Baryons 2016 International Conference on the Structure of Baryons May 16-20, Tallahassee, Florida G. Fedotov, R. Gothe, V. Burkert, and V.

Similar documents
Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron

arxiv: v1 [hep-ex] 22 Jun 2009

Highlights on hadron physics at CLAS. K. Hicks (Ohio U.) Hadron 2011 Conference June 16, 2011

The Determination of Beam Asymmetry from Double Pion Photoproduction

A Measurement of the Induced polarization of electro-produced Λ(1116) with CLAS

Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton

Strangeonia. Of the 22 expected resonances, only 7 are well identified. Strangeonia. η-η' h1 (1386) (1020) f2' (1525) f1 (1426) (1680)

New Developments in Nucleon Resonance Structure. V.I. Mokeev, Jefferson Lab

Measuring Form Factors and Structure Functions With CLAS

Threshold photoproduction of J/y with the GlueX experiment. Lubomir Pentchev Jefferson Lab for the GlueX collaboration

Study of Excited Baryons with the Crystal-Barrel Detector at ELSA

Mukesh Saini. Florida State University, Tallahassee, FL. February 26, FSU Nuclear Physics Seminar. February 26

Search for New and Unusual Strangeonia States Using γp pφη with GlueX at Thomas Jefferson National Accelerator Facility

Measurement of Double-Polarization

Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider

Double and Single Target Asymmetries of Pion Electroproduction from JLab/CLAS EG4 Experiment

Beam Asymmetry measurement in Pion Photoproduction on the neutron using CLAS

New results on N* spectrum/structure with CLAS and preparation for the CLAS12 era

arxiv: v3 [nucl-ex] 15 Dec 2015

PoS(INPC2016)259. Latest Results from The Olympus Experiment. Axel Schmidt Massachusetts Institute of Technology

Hunting for Quarks. G n M Co-conspirators: Jerry Gilfoyle for the CLAS Collaboration University of Richmond

Overview of recent HERMES results

16) Differential cross sections and spin density matrix elements for the reaction p p, M. Williams

Measurement of the e + e - π 0 γ cross section at SND

Light-Meson Spectroscopy at Jefferson Lab

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons?

The Neutron Structure Function from BoNuS

Moskov Amaryan Old Dominion University On behalf of the CLAS Collaboration

The search for missing baryon resonances

PoS(KAON)049. Testing the µ e universality with K ± l ± ν decays

CLEO Results From Υ Decays

Probing Nuclear Color States with J/Ψ and φ

HERMES status and future running

Timelike Compton Scattering

One of the foundational cornerstones of the physics program in Hall B with CLAS is the N* program. πn, ωn, φn, ρn, ηn, η N, ππn KΛ, KΣ, K Y, KY

Production and Searches for Cascade Baryons with CLAS

Baryon Spectroscopy: Recent Results from the CBELSA/TAPS Experiment

π + Electroproduction at High t

Nuclear Transparency in A(e,e π/k)x Status and Prospects

A NEW RESONANCE IN K + Λ ELECTROPRODUCTION: THE D 13 (1895) AND ITS ELECTROMAGNETIC FORM FACTORS. 1 Introduction

Measurement of the Polarization Observables. Spectrometer. I s and I c for γp p π + π using the CLAS. Charles Hanretty.

E Update: Measurement of Two-Photon Exchange in Unpolarized Elastic Electron-Proton Scattering

PoS(KAON13)012. R K Measurement with NA62 at CERN SPS. Giuseppe Ruggiero. CERN

M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy. A Forward Photon Tagging Facility for CLAS12

Coherent Photoproduction of Proton-Antiproton Pairs on Deuterium

Investigation of K0 + photoproduction with the CBELSA/TAPS experiment

Report on NSTAR 2005 Workshop

Simulation for Proton Charge Radius (PRad) Experiment at Jefferson Lab1 Li Ye Mississippi State University For the PRad Collaboration The Proton Charg

hep-ex/ Jun 1995

DESY Summer Students Program 2008: Exclusive π + Production in Deep Inelastic Scattering

arxiv: v1 [hep-ex] 31 Dec 2014

Qweak Transverse Asymmetry Measurements

Hadron multiplicities at the HERMES experiment

Study of e + e annihilation to hadrons at low energies at BABAR

XVII International Conference on Hadron Spectroscopy and Structure - Hadron September, 2017 University of Salamanca, Salamanca, Spain

Analysis of diffractive dissociation of exclusive. in the high energetic hadron beam of the COMPASS-experiment

Challenges of the N* Program

The Beam-Helicity Asymmetry for γp pk + K and

Search for Pentaquarks at CLAS. in Photoproduction from Proton

Exciting Baryons. with MAMI and MAID. Lothar Tiator (Mainz)

