Antimicrobial Activities of Ceftazidime/Avibactam and Comparator Agents against Clinical. Bacteria Isolated from Patients with Cancer.

Similar documents
Tested Against Tigecycline and Agents Commonly Used for S. maltophilia Infections. David J. Farrell 1*, Helio S. Sader 1,2. and. Ronald N.

Antibiotic Resistance in Enterobacteriaceae

Validation of EUCAST zone diameter breakpoints against reference broth microdilution

Most common dose (mg) 1g x 1 1g x 1 1g x 1 1g x 1 1g x 1 1g x 1. Maximum dose schedule (mg) 1g x 1 1g x 1 1g x 1 1g x 1 1g x 1 1g x 1

Tetracycline Rationale for the EUCAST clinical breakpoints, version th November 2009

Why the CDS? The unique advantages of using an Australian antimicrobial susceptibility testing method

Nitroxoline Rationale for the NAK clinical breakpoints, version th October 2013

Alita Miller, PhD. Head of BioScience. April 24, 2017 ECCMID 2017 Vienna, Austria

μ gyra parc Escherichia coli Klebsiella pneumoniae Pseudomonas aeruginosa E. coli gyra E. coli parc gyra parc gyra Escherichia coli E. coli E.

Toronto General Hospital ANTIBIOGRAM Emergency Department January 1, December 31, 2016

ANTIMICROBIAL TESTING. E-Coli K-12 - E-Coli 0157:H7. Salmonella Enterica Servoar Typhimurium LT2 Enterococcus Faecalis

Gentamicin Rationale for the EUCAST clinical breakpoints, version th February, 2009

Ian Morrissey, 1 Samuel K. Bouchillon, 2 Meredith Hackel, 2 Douglas J. Biedenbach, 2 Stephen Hawser, 1 Daryl Hoban 2 and Robert E.

THE IDENTIFICATION OF TWO UNKNOWN BACTERIA AFUA WILLIAMS BIO 3302 TEST TUBE 3 PROF. N. HAQUE 5/14/18

The Genetic Epidemiology of Antibiotic Resistance

Research Article Evaluation of Verigene Blood Culture Test Systems for Rapid Identification of Positive Blood Cultures

BMR nouveaux antibiotiques Dubreuil, PhD, PharmD - LIRIC UMR 995 Inserm/Université Lille France

Stability. Received for publication 1 August to be fl-lactamase-producing strains.

Multicenter Comparison of In Vitro Activities of FK-037, Cefepime, Ceftriaxone, Ceftazidime, and Cefuroxime

Pseudomonas putida 5

Most common dose (mg) 1 g x 3 1 g x mg -1.0 g x 3 1 g x mg -1 g x mg -1 g x 3

Phenotypic and Molecular Characteristics of Carbapenem-Non-Susceptible Enterobacteriaceae from a Teaching Hospital in Wenzhou, Southern China

Nontraditional Therapy for Stenotrophomonas maltophilia Infections: Ending the Sulfuring

b-lactam resistance and b-lactamase expression in clinical Stenotrophomonas maltophilia isolates having defined phylogenetic relationships

Comparison of cefotiam and cefazolin activity against Gram-negative bacilli

STUDY ABOUT ANTIBIOTIC RESISTANCE IN SERRATIA SPP. ISOLATED FROM HOSPITALIZED PATIENTS

A multicenter surveillance of antimicrobial resistance in Serratia marcescens in Taiwan

Implementation of Public Health Surveillance of Carbapenemase- Producing Enterobacteriaceae in Victoria, Australia

Involvement of efflux pumps in the resistance to peptidoglycan synthesis

Increasing Carbapenem-Resistant Gram-Negative Bacilli and Decreasing Metallo-β-Lactamase Producers over Eight Years from Korea

A Combination of Trimethoprimsulfamethoxazole. Showed Good In Vitro Activity against. Original Article. Abstract. Introduction

INTERPRETATION OF THE GRAM STAIN

on October 1, 2018 by guest

INTRODUCTION MATERIALS & METHODS

ANTIBACTERIAL GRAPHENE OXIDE AND METAL PARTICLES NANOCOMPOSITES FOR INHIBITION OF PATHOGENIC BACTERIA STRAINS

Value of the Modified Hodge test for detection of emerging. carbapenemases in Enterobacteriaceae

In vitro the effect of intestinal normal flora on some pathogenic bacteria.

