dsspaton and the tblent netc enegy eqaton. ε ~ υ ε υs s dsspaton Psedo-dsspaton ~ ν ε ε Tblent netc enegy eqaton sng psedo dsspaton ε υ ρ ~ P p t podcton dsspaton Vscos dffson Tblent tanspot Usally small 7

Knetc enegy of a ond et Podcton of tblent netc enegy: Ω otaton ate of stan ate of P P Reynolds stess tenso s symmetc: Ths leads to 8

Knetc enegy of a ond et De to the smmaton le dmmy ndces may be enamed: P Hence: 9

Knetc enegy of a ond et Now splt the Reynolds stess tenso nto the ansotopc and sotopc pats: P δ 3 a ansotopy tenso δ 3 Consde the sotopc pat: Use that a contacton can be wtten as: δ 3 δ Recognsng the ncompessble mass consevaton and sng the defnton of tblent netc enegy: 3 l l δ 3 l l 3 l l Podcton of tblent netc enegy depends only on the ansotopy and the ate of stan P a

Knetc enegy of a ond et Modellng the podcton of The eddy vscosty hypothess s cental fo elatng the Reynolds stess tenso to nown qanttes n most RAN models: δ υ T 3 a P a P 3 a δ ν T a Modelled podcton tem P mod ν ν ( T T 3 3 3 3 33 3 3 33 3 3 ) 3

Knetc enegy of a ond et Modelled podcton tem 3 P a Modellng the podcton of ) ( mod y w z v w z v y z w y v P T ν T ν Real podcton tem y w z v a w z a v y a z w a y v a a P T 3 3 33 ν What wll ths nd of modellng lead to?

Modellng a tblent ond et Fo a tblent ond et the Reynolds stesses can be appomated by: ρ v ρυ T Eddy vscosty υt l l ρ v ρl ( ) υ T η (, ) ( ) U ( ) υ ( η) Obseve that ˆ υ T η and l / / ae faly constant ove most of the et coss secton / ˆT Pandtl mng length model Note that ths type of modellng pedcts zeo Reynolds stesses on the cente lne! 33

The modelled eqatons fo a ond et: v v T υ Also note the tblent Reynolds nmbe: ( ) ( ) 35 ˆ Re / T T T U ν ν 34

Nomalsed eddy vscosty Mng length 35

36

Othe self-smla flows Rond et Instantaneos Aveage Mass, momentm, enegy elf-smlaty Plane et Wae Unfom shea

The ond et agan U U Re elf smlaty of a ond et: ( ) B ( ) d J / d d U ( ) / ( ) ( ) ν / const. const Flow ate of mass, momentm, enegy: m U m M E ( ) ( ) ( ) / / ( ) ( U ) M ( ) const. / / U 3 E / ( ) ( ) ( ) Y X

Plane et o slot et Why not ond? Applcatons W >> H Jet centelne velocty ( ) ( ) U,, H W U U / Jet half-wdth peadng ate U ( ) (,,) y / dy d ( ) /. nozzle Vtal ogn coe Jet Re Re ( ) y ( ) U / ν Y / Y Developng egon elf smla egon X

Mass, momentm, enegy flow ate Mass: m Momentm: ( ) dy ρu y f ( ξ ) dξ m ( ) ρ / Enegy: ( ) ρ dy ρu y f ( ξ ) dξ M ( ) const. M / E 3 / 3 3 ( ) ρ dy ρu y f ( ξ ) dξ E ( )

Rond vs. Plane et Rond Plane Centelne velocty Jet half wdth peadng ate Jet Re Tblent Re Mass flow ate Momentm flow ate Enegy flow ate / U ( ) ( ) ( / ) U ( ).94. Re ( ) const y / Re ( ) ReT ( ) 35 ReT ( ) 3 m ( ) / m ( ) M ( ) const. E ( ) / M ( ) const. E ( ) / lowe decease of centelne velocty fo plane et!

Plane mng laye (these mng layes ae not plane)

Plane mng laye U H Hgh- (U H ) and Low-speed (U L ) steams U H U L U C δ Y.9 Y. E.g. edge of a et, atmosphee, etc. velocty scales Chaactestc convecton velocty, U C Chaactestc velocty dffeence, U Wdth of the mng laye δ ( ) y.9( ) y. ( ) U L U

Plane mng laye U H U L U H U C Y.9 It s self-smla (see. Fg. 5.) Usally Not symmetc abot y peadng ate constant, bt epement specfc U C dδ.6... Y.5 U d U const Y. δ U δ Re ( ) ν U L U E ( ) Compae to the ond/plane et! Podcton > dsspaton

Waes

Plane wae U C velocty scales Chaactestc convectve velocty, U C.5U Chaactestc velocty dffeence, U U /U C const U U Y / Half-wdth, y / Not eactly self-smla, asymptotcally selfsmla fo U /U C (fa wae) elf-smla velocty defect: f ( ξ ) ( U U ( )) / U ( ) C

Plane wae U C Momentm defct flow-ate U.5U U Y / ρu C U M ( ) ( ) y / ( ) M ρ ( U C U U ) dy C ( ) const. f ( ξ ) f ( ξ ) dξ U U dy/ const. d C U y ( ) / / /

Plane vs. asymmetc wae elf.sm. Plane Only fo U /U C Asymm. Only fo U /U C Const. Const. U s /, y / Re / / 3 U ( ) U / /3 y/ / /3 Re ( ) Const. ( ) Faste ecovey fo asymmetc Relamnazaton peadng paamete and tblence level depend on geomety

p P t ν ρ ε const. y Homogeneos tblence: tatstcs of velocty and pesse flctatons ae ndependent ove a shft n space The tblent netc enegy eqaton wll then be edced to: ε P t Homogeneos shea flow

Homogeneos shea flow Tblent tme scale: P ε t τ ε P. ε τ t Obsevatons show: 7 P ε τ const. ε Then: t P τ ε ( t) () e Knetc eneg gows eponentally n tme.

Gd tblence (sotopc tblence) P Why? Isotopc tblence: tatstcs of velocty flctatons ae ndependent nde a coodnate system otaton Dffeent gd desgns?

Gd tblence (sotopc tblence) The tblent netc enegy eqaton ε t n t t t ) ( ( ) n t t t n t n t t t ) ε ( ε n M A U

Gd tblence (sotopc tblence)