Status and Performance of the ATLAS Experiment

Similar documents
2 ATLAS operations and data taking

PERFORMANCE OF THE ATLAS MUON TRIGGER IN RUN 2

The beam-gas method for luminosity measurement at LHCb

Future prospects for the measurement of direct photons at the LHC

Muon reconstruction performance in ATLAS at Run-2

Reconstruction and identification of hadronic tau-decays in ATLAS

Performance of muon and tau identification at ATLAS

Non-collision Background Monitoring Using the Semi-Conductor Tracker of ATLAS at LHC

2008 JINST 3 S Outlook. Chapter 11

W and Z boson production in p p collisions from Run II of the Tevatron Collider

2 The ATLAS Experiment at the Large Hadron Collider at CERN

Heavy Hadron Production and Spectroscopy at ATLAS

4. LHC experiments Marcello Barisonzi LHC experiments August

Discovery of the W and Z 0 Bosons

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. Commissioning of the CMS Detector

Status of ATLAS and Preparation for the Pb-Pb Run

Introduction. Tau leptons. SLHC. Summary. Muons. Scott S. Snyder Brookhaven National Laboratory ILC Physics and Detector workshop Snowmass, Aug 2005

ATLAS EXPERIMENT : HOW THE DATA FLOWS. (Trigger, Computing, and Data Analysis)

LHC State of the Art and News

The ATLAS trigger - commissioning with cosmic rays

Electromagnetic calorimetry for the ILC

ATLAS Overview - Sub-detector Performance, Data Taking 2010, Highlights of Latest Results

Chapter 2 Experimental Apparatus

Particle detection 1

Recent CMS results on heavy quarks and hadrons. Alice Bean Univ. of Kansas for the CMS Collaboration

Improving the Jet Reconstruction with the Particle Flow Method; an Introduction

ATLAS: Status and First Results

Dispersion relation results for VCS at JLab

Identifying Particle Trajectories in CMS using the Long Barrel Geometry

Introduction on ATLAS FCPPL Project ACC/CEA/IN2P3. Emmanuel MONNIER (CPPM)

READINESS OF THE CMS DETECTOR FOR FIRST DATA

Risultati dell esperimento ATLAS dopo il run 1 di LHC. C. Gemme (INFN Genova), F. Parodi (INFN/University Genova) Genova, 28 Maggio 2013

Particle identification at LHC: Alice and LHCb

A glance at LHC Detector Systems. Burkhard Schmidt, CERN PH-DT

The ATLAS muon and tau triggers

arxiv: v1 [hep-ex] 2 Nov 2010

arxiv: v1 [hep-ex] 6 Jul 2007

Design of the new ATLAS Inner Tracker for the High Luminosity LHC era

The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning Ph. Schwemling on behalf of the ATLAS LAr Group

Introduction of CMS Detector. Ijaz Ahmed National Centre for Physics, Islamabad

Physics object reconstruction in the ATLAS experiment

The ATLAS Detector at the LHC

Atlas Status and Perspectives

PoS(DIS 2010)190. Diboson production at CMS

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The CMS Experiment: Status and Highlights

Higgs cross-sections

Commissioning of the ATLAS LAr Calorimeter

Expected Performance of the ATLAS Inner Tracker at the High-Luminosity LHC

Muon Alignment at CMS

Search for nu tau appearance via neutrino oscillations in the nu mu CNGS beam with the OPERA experiment

Physics potential of ATLAS upgrades at HL-LHC

Performance of the ALICE Muon Trigger system in Pb Pb collisions

Studies of the performance of the ATLAS detector using cosmic-ray muons

Prospects of ATLAS and CMS for B physics and CP violation

Muon commissioning and Exclusive B production at CMS with the first LHC data

Higgs searches at L3

Electroweak physics at the LHC

FATRAS. A Novel Fast Track Simulation Engine for the ATLAS Experiment. Sebastian Fleischmann on behalf of the ATLAS Collaboration

Top Physics at CMS. Intae Yu. Sungkyunkwan University (SKKU), Korea Yonsei University, Sep 12 th, 2013

Z 0 /γ +Jet via electron decay mode at s = 7TeV in

A Toroidal LHC ApparatuS

LHC status and upgrade plan (physics & detector) 17 3/30 Yosuke Takubo (KEK)

The ATLAS Detector - Inside Out Julia I. Hofmann

Z boson studies at the ATLAS experiment at CERN. Giacomo Artoni Ph.D Thesis Project June 6, 2011