Antibiotic Resistance in Escherichia coli Iron Transport Mutants

EUCAST Expert Rules Version 3.1. Intrinsic Resistance and Exceptional Phenotypes Tables

Resistance of Escherichia coli and Salmonella typhimurium to Carbenicillin

Antibiotic resistance: a real and present danger in our hospitals

Gram negative bacilli

Considerations with Antibiotic Therapy PART

Antimicrobial Susceptibility of Stenotrophomonas maltophilia Isolates from Korea, and the Activity of Antimicrobial Combinations against the Isolates

By Eliza Bielak Bacterial Genomics and Epidemiology, DTU-Food Supervised by Henrik Hasman, PhD

Expansion of Salmonella Typhimurium ST34 clone carrying multiple. resistance determinants in China

Escherichia coli O26 9

Bile Chrysoidin Glycerol Agar with MUG

Rapid detection of extended-spectrum ß-lactamase-producing. Enterobacteriaceae

Efflux Mechanisms of Fluoroquinolones and β-lactams

by author ESCMID Online Lecture Library Epidemiological cutoff values (ECOFFs) and Low Level resistance Gunnar Kahlmeter

AAC Accepts, published online ahead of print on 20 August 2007 Antimicrob. Agents Chemother. doi: /aac

Molecular Similarity of MDR Inhibitors

Telithromycin in vitro

Supporting information

Characterization of Class 1 Integrons and Antimicrobial Resistance in CTX-M-3-Producing Serratia marcescens Isolates from Southern Taiwan

3M Food Safety Technical Bulletin

Disk Diffusion Breakpoint Determination Using a Bayesian Nonparametric Variation of the Errors-in-Variables Model

The Clinical Aspects of β-lactam-resistant Stenotrophomonas

Stenotrophomonas maltophilia bacteremia in pediatric patients a 10-year analysis

Overview of the major bacterial pathogens The major bacterial pathogens are presented in this table:

ENTEROBACTER CLOACAE OUTER MEMBRANE PERMEABILITY TO CEFTIZOXIME (FK 749) AND FIVE OTHER NEW CEPHALOSPORIN DERIVATIVES

Sample Date: March 30, 2018 Date Received: March 31, 2018 Date of Report: April 9, 2018 (877) Fax: (877)

Dial Complete Foaming Antimicrobial Hand Soap

11/5/2018. Update on Modern Bacterial Taxonomy for Bench Microbiologists. Why is Taxonomy Important? Bacterial Taxonomy for Clinical Microbiologists

ENTEROBACTER AEROGENES UNKNOWN BACTERIA FLOW CHART UNKNOWN LAB REPORT, MICROBIOLOGY ENTEROBACTER AEROGENES

Antibiotic resistance by efflux: from molecular aspects to cinical impact

Three Steps to Antibiotic Resistance?

Available from Deakin Research Online:

3 S. Heidelberg ESBL Extended spectrum lactamase

REVIEW. Extended-spectrum b-lactamases and the permeability barrier

Factors involved in the enhanced efficacy against Gram-negative bacteria of fourth generation cephalosporins

Reading guide. EUCAST disk diffusion method for antimicrobial susceptibility testing

EUCAST. Linezolid Rationale for the EUCAST clinical breakpoints, version th November 2005

Reading guide. EUCAST disk diffusion method for antimicrobial susceptibility testing. Version 2.0 May 2012

Synergistic Effects of Trimethoprim with Flos Lonicerae on Antibacterial Activity and Dose-Effect Relationship in Vitro

An outbreak of multidrug-resistant Serratia marcescens: The importance of continuous monitoring of nosocomial infections

Reading guide. EUCAST disk diffusion method for antimicrobial susceptibility testing

Stenotrophomonas maltophilia in cystic fibrosis: Improved detection by the use of selective agar and evaluation of antimicrobial resistance

Supporting Information

cefixime CFIX cefteram pivoxil CFTM-PI ceftriaxone CTRX cefodizime CDZM spectinomycin

Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey

Comparative evaluation of the VITEK 2 Advanced Expert System (AES) in five UK hospitals

Risk Assessment of Staphylococcus aureus and Clostridium perfringens in ready to eat Egg Products

Antimicrobial Resistance in Haemophilus influenzae

Screening Extended-spectrum b-lactamase Production in Enterobacter cloacae and Serratia marcescens Using Antibiogram-based Methods

Antibiotic efflux pumps in eucaryotic cells: consequences for activity against intracellular bacteria

ESCMID Online Lecture Library

Detection of carbapenemase producers in Enterobacteriaceae. using a novel screening medium

THE RADIOLYTIC STUDIES OF CEFTRIAXONE IN THE SOLID STATE

EASTERN ARIZONA COLLEGE Microbiology

Novel antibiotics from symbiotic peptides

Emergence of colistin resistance in Gram-negative bacteria

The Effect of Garlic (Allium sativum) Extract in Suppressing Microbial Growth Isolated from Chronic Suppurative Otitis Media by In Vitro

Investigation of the Biocidal Effect of Electrochemically Activated Aqueous Sodium Chloride Solution on Gram-negative Pathogenic Bacteria

System with a Conventional Broth System

Trimethoprim R plasmids isolated daring long-term treatment of urinary tract infection with co-trimoxazole

