Radical Expressions. Say Thanks to the Authors Click (No sign in required)

Similar documents
2.2 Radical Expressions I

Solving Absolute Value Equations and Inequalities

Inverse Functions. Say Thanks to the Authors Click (No sign in required)

The Pythagorean Theorem and Its Converse

Area of Circles. Say Thanks to the Authors Click (No sign in required)

Determining the Best Method to Solve a Linear System

Polynomials. Eve Rawley, (EveR) Anne Gloag, (AnneG) Andrew Gloag, (AndrewG)

Intermediate Algebra Textbook for Skyline College

Using Similar Right Triangles

Applying the Pythagorean Theorem

Complex Numbers CK-12. Say Thanks to the Authors Click (No sign in required)

Intermediate Algebra

Significant Figures. CK12 Editor. Say Thanks to the Authors Click (No sign in required)

Suspensions. Ck12 Science. Say Thanks to the Authors Click (No sign in required)

MAHS-DV Algebra 1-2 Q4

Vectors (Trigonometry Explanation)

Midpoints and Bisectors

Circumference and Arc Length

Inside the Atom. Say Thanks to the Authors Click (No sign in required)

Inside the Atom. Say Thanks to the Authors Click (No sign in required)

The Law of Cosines. Say Thanks to the Authors Click (No sign in required)

Two-Column Proofs. Bill Zahner Lori Jordan. Say Thanks to the Authors Click (No sign in required)

Inverse Functions and Trigonometric Equations - Solution Key

Trigonometric Ratios. Lori Jordan Kate Dirga. Say Thanks to the Authors Click (No sign in required)

Gravity. James H Dann, Ph.D. Say Thanks to the Authors Click (No sign in required)

Properties of Arcs. Say Thanks to the Authors Click (No sign in required)

Inequalities. CK12 Editor. Say Thanks to the Authors Click (No sign in required)

Correlation Using Relative Ages

Quadratic Equations and Quadratic Functions

Acids and Bases. Say Thanks to the Authors Click (No sign in required)

History of the Pythagorean Theorem

History of the Atom. Say Thanks to the Authors Click (No sign in required)

The Shape, Center and Spread of a Normal Distribution - Basic

Galaxies. Say Thanks to the Authors Click (No sign in required)

Electron Arrangement

Simple Harmonic Motion

Inclined Planes. Say Thanks to the Authors Click (No sign in required)

Polar Equations and Complex Numbers

Types of Chemical Reactions

Solids, Liquids, Gases, and Plasmas

CK-12 FOUNDATION. Separating Mixtures. Say Thanks to the Authors Click (No sign in required)

Electrochemistry Worksheets

Ozone Depletion. Dana Desonie, Ph.D. Say Thanks to the Authors Click (No sign in required)

CK-12 Math Analysis. Mara Landers Nick Fiori Art Fortgang Raja Almukahhal Melissa Vigil

Ions and Ion Formation

Electric Circuits: Capacitors

Quadratic Equations and Quadratic Functions

Electricity Worksheets

Cell Division - Teacher s Guide (Human Biology)

LESSON 9.1 ROOTS AND RADICALS

Polynomials and Factoring

Electron Configuration and the Periodic Table C-SE-TE

Contents. To the Teacher... v

2.4 Radical Equations

Introduction to Prokaryotes

In a previous lesson, we solved certain quadratic equations by taking the square root of both sides of the equation.

Introduction to the Solar System

Systems of Linear Equations and Inequalities

Predicting Formulas of Ionic Compounds

Section 3.7: Solving Radical Equations

12.2 Simplifying Radical Expressions

Never leave a NEGATIVE EXPONENT or a ZERO EXPONENT in an answer in simplest form!!!!!

Summer Work for students entering PreCalculus

7.5 Rationalizing Denominators and Numerators of Radical Expressions

STANDARDS OF LEARNING CONTENT REVIEW NOTES. ALGEBRA I Part II. 2 nd Nine Weeks,

Summer Work for students entering PreCalculus

Use properties of exponents. Use the properties of rational exponents to simplify the expression. 12 d.

EXPONENT REVIEW!!! Concept Byte (Review): Properties of Exponents. Property of Exponents: Product of Powers. x m x n = x m + n

4.4 Rational Expressions

Exponential and Logarithmic Functions

Equations. Rational Equations. Example. 2 x. a b c 2a. Examine each denominator to find values that would cause the denominator to equal zero

Basic Physics SE-Motion

Evidence of Evolution

12.2 Simplifying Radical Expressions

Part 2 - Beginning Algebra Summary

Algebra I. Exponents and Polynomials. Name

Intermediate Algebra

Note-Taking Guides. How to use these documents for success

Math 2 Variable Manipulation Part 2 Powers & Roots PROPERTIES OF EXPONENTS:

Unit 5 AB Quadratic Expressions and Equations 1/9/2017 2/8/2017

SOLUTIONS FOR PROBLEMS 1-30

Chapter 3: Factors, Roots, and Powers

Polar System. Bradley Hughes Larry Ottman Lori Jordan Mara Landers Andrea Hayes Brenda Meery Art Fortgang

Chapter 9, Quadratics from Beginning and Intermediate Algebra by Tyler Wallace is available under a Creative Commons Attribution 3.

MA094 Part 2 - Beginning Algebra Summary

b) Write the contrapositive of this given statement: If I finish ALEKS, then I get points.

Working with Square Roots. Return to Table of Contents

No Solution Equations Let s look at the following equation: 2 +3=2 +7

CALC 3 CONCEPT PACKET Complete

Math 096--Quadratic Formula page 1

Chapter 2 Polynomial and Rational Functions

Math Lecture 23 Notes

Section September 6, If n = 3, 4, 5,..., the polynomial is called a cubic, quartic, quintic, etc.

Algebra & Trig Review

10.1. Square Roots and Square- Root Functions 2/20/2018. Exponents and Radicals. Radical Expressions and Functions

Math 1320, Section 10 Quiz IV Solutions 20 Points

Using Properties of Exponents

Secondary Math 2H Unit 3 Notes: Factoring and Solving Quadratics

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chapter 4 Exponents and Radicals 4.1 Square Roots and Cube Roots 1. a) 81 b) 225 c) 625 d) 4 9

Transcription:

Radical Expressions Say Thanks to the Authors Click http://www.ck1.org/saythanks (No sign in required)

To access a customizable version of this book, as well as other interactive content, visit www.ck1.org CK-1 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-1 market both in the U.S. and worldwide. Using an open-source, collaborative, and web-based compilation model, CK-1 pioneers and promotes the creation and distribution of high-quality, adaptive online textbooks that can be mixed, modified and printed (i.e., the FlexBook textbooks). Copyright 01 CK-1 Foundation, www.ck1.org The names CK-1 and CK1 and associated logos and the terms FlexBook and FlexBook Platform (collectively CK-1 Marks ) are trademarks and service marks of CK-1 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck1.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-1 Content (including CK-1 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial.0 Unported (CC BY-NC.0) License (http://creativecommons.org/ licenses/by-nc/.0/), as amended and updated by Creative Commons from time to time (the CC License ), which is incorporated herein by this reference. Complete terms can be found at http://www.ck1.org/about/ terms-of-use. Printed: September 1, 01

www.ck1.org Chapter 1. Radical Expressions CHAPTER 1 Radical Expressions Learning Objectives Use the product and quotient properties of radicals. Rationalize the denominator. Add and subtract radical expressions. Multiply radical expressions. Solve real-world problems using square root functions. Introduction A radical reverses the operation of raising a number to a power. For example, the square of 4 is 4 = 4 4 = 16, and so the square root of 16 is 4. The symbol for a square root is. This symbol is also called the radical sign. In addition to square roots, we can also take cube roots, fourth roots, and so on. For example, since 64 is the cube of 4, 4 is the cube root of 64. 64 = 4 since 4 = 4 4 4 = 64 We put an index number in the top left corner of the radical sign to show which root of the number we are seeking. Square roots have an index of, but we usually don t bother to write that out. 6 = 6 = 6 The cube root of a number gives a number which when raised to the power three gives the number under the radical sign. The fourth root of number gives a number which when raised to the power four gives the number under the radical sign: 4 81 = since 4 = = 81 And so on for any power we can name. Even and Odd Roots Radical expressions that have even indices are called even roots and radical expressions that have odd indices are called odd roots. There is a very important difference between even and odd roots, because they give drastically different results when the number inside the radical sign is negative. 1

www.ck1.org Any real number raised to an even power results in a positive answer. Therefore, when the index of a radical is even, the number inside the radical sign must be non-negative in order to get a real answer. On the other hand, a positive number raised to an odd power is positive and a negative number raised to an odd power is negative. Thus, a negative number inside the radical sign is not a problem. It just results in a negative answer. Example 1 Evaluate each radical expression. a) 11 b) 1 c) 4 6 d) a) 11 = 11 b) 1 = c) 6 is not a real number d) = Use the Product and Quotient Properties of Radicals Radicals can be re-written as rational powers. The radical: Example m a n is defined as a n m. Write each expression as an exponent with a rational value for the exponent. a) b) 4 a c) 4xy d) 6 x a) = 1 b) 4 a = a 1 4 c) 4xy = (4xy) 1 d) 6 x = x 6 As a result of this property, for any non-negative number a we know that n a n = a n n = a. Since roots of numbers can be treated as powers, we can use exponent rules to simplify and evaluate radical expressions. Let s review the product and quotient rule of exponents. Raising a product to a power: Raising a quotient to a power: (x y) n = x n y n ( ) x n = xn y y n

www.ck1.org Chapter 1. Radical Expressions In radical notation, these properties are written as Raising a product to a power: Raising a quotient to a power: m x y = m x m y m x m x y = m y A very important application of these rules is reducing a radical expression to its simplest form. This means that we apply the root on all the factors of the number that are perfect roots and leave all factors that are not perfect roots inside the radical sign. For example, in the expression 16, the number 16 is a perfect square because 16 = 4. This means that we can simplify it as follows: 16 = 4 = 4 Thus, the square root disappears completely. On the other hand, in the expression, the number is not a perfect square, so we can t just remove the square root. However, we notice that = 16, so we can write as the product of a perfect square and another number. Thus, = 16 If we apply the raising a product to a power rule we get: = 16 = 16 Since 16 = 4, we get: = 4 = 4 Example Write the following expressions in the simplest radical form. a) 8 b) 0 1 c) 7 The strategy is to write the number under the square root as the product of a perfect square and another number. The goal is to find the highest perfect square possible; if we don t find it right away, we just repeat the procedure until we can t simplify any longer. a) We can write 8 = 4, so With the Raising a product to a power rule, that becomes 8 = 4. 4. Evaluate 4 and we re left with.

www.ck1.org b) We can write 0 =, so: 0 = Use Raising a product to a power rule: = = c) Use Raising a quotient to a power rule to separate the fraction: 1 7 = Re-write each radical as a product of a perfect square and another number: = The same method can be applied to reduce radicals of different indices to their simplest form. Example 4 Write the following expression in the simplest radical form. a) 40 b) 4 16 80 c) 1 1 7 = 6 6 In these cases we look for the highest possible perfect cube, fourth power, etc. as indicated by the index of the radical. a) Here we are looking for the product of the highest perfect cube and another number. We write: 40 = 8 = 8 = b) Here we are looking for the product of the highest perfect fourth power and another number. 4 4 16 16 Re-write as the quotient of two radicals: 80 = 4 80 4 81 Simplify each radical separately: = 4 = 16 Recombine the fraction under one radical sign: = 4 4 81 4 4 16 4 = 4 4 c) Here we are looking for the product of the highest perfect cube root and another number. Often it s not very easy to identify the perfect root in the expression under the radical sign. In this case, we can factor the number under the radical sign completely by using a factor tree: 4

www.ck1.org Chapter 1. Radical Expressions We see that 1 = =. Therefore 1 = = =. (You can find a useful tool for creating factor trees at http://www.softschools.com/math/factors/factor_tree/. Click on User Number to type in your own number to factor, or just click New Number for a random number if you want more practice factoring.) Now let s see some examples involving variables. Example Write the following expression in the simplest radical form. a) 1x y b) 4 10x 7 40y 9 Treat constants and each variable separately and write each expression as the products of a perfect power as indicated by the index of the radical and another number. a) Re-write as a product of radicals: Simplify each radical separately: Combine all terms outside and inside the radical sign: 1x y = 1 x y ( ) ( ) ( ) ( 4 x x y4 y = ) (x x ) (y y ) = xy xy b) 4 4 10x Re-write as a quotient of radicals: 7 10x 40y 9 = 7 4 40y 9 4 4 6 x Simplify each radical separately: = 4 x 4 81 4 y 4 y 4 y = 4 x 4 x 4 y y 4 y = x 4 x y 4 y Recombine fraction under one radical sign: = x 4 x y y Add and Subtract Radical Expressions When we add and subtract radical expressions, we can combine radical terms only when they have the same expression under the radical sign. This is a lot like combining like terms in variable expressions. For example, 4 + = 9 + + 10 = 7 + 9 It s important to reduce all radicals to their simplest form in order to make sure that we re combining all possible like terms in the expression. For example, the expression 8 0 looks like it can t be simplified any more because it has no like terms. However, when we write each radical in its simplest form we get 10, and we can combine those terms to get 8. or

www.ck1.org Example 6 Simplify the following expressions as much as possible. a) 4 + 1 b) 10 4 8 a) Simplify 1 to its simplest form: = 4 + 4 = 4 + 4 Combine like terms: = 8 b) Simplify 4 and 8 to their simplest form: = 10 6 4 7 4 = 0 6 7 There are no like terms. Example 7 Simplify the following expressions as much as possible. a) 4 18 0 b) x 4x 9x a) Re-write radicals in simplest terms: = 4 64 1 = 16 Combine like terms: = 11 b) Re-write radicals in simplest terms: Combine like terms: x x 1x x = x x 1x x = 9x x Multiply Radical Expressions When we multiply radical expressions, we use the raising a product to a power rule: m x y = m x m y. In this case we apply this rule in reverse. For example: 6 8 = 6 8 = 48 Or, in simplest radical form: 48 = 16 = 4. We ll also make use of the fact that: a a = a = a. When we multiply expressions that have numbers on both the outside and inside the radical sign, we treat the numbers outside the radical sign and the numbers inside the radical sign separately. For example, a b c d = ac bd. 6

www.ck1.org Chapter 1. Radical Expressions Example 8 Multiply the following expressions. a) ( ) + b) x ( y x ) ( c) + )( ) 6 d) ( x + 1 )( x ) In each case we use distribution to eliminate the parentheses. a) Distribute inside the parentheses: ( + ) = + Use the raising a product to a power rule: = + Simplify: = 6 + 10 b) Distribute x inside the parentheses: Multiply: = ( ) ( x y ) ( x x ) = 6 xy x Simplify: = 6 xy x c) Distribute: ( + )( ( 6) = ( ) 6) ( + ) ( ) 6 Simplify: = 4 6 + 0 d) Distribute: ( x 1 )( x ) = 10 x x + x Simplify: = 11 x x Rationalize the Denominator Often when we work with radicals, we end up with a radical expression in the denominator of a fraction. It s traditional to write our fractions in a form that doesn t have radicals in the denominator, so we use a process called rationalizing the denominator to eliminate them. Rationalizing is easiest when there s just a radical and nothing else in the denominator, as in the fraction. All we have to do then is multiply the numerator and denominator by a radical expression that makes the expression inside the radical into a perfect square, cube, or whatever power is appropriate. In the example above, we multiply by : = 7

www.ck1.org Cube roots and higher are a little trickier than square roots. For example, how would we rationalize 7? We can t just multiply by, because then the denominator would be. To make the denominator a whole number, we need to multiply the numerator and the denominator by : 7 = 7 = 7 Trickier still is when the expression in the denominator contains more than one term. For example, consider the expression. We can t just multiply by, because we d have to distribute that term and then the denominator + would be +. Instead, we multiply by (. This is a good choice because the product + )( ) is a product of a sum and a difference, which means it s a difference of squares. The radicals cancel each other out when we multiply ( out, and the denominator works out to + )( ) ( ) = = 4 = 1. When we multiply both the numerator and denominator by, we get: + = ( ) 4 = 4 1 = 4 Now consider the expression x 1 x y. In order to eliminate the radical expressions in the denominator we must multiply by x + y. ( )( ) x 1 x+ y x 1 x+ y We get: = ( )( ) = x y x+ xy x y x+ y x y x+ y x 4y Solve Real-World Problems Using Radical Expressions Radicals often arise in problems involving areas and volumes of geometrical figures. Example 9 A pool is twice as long as it is wide and is surrounded by a walkway of uniform width of 1 foot. The combined area of the pool and the walkway is 400 square feet. Find the dimensions of the pool and the area of the pool. Make a sketch: 8

www.ck1.org Chapter 1. Radical Expressions Let x = the width of the pool. Then: Area = length width Combined length of pool and walkway = x + Combined width of pool and walkway = x + Area = (x + )(x + ) Since the combined area of pool and walkway is 400 ft we can write the equation (x + )(x + ) = 400 Multiply in order to eliminate the parentheses: x + 4x + x + 4 = 400 Collect like terms: x + 6x + 4 = 400 Move all terms to one side of the equation: x + 6x 96 = 0 Divide all terms by : x + x 198 = 0 Use the quadratic formula: x = b ± b 4ac a x = ± 4(1)( 198) (1) x = ± 801 = x = 1.6 f eet ± 8. (The other answer is negative, so we can throw it out because only a positive number makes sense for the width of a swimming pool.) Check by plugging the result in the area formula: Area = ((1.6) + )(1.6 + ) = 7. 14.6 = 400 ft. The answer checks out. Example 10 The volume of a soda can is cm. The height of the can is four times the radius of the base. Find the radius of the base of the cylinder. Make a sketch: Let x = the radius of the cylinder base. Then the height of the cylinder is 4x. 9

www.ck1.org The volume of a cylinder is given by V = πr h; in this case, R is x and h is 4x, and we know the volume is. Solve the equation: = πx (4x) = 4πx x = 4π x = 4π Check by substituting the result back into the formula: =.046 cm So the volume is cm. The answer checks out. V = πr h = π(.046) (4.046) = cm Review Questions Evaluate each radical expression. 1... 4. 169 4 81 1 104 Write each expression as a rational exponent.. 14 4 6. zw 7. a 9 8. y Write the following expressions in simplest radical form. 9. 10. 11. 1. 1. 14. 1. 16. 4 00 96 40 67 00 6 64x 8 48a b 7 16x 1y 4 Simplify the following expressions as much as possible. 10

www.ck1.org Chapter 1. Radical Expressions 17. 8 6 18. 180 + 40 19. 6 7 + 4 + 48 0. 8x 4x 98x 1. 48a + 7a. 4x + x 6 Multiply the following expressions.. 4.. 6 ( 10 + 8 ) ( a b )( a + b ) ( x + )( x + ) Rationalize the denominator. 6. 7 7. 9 10 x 8. x 9. y 0. 1 1... 6+ 4 x + x y y 4. The volume of a spherical balloon is 90 cm. Find the radius of the balloon. (Volume of a sphere = 4 πr ).. A rectangular picture is 9 inches wide and 1 inches long. The picture has a frame of uniform width. If the combined area of picture and frame is 180 in, what is the width of the frame? 11