A Study of the Higgs Boson Production in the Dimuon Channelat 14 TeV

Measurement of the Inclusive Isolated Prompt Photon Cross Section at CDF

Reconstruction and identification of hadronic τ decays with ATLAS

THE ATLAS TRIGGER SYSTEM UPGRADE AND PERFORMANCE IN RUN 2

PoS(EPS-HEP 2013)508. CMS Detector: Performance Results. Speaker. I. Redondo * CIEMAT

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential

Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC. Michele Cascella

ATLAS-CONF October 15, 2010

PoS(HCP2009)042. Status of the ALICE Experiment. Werner Riegler. For the ALICE Collaboration. CERN

Prompt Photon Production in p-a Collisions at LHC and the Extraction of Gluon Shadowing

Dario Barberis Evaluation of GEANT4 Electromagnetic and Hadronic Physics in ATLAS

Lepton and Photon reconstruction and identification performance in CMS and ATLAS

Termpaper. LHC and detectors. Supervisor: Dr. Markus Schumacher. Author: Fabian Schnell

ATLAS Run-2 status and performance

PoS(CORFU2016)060. First Results on Higgs to WW at s=13 TeV with CMS detector

Electroweak Physics at the Tevatron

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Chapter 2 The CMS Experiment at the LHC

Exotics Searches in Photon and Lepton Final States with the ATLAS Detector

Study and Simulation of the Radiation background of the ATLAS Experiment at CERN using the Monte Carlo method

Tracking properties of the ATLAS Transition Radiation Tracker (TRT)

CMS Conference Report

Rare B decays in ATLAS and CMS

Excited Electron Search in the e eeγ Channel in ATLAS at S = 7 TeV

A-Exam: The Rare B s µ + µ decay and tanβ

Studies on Higgs Mass Resolutions and Mass Fitting with Four-lepton Final States with the ATLAS Experiment

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system.

Searching for the Randall-Sundrum Graviton decay to dielectron pairs. Meghan Frate Bucknell University

Les Premières Données dans ATLAS et le Calorimètre à Argon Liquide

Alignment of the ATLAS Inner Detector tracking system

Study of the performance of the Level-1 track trigger in the ee channel in ATLAS at high luminosity LHC

Tracking at the LHC. Pippa Wells, CERN

7 Physics at Hadron Colliders

Micro Black Holes at the LHC and An X-ray Survey. of the ATLAS SCT. Nick Brett. Sub Department of Particle Physics. University of Oxford

Overview of the ATLAS detector. 1.1 Physics requirements and detector overview

Transcription:

Status and Performance of the ATLAS Experiment P. Iengo To cite this version: P. Iengo. Status and Performance of the ATLAS Experiment. 15th International QCD Conference (QCD 10), Jun 2010, Montpellier, France. 207-208, pp.91-94, 2010, <10.1016/j.nuclphysbps.2010.10.023>. <in2p3-00533885> HAL Id: in2p3-00533885 http://hal.in2p3.fr/in2p3-00533885 Submitted on 6 Dec 2010 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LAPP-EXP-2010-03 Status and Performace of the ATLAS Experiment Paolo Iengo, on behalf of the ATLAS Collaboration a, a LAPP, Laboratoire d Annecy-le-Vieux de Physique des Particules, CNRS-IN2P3, 9 Chemin de Bellevue - 74941 Annecy-le-Vieux - FRANCE Abstract ATLAS is a general purpose experiment designed to exploit the full discovery potential of LHC. It consists of an inner detector immersed in a soleinodal magnetic field, hadronic and electromagnetic calorimeters and a muon spectrometer embedded in three air-core toroids. ATLAS registered the first LHC proton-proton collisions at an energy of 900 GeV and 2.36 TeV in the center of mass in December 2009. Since 30 March 2010 the experiment is stably taking data at s = 7 TeV. The very good state of the ATLAS detector, performance study and first results with collision data are reported. Keywords: ATLAS, LHC 1. Introduction The ATLAS experiment [1] is a general purpose detector designed to exploit the full discovery potential of high energy proton-proton and heavy ion collisions from the Large Hadron Collider (LHC). With about 2,900 physicists from 173 Institutions of 37 different Countries, ATLAS is the largest high energy physics Collaboration. After a commissioning phase with cosmic rays, AT- LAS registered the first LHC proton-proton collisions at 900 GeV (the LHC injection energy) and 2.36 TeV in the center of mass in December 2009. Since 30 March 2010 the experiment is stably taking data at the energy of 7 TeV in the center of mass. This paper reports the state of the ATLAS detector after 31 nb 1 recorded with stable beams at s = 7 TeV with emphasis on detector performance and first results with collision data. 2. The ATLAS detector The ATLAS detector (44m long, 25m high with a weight of about 7,000 tonnes) is the largest detector ever built at an accelerator. Its layout, shown in Figure 1, comprises an inner detector system immersed in a 2 Tesla solenoidal magnetic field, electromagnetic and Speaker Email address: paolo.iengo@cern.ch (Paolo Iengo, on behalf of the ATLAS Collaboration) hadronic calorimetry, and an outermost muon spectrometer embedded in three superconducting air-core toroids with a typical field of 0.5T in the barrel and 1T in the end-caps. Figure 1: Cut-away view of the ATLAS detector The ATLAS detector covers almost the whole solid angle up to pseudorapidities η = 4.9 for the calorimetric and η = 2.5 for tracking measurements. The trigger chain of the experiment allows to reduce the expected nominal interaction rate of about 1 GHz (with a bunch crossing rate of 40 MHz) to an output rate of few hundreds hertz. It is structured in three decision levels: the LVL1 (hardware implemented with trigger boards mounted on-detector) is based on local information from the Muon Spectrometer and calorimeters with coarse granularity and defines the region of interest of the detector; the following trigger levels (LVL2 and Event Filter) are software based. They use the full detector granularity, perform the track matching with the inner detector and the full event building. Preprint submitted to Nuc. Phys. (Proc. Suppl.) September 4, 2010