Orbital Diagnostics: Rapid antibiotic sensitivity determination. Dr Robert J H Hammond

Assessment of Formulas for Calculating Critical Concentration by the Agar Diffusion Method

Received 3 April 2002; returned 19 August 2002; revised 4 November 2002; accepted 25 November 2002

Transcription:

AAC Accepted Manuscript Posted Online 23 January 2017 Antimicrob. Agents Chemother. doi:10.1128/aac.02106-16 Copyright 2017 American Society for Microbiology. All Rights Reserved. 1 2 Antimicrobial Activities of Ceftazidime/Avibactam and Comparator Agents against Clinical Bacteria Isolated from Patients with Cancer 3 Running Title: 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 In-Vitro Activities of Ceftazidime/Avibactam in Cancer Ray Hachem, MD, Ruth Reitzel, MS, Kenneth Rolston, MD, Anne-Marie Chaftari, MD, Issam Raad, MD, FIDSA, FSHEA Department of Infectious Diseases, Infection Control and Employee Health, the University of Texas MD Anderson Cancer Center, Houston, Texas Corresponding author: Ray Hachem, MD, Department of Infectious Diseases, Infection Control and Employee Health, Unit 1460, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030. Telephone: (713) 792-4389; Fax: (713) 742-7943; E-mail: Keywords: Ceftazidime; Avibactam; Cancer Patients; Clinical Isolates 1

20 21 ABSTRACT 22 23 24 25 26 27 28 A total of 521 unique clinical isolates from cancer patients, primarily (>90 %) with bloodstream infections were tested for susceptibility to ceftazidime/avibactam and comparators using broth microdilution methods. Ceftazidime/avibactam inhibited 97.8 % of all Enterobacteriaceae (N=321) at the susceptibility breakpoint of 8/4 µg/ml (there were 7 non-susceptible strains). It was also active against Pseudomonas aeruginosa (91.7 % isolates susceptible, N=121) including many isolates not susceptible to meropenem, cefepime, ceftazidime, piperacillin/tazobactam and other comparators. Downloaded from http://aac.asm.org/ on June 19, 2018 by guest 2

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Gram-negative bacteria (GNB) cause ~25% to 30% of bacterial infections in neutropenic cancer patients and are associated with greater morbidity and mortality than Gram-positive organisms (1). Providing potent, empiric, Gram-negative coverage when a neutropenic patient develops fever has become an established standard of care (2). Several recent reports have documented the increasing frequency of multidrug resistant GNB in cancer patients (3-7). Susceptibility of the causative pathogen to the initial regimen is an important determinant of clinical outcome. Thus, empiric therapy of febrile neutropenic patients with currently recommended agents (ceftazidime, cefepime, piperacillin/tazobactam, carbapenems) may no longer be appropriate against many GNB in this setting (4, 8, 9). Ceftazidime/avibactam is a novel combination of a non-β-lactam β-lactamase inhibitor avibactam and the extended-spectrum ceftazidime (10). Avibactam protects ceftazidimefrom hydrolysis by many enzymes including Amber class A (ESBL and KPC), class C (AmpC), and several class D β- lactamases, but not against metallo-β-lactamases such as NDM, VIM, and IMF (11). Its combination with ceftazidime restores the activity of this agent against organisms producing these enzymes. Ceftazidime/avibactam has been approved by the US FDA for the treatment of complicated urinary tract infections, and in combination with metronidazole, for the treatment of complicated intraabdominal infections (12). It is also being evaluated for the treatment of hospital acquired pneumonia. It has not been evaluated for the empiric treatment of cancer patients with fever and neutropenia, or for any other indications in this setting. With the increasing frequency of resistant GNB in this patient population, we feel that it may have a potentially important therapeutic role. Consequently we compared its in-vitro activity to several agents currently in use, against recent clinical isolates recovered from patients treated at our institution, an NCI designated, Comprehensive Cancer Center. 3