Deuteron from CLAS/EG1B Data. Spin Structure Functions of the OUTLINE. Nevzat Guler (for the CLAS Collaboration) Old Dominion University

The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters

The D-wave to S-wave amplitude ratio for b 1 (1235) ωπ

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS

Partonic Structure of Light Nuclei

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak

USC Summer Academy on Non-Perturbative Physics

Hadronic Cross Section Measurements for New Aspects of Hadron Spectroscopy. K. Hicks (Ohio U.) and H. Sako (JAEA) J-PARC PAC July 14, 2012

PoS(Baldin ISHEPP XXII)042

The x(1280) Meson in CLAS g11. Ryan Dickson Carnegie Mellon University May 31st, 2010

Muon reconstruction performance in ATLAS at Run-2

Events with High P T Leptons and Missing P T and Anomalous Top at HERA

Neutron Structure Function from BoNuS

Probing Generalized Parton Distributions in Exclusive Processes with CLAS

Studies of the diffractive photoproduction of isolated photons at HERA

PoS(BORMIO2010)052. Measurement of the Λ(1405) in proton proton reactions with HADES

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives

Hadron Production Generators: Progress

LEPS Physics HOTTA, Tomoaki (RCNP, Osaka University) on behalf of the LEPS&LEPS2 collaboration

Recoil Polarisation Measurements in Meson Photoproduction

arxiv: v1 [hep-ex] 16 Aug 2010

Sven Schumann. DPG Spring Meeting

Hadronic D Decays and the D Meson Decay Constant with CLEO c

Study of Transitions and Decays of Bottomonia at Belle

Photoproduction of vector mesons

Light Baryon Spectroscopy What have we learned about excited baryons?

Philip Cole* (Idaho State University) on behalf of the CLAS Collabora<on September 16, *U.S. National Science Foundation grant NSF-PHY

Backward Angle Omega Meson Electroproduction (The Final Analysis Presentation)

Proton Form Factor Puzzle and the CLAS Two-Photon Exchange Experiment

Extracting Resonance Parameters from Exclusive Electroproduction off Protons at CLAS. Kijun Park. August 23, 2017

Experimental Overview Generalized Parton Distributions (GPDs)

HASPECT in action: CLAS12 analysis of

L/T Separated Kaon Production Cross Sections from 5-11 GeV

Deeply Virtual Compton Scattering on the neutron

V.I. Mokeev. Nucleon Resonance Structure in Exclusive Electroproduction at High Photon Virtualities, August 13-15, 2012

The Jefferson Lab 12 GeV Program

Deeply Virtual Compton Scattering and Meson Production at JLab/CLAS

Search for Gluonic Excitations with GlueX at Jefferson Lab

New Limits on Heavy Neutrino from NA62

Exclusive N KY Studies with CLAS12

Transcription:

New Results on v p + - p Cross Sections in the Second and Third Resonance Regions Ralf W. Gothe for Gleb Fedotov Baryons 2016 International Conference on the Structure of Baryons May 16-20, Tallahassee, Florida G. Fedotov, R. Gothe, V. Burkert, and V. Mokeev Gleb Fedotov Baryon 2016, Mai 16-20 FSU, Tallahassee, FL 1

Physics Motivation Extension of the Q 2 -evolution results of electrocouplings to excited nucleons into the second and third resonance regions with new + - p electroproduction data off protons in Q 2 bins of six times smaller size than previously achieved. Almost model independent check of the reliability of the extracted electrocouplings through the comparison of N and + - p electroproduction results. Major source of information on electrocouplings of the nucleon resonances that decay preferentially to the N final states. First detailed information on the structure of a new baryon state N (1720)3/2 + uncovered in the combined analysis of the CLAS + - p photo- and electroproduction data. New opportunities to explore dynamic di-quark correlations and meson-baryon cloud effects in the structure of baryons with an orbital excitation of L=1. Gleb Fedotov Baryon 2016, Mai 16-20 FSU, Tallahassee, FL 2

Higher-Lying Resonance Electrocouplings A 1/2 *1000 GeV 120 100 80 60 40 20 0 (1700)3/2-0 0.2 0.4 0.6 0.8 1 1.2 1.4 Q 2 GeV A 3/2 *1000 GeV 20 10 0 A 1/2-10 N(1720)3/2 + -20-30 -40-50 -60-70 -80 Independent fits in different W-intervals green: 1.46<W<1.56 GeV magenta: 1.56<W<1.66 GeV red: 1.61<W<1.71 GeV blue: 1.66<W<1.76 GeV black: 1.71<W<1.81 GeV result in self-consistent electrocouplings and hence offer sound evidence for their reliable extraction. V. Mokeev et al., Phys. Rev. C 93, 025206 and EPJ Web Conf. 113 (2016) 01013 A 3/2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Q 2 GeV S 1/2 *1000 GeV 0-10 -20-30 -40-50 -60 (1620)1/2 - S 1/2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Q 2 GeV The electrocouplings of the (1620)1/2 -, N(1650)1/2 -, N(1680)5/2 +, (1700)3/2 -,and N(1720)3/2 + resonances were obtained at 0.5 GeV 2 <Q 2 <1.5 GeV 2, but just in three wide Q 2 bins. Improved information on their Q 2 evolution expected from the new e1e data collected in six times smaller Q 2 bins will provide further insight into the structure of orbital nucleon excitations with L=1. Gleb Fedotov Baryon 2016, Mai 16-20 FSU, Tallahassee, FL 3