The main characteristics of the ATLAS sub-detectors are summarized in the following sub-sections. 2.1. Inner Detector The Inner Detector designed to precisely measure the tracks of charged particles and reconstruct the decay vertices is built of three pixel layers, four double-sided silicon micro strip detectors (SCT) in the barrel and nine in each end-cap, and, in the external part, a transition radiation tracker (TRT) based on straw tubes with electron-pion separation capability. The Inner Detector covers a region η <2.5; the expected momentum resolution is σ pt /p T = 3.8 10 4 p T 0.015 for particles at η =0, while the impact parameter resolution is expected to be σ d0 10 140/p T (GeV)µm. 2.2. Calorimeters The electromagnetic (EM) calorimeter provides triggering, identification and energy measurement of electrons and photons. It is a sampling calorimeter using the lead/liquin Argon (LAr) technology. It has an accordeon geometry, for a full φ hermeticity, covering η <3.2. The energy resolution is σ E /E = 10%/ E 0.7%. The hadronic calorimeter extends up to η <4.9. It is made of iron with scintillator tiles in the barrel region, with a resolution of σ E /E = 50%/ E 0.03. In the two end-caps the hadronic calorimeter is based on liquid Argon with copper/tungsten absorbers, with a coverage 1.5 < η <3.2. In the same cryostats the forward calorimeter (3.2 < η <4.9), designed to detect hadron jets at angles from 1 to 5 degrees relative to the proton beams, also based on LAr, are hosted. 2.3. Muon System Precision measurement of muon tracks in the bending coordinate is carried out by Monitored Drift Tube (MDT) chambers with an η coverage up to 2.7, complemented by Cathode Strip Chambers (CSC) in the highest rapidity region. The muon trigger is based on Resistive Plate Chambers (RPC) in the barrel region ( η <1.05) and Thin Gap Chambers (TGC) in the endcaps (1.05 < η <2.07). Trigger chambers also provide position measurement in non-bending plane. The spatial resolution is better than 100µm in the bending plane and of the order of 10mm in the φ direction. The overall momentum resolution is better than 10% for particle transverse momentum up to 1 TeV. 2 3. Detector performance Since 30 March 2010 ATLAS is stably taking data at 7 TeV. In the first three months of activity the experiment has collected 31.04nb 1 in stable beam conditions with a data taking efficiency of about 92% and an average operating fraction of 98%. All the components of ATLAS have shown very good performance and a behavior close to the expected one. The performance of the tracker can be determined by reconstructing hadron resonances like K 0 s, Λ etc. These studies allow the determination of the momentum scale, the detector resolution and the estimation of the material budget. As an example fig. 2 shows the K 0 s mass peak obtained by combining oppositely charged tracks with a common vertex and with the hypothesis of being pions. The measured value of the mass (497.5 ± 0.1)MeV is in perfect agreement with the PDG value and the data is well reproduced by the Monte Carlo. Figure 2: Invariant mass of two charged pions in the K 0 s mass peak region. TRT electron-pion separation capability is shown in fig. 3. The plot represents the probability of having an hit with high threshold in the TRT as a function of the γ factor of the particle. The separation of electrons and pions is evident and the detector response is in good agreement with the expectations. Figure 3: Probability of an high threshold hit in the Transition Radiation Tracker.