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 A total of 521 unique patient isolates (497 GNB and 24 methicillin-susceptible Staphylococcus aureus) recovered between 2010 and 2014 were tested. The majority of isolates (>90%) were from blood cultures and the remaining isolates (10%) were recovered from respiratory tract infections. Only the first isolate per unique patient was collected in order to avoid duplication. CLSI recommended broth microdilution tests were performed (13). Validated MIC panels from Thermo Fisher Scientific Inc. (Oakwood village, OH, USA) were used. Ceftazidime/avibactam breakpoints approved by the US FDA and CLSI ( 8/4 µg/ml for susceptibility and 16 µg/ml for resistance) were used for all Enterobacteriaceae and P. aeruginosa (14). Susceptibility interpretations for comparator agents were those found in CLSI document M100-S26 (15) or in the manufacturers package insert. Escherichia coli ATCC 25922, P. aeruginosa ATCC 27853, and Klebsiella pneumoniae ATCC 700603 were used as quality control strains in order to ensure the validity of our results. Ceftazidime/avibactam inhibited 97.8 % of all Enterobacteriaceae (N=321) including all ESBL- E. coli isolates [MIC 90, 0.25/4 µg ml], all Citrobacter spp (n=4)., all ESBL- Klebsiella spp. (n=33) [MIC 90, 0.12/4 µg/ml], all ESBL+ Klebsiella spp.(n=34) [MIC 90, 1.0/4 µg/ml], and all Serratia marcescens isolates (n=30) [MIC 90, 1.0/4 µg/ml]. It also inhibited 98 % of ESBL+ E. coli isolates (one of 50 isolates was non-susceptible) with an MIC 90 of 1.0/4 µg/ml. Additionally, 82.1 % of carbapenem resistant Klebsiella species (CRE, n=28) were susceptible to ceftazidime/avibactam. The 6 non-susceptible CRE isolates were not tested for the production of metallo-β-lactamases. Both ceftazidime/avibactam and meropenem inhibited 97.6 % of the Enterobacter spp. tested at their respective susceptible breakpoints. Susceptibility to other agents included 95.2 % to cefepime, 88.1 % to trimethoprim/sulfamethoxazole, 85.7 % to tigecycline, and 71.4 % each to ceftazidime and piperacillin/tazobactam. Overall ceftazidime/avibactam had the most potent activity against 4

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 Enterobacteriaceae. Ceftazidime/avibactam also had potent in-vitro activity against P. aeruginosa. It inhibited 98.6 % of P. aeruginosa isolates not considered to be multi-drug resistant (MDR, n=70) at or below its susceptibility break point, with only one of 70 such isolates being non-susceptible. Susceptibility to comparator agents included 91.4 % to meropenem, 87.1 % to ceftazidime alone, 88.6 % to cefepime, and 85.7 % to piperacillin/tazobactam. Additionally, 42 of 51 (82.4 %) MDR P. aeruginosa isolates were susceptible to ceftazidime/avibactam. In comparison, only 21.6 % of these isolates were susceptible to meropenem, 35.3 % were susceptible to piperacillin/tazobactam, and 37.3 % were susceptible to cefepime. Most agents tested including ceftazidime/avibactam had moderate to poor activity against Stenotrophomonas maltophilia and Acinetobacter species. All 24 methicillin susceptible Staphylococcus aureus (MSSA) isolates were susceptible to all agents tested. The proportion of Enterobacteriaceae and P. aeruginosa isolates resistant to ceftazidime/avibactam and comparator agents is depicted in Table 2. Overall, ceftazidime/avibactam was associated with the least level of resistance. Amongst non-cre Enterobacteriaceae only 1 isolate (0.3 %) was resistant to ceftazidime/avibactam followed by 10 (3.5 %) to tigecycline, 44 (15.3 %) to piperacillin/tazobactam, 67 (23.3 %) to cefepime, 88 (30.6 %) to ceftazidime, and 131 (45.5 %) to trimethoprim/sulfamethoxazole. By definition, all these isolates were susceptible to meropenem. Six CRE isolates (18.2 %) were resistant to ceftazidime/avibactam. Amongst the comparators, resistance rates ranged from 30.3 % for tigecycline and trimethoprim/sulfamethoxizole to 100 % for meropenem, piperacillin/tazobactam, cefepime, and ceftazidime. Lower levels of resistance were seen among non-mdr P. aeruginosa isolates (ranging from 1.4 % for ceftazidime/avibactam to 11.4 % for ceftazidime) than among MDR- P. aeruginosa isolates (17.6 % for ceftazidime/avibactam, and ranging from 29.4 % to 62.7 % for comparators). The MIC distributions for individual organisms and 5

96 97 antimicrobial agents are presented in Table 3. Distributions for CAZ-AVI trended toward lower MICs for resistant organisms compared to standard of care antimicrobial agents. 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 To our knowledge, ours is the only study that has evaluated the in vitro activity of ceftazidime/avibactam against common Gram-negative pathogens isolated from cancer patients. We have also shown that ceftazidime/avibactam is active against MSSA, a very common pathogen isolated in our cancer patient population. Our data demonstrate that ceftazidime/avibactam has the most potent in-vitro activity among all the agents tested including activity against many isolates that are resistant to comparator agents commonly used in cancer patients. Although our data are from a single institution and may not represent national or global trends, they are similar to data from other large studies that have tested isolates from multiple centers, different patient populations, and various sites of infection including the bloodstream, the urinary tract, the respiratory tract, and skin/skin structure sites (16, 17). Another potential limitation of our study is that the CRE isolates were not tested for metallo-β-lactamase production. Since the completion