BranchingFractionsinthe2 nd and3 rd ResonanceRegions PDG values State N N N P 11 (1440) 0.55-0.75 0.3-0.4 D 13 (1520) 0.55-0.65 0.0023 0.2-0.3 S 11 (1535) 0.35-0.55 0.42 0.1-1.0 S 31 (1620) 0.2-0.3 0.7-0.8 S 11 (1650) 0.5-0.9 0.05-0.15 0.1-0.2 F 15 (1680) 0.65-0.7 0.3-0.4 D 13 (1700) 0.12 0.85-0.95 D 33 (1700) 0.1-0.2 0.8-0.9 P 11 (1710) 0.05-0.2 0.1-0.3 0.4-0.9 P 13 (1720) 0.11 0.04 >0.7 The analysis of the e1e data measured with CLAS in Hall-B at JLab will be presented in this talk. Gleb Fedotov Baryon 2016, Mai 16-20 FSU, Tallahassee, FL 4

New N (1720)3/2 + State and its Properties A 1/2 *1000 GeV N* hadronic decays from JM15 that incorporates N (1720)3/2 + Resonance BF( ), % BF( p), % N (1720)3/2 + electroproduction photoproduction N(1720)3/2 + electroproduction photoproduction (1700)3/2 - electroproduction photoproduction 100 80 60 40 20 0-20 47-64 46-62 39-55 38-53 77-95 78-93 S 1/2 *1000 GeV 3-10 4-13 23-49 31-46 3-5 3-6 60 40 20 0-20 A successful description of + - p photo- and electroproduction cross sections at Q 2 =0, 0.65, 0.95, and 1.30 GeV 2 has been achieved by implementing a new N (1720)3/2 + state with Q 2 -independent hadronic decay widths of all resonances that contribute at W~1.7 GeV, that allows us to claim the existence of a new N (1720)3/2 + state. Mass: 1.715-1.735 GeV Width: 120 6 MeV A 3/2 *1000 GeV 10 0-10 -20-30 -40 Mass: 1.743-1.753 GeV Width: 112 8 MeV N (1720)3/2 + N(1720)3/2 + -40 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Q 2 GeV -40 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Q 2 GeV -50 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Q 2 GeV Gleb Fedotov Baryon 2016, Mai 16-20 FSU, Tallahassee, FL 5

Electron Identification Electrons are identified by their coincident signals produced in the SC, DC, EC and CC detector elements as the first in time particles. Total energy deposited in the electron calorimeter (EC) divided by electron momentum versus electron momentum. Left 6 plots represents real data distributions for the 6 CLAS sectors, while the 6 plots on the right side represent the corresponding Monte-Carlo distributions. We identify events enclosed by the red curves as electrons. Gleb Fedotov Baryon 2016, Mai 16-20 FSU, Tallahassee, FL 6

Hadron Identification To identify hadrons information from the drift chambers (DC) and time-of-flight detector paddles (SC) are used. β versus momentum distribution snapshot for positively charged particles seen by ToF scintillator paddle 27 of CLAS sector one. Black dashed curves are theoretical calculations with exact hadron mass assumptions. Events between the two purple and two red dashed curves are selected as π + and proton candidates, respectively. Gleb Fedotov Baryon 2016, Mai 16-20 FSU, Tallahassee, FL 7

Topologies and Exclusivity Cuts Topology Statistics (%) π - missing 70 π + missing 10 proton missing 10 exclusive 10 Gleb Fedotov Baryon 2016, Mai 16-20 FSU, Tallahassee, FL 8

Summary of Cuts and Corrections Radiative corrections were applied on a level of cross sections and the overall normalization was checked by comparison of the elastic cross section with the Bosted parameterization. Gleb Fedotov Baryon 2016, Mai 16-20 FSU, Tallahassee, FL 9

+ - Electroproduction Kinematic Coverage Averaged over a wide range p event yields over W and Q 2. Gray shaded area new e1e data set. set, hatched area at low Q 2 already published e1c data by G. Fedotov et al. and hatched area at higher Q 2 published data in one large Q 2 binbym.ripaniet al. Gleb Fedotov Baryon 2016, Mai 16-20 FSU, Tallahassee, FL 10

Cross Section Normalization Check Ratio of the elastic cross section to the P. Bosted parameterization plotted versus e.the parameterized cross sections are radiated and compared to the e1e elastic cross sections that are correspondingly not corrected for radiative effects. Good agreement in all 6 sectors Gleb Fedotov Baryon 2016, Mai 16-20 FSU, Tallahassee, FL 11

Kinematic Variables ep e' p' in single photon exchange approximation v p p' From experiment From JM model (fit to the data) Final hadrons are described by 5 independent variables M, M p, p, p, p M, M p,,, M, M p,,, All three sets of hadronic variables are used to extract cross sections. The difference between total cross sections obtained by the integration over various sets of hadronic variables is interpreted as systematic uncertainty. Gleb Fedotov Baryon 2016, Mai 16-20 FSU, Tallahassee, FL 12

Definition of Final Hadron Angles Gleb Fedotov Baryon 2016, Mai 16-20 FSU, Tallahassee, FL 13

Cross Section Determination ΔN full and ΔN empty are the numbers of events inside a seven-dimensional bin for runs with hydrogen - and empty target, respectively. F is the efficiency determined by the Monte Carlo simulation. R is the radiative correction factor. Q full and Q empty are the integrated Faraday cup charges for runs with hydrogen - and empty target, respectively, and q e is the elementary charge. ρ is the density of liquid hydrogen at T =20K.l is the length of the target (l =2cm).M H is the molar density of the natural mixture of hydrogen and N A is Avogadro's number. ΔW and ΔQ 2 are kinematical bins determined by the electron scattering kinematics. is the hadronic five-dimensional kinematic phase-space element. Due to statistical limitations only single-fold differential cross sections were analyzed: Gleb Fedotov Baryon 2016, Mai 16-20 FSU, Tallahassee, FL 14

New 2π Event Generator Based on JM15 and the newest data. Written on C++. Takes into account the cross section dependence on the beam energy. Allows to obtain cross section values directly from the event generator (EG). EG generates phase space distributions and applies the cross section as weight to each event. List of data included: Electroproduction 1) CLAS data at E beam = 2.445, E beam =4GeV M. Ripani et al. [CLAS Collaboration], Phys. Rev. Lett. 91, 022002 (2003) V. I. Mokeev et al. [CLAS Collaboration], Phys. Rev. C 86, 035203 (2012) 2) CLAS data at E beam = 1.515 GeV G. V. Fedotov et al. [CLAS Collaboration], Phys. Rev. C 79, 015204 (2009) Photoproduction 3) CLAS g11a experiment E. Golovach et.al. CLAS ANALYSIS NOTE (under review) 4) SAPHIR Eur. Phys. J. A 23, 317 (2005). ABBHM Collab., Phys. Rev. 175, 1669 (1968) More information on new EG avaliable on Iu. Skorodumina s wiki page: https://clasweb.jlab.org/wiki/index.php/new_2pi_event_generator Gleb Fedotov Baryon 2016, Mai 16-20 FSU, Tallahassee, FL 15

New EG in Comparison with Experimental Data Squares data (G. V. Fedotov et al., Phys. Rev. C 79, 015204 (2009)) Circles model Curves event generator Gleb Fedotov Baryon 2016, Mai 16-20 FSU, Tallahassee, FL 16

One-Fold Differential Cross Sections from e1e Q 2 = 0.475 GeV 2, W = 1.5125 GeV Combination of all available topologies allows to minimize contributions from zones with zero acceptance. New advanced method to fill zones with zero acceptance based on the new 2π event generator. Gleb Fedotov Baryon 2016, Mai 16-20 FSU, Tallahassee, FL 17

W-Dependences of Integrated Cross Section Twelve bins in Q 2 are available. Gleb Fedotov Baryon 2016, Mai 16-20 FSU, Tallahassee, FL 18

Comparisonof IntegratedCrossSectionswithExistingData Green dots represent published data (Fedotov et al., PRC79, 015204 (2009)), while the blue dots represent the new e1e data. Good agreement in overlapped areas. Gleb Fedotov Baryon 2016, Mai 16-20 FSU, Tallahassee, FL 19

Conclusions Preliminary data on v p + - p cross sections were obtained for W from 1.3 GeV to 1.825 GeV and Q 2 from 0.4 GeV 2 to 1GeV 2. Kinematic coverage and statistics exceed the previously available CLAS data and allow for a six times finer binning in Q 2. The phenomenological analysis of this data will considerably extend the available information on the Q 2 evolution of the high lying N* electrocouplings. Analysis of this data together with π + π - p photoproduction data will provide first detailed access to the structure of the new baryon state N (1720)3/2 +. Gleb Fedotov Baryon 2016, Mai 16-20 FSU, Tallahassee, FL 20