In a similar way, the the electromagnetic energy scale and the performance of the electromagnetic calorimeter can be studied by reconstructing the γ-γ or the electronelectron invariant mass. Figure 4 top shows the π 0 mass peak obtained applying a cut of 0.4 GeV on the cluster transverse energy and of 0.9 GeV on the transverse momentum of the photon pair. To identify the cluster as a photon it is required to not match a track in the inner detector. The agreement between data and Monte Carlo better than 2% is a great achievement considering the low mass of the π 0 and that the result has been derived with the very first data of the experiment. Figure 4 bottom shows the data/mc comparison for one of the electron identification variable, i.e. the shower shape in the second layer of the EM calorimeter, including the expected contributions from prompt electrons, electrons from conversions and from hadrons. The variable R η is defined as the ratio between the energy contained in a region η φ = 3 7 cells around the hottest cell and the energy in a region 7 7. (top) for an integrated luminosity of 0.3 nb 1 and the jet p T distribution (bottom) for 1 nb 1 with the break-down of the contributions from jets from light, c and b quarks. Figure 5: Top: distribution of missing transverse energy. Bottom: Jet transverse momentum distribution. The expected contribution from light jets, c and b jets are also shown. Figure 4: Top: Invariant mass of photon pairs. The π 0 mass peak is evident. Bottom: Electron shower shape in the second layer of the electromagnetic calorimeter. Good agreements of data and Monte Carlo expectations have been also found for missing energy and jets variables. Figure 5 shows transverse energy distribution 3 ATLAS can reconstruct muons separately in the Muon Spectrometer and in the Inner Detector. The two tracks can be matched to obtain a combined muon. The di-muon invariant mass distribution, corresponding to the J/ψ peak for 9.5nb 1, is shown in fig. 7 top. Here muon pairs with opposite charge, a common vertex and energy above 3 GeV are selected with the additional request that at least one of the two muon is a combined muon. Figure 6 bottom shows the muon trigger efficiency for the J/ψ candidates as a function of the transverse momentum p T. The efficiency curve reaches a plateau (>95%) for p T of the J/ψ candidates larger than 10 GeV. 4. Observation of Z and W The excellent status of the ATLAS detector is confirmed by the early observation of W and Z bosons decays in leptonic channels. The first W candidate has been found few days after the first 7 TeV proton-proton collision in

Figure 6: Top: Invariant mass of muon pairs; the peak correspond to the JΨ resonance. Bottom: Muon trigger efficiency for JΨ cndidates. ATLAS and few weeks later the first W candidate was observed. As an example fig. 7 shows the event display for a W eν (top) and a Z µµ (bottom) candidate. In the W event the measured electron transverse momentum is 23 GeV, the reconstructed missing transverse energy is 31 GeV and the reconstructed transverse mass of the W is 55 GeV. In the Z event the negative muon is detected in the barrel part of the Spectrometer with p T = 27 GeV and the positive one in the end-cap p T = 45 GeV; the invariant mass of the Z candidate is reconstructed to be 87 GeV. 5. Conclusions Figure 7: Top: Invariant mass of muon pairs; the peak correspond to the JΨ resonance. Bottom: Muon trigger efficiency for JΨ cndidates. The LHC physics era has just begun and ATLAS has started to exploit its full physics potential. Acknowledgements I would like to thank the QCD-10 conference organizers for the interesting conference and the LPTA- Montpellier for hospitality. References [1] The ATLAS Collaboration, G. Aad et al., The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003. [2] The ATLAS Collaboration, G. Aad et al., Phys.Lett.B688:21-42,2010. After an intense commissioning work the ATLAS experiment has recorded the first LHC proton-proton collisions in fall 2009 and is now stably collecting data at 7 TeV center-of-mass energy. The experiment is working extremely well, with a data taking efficiency larger than 90%, along with the data distribution and the analysis infrastructure. Detector performance studies have shown impressive agreement with Monte Carlo expectation for all the AT- LAS sub-systems and first physics measurements have been performed [2]. W and Z have been observed soon after the first collision at s = 7 TeV and a large statistic is now being accumulated opening the electroweak sector of LHC physics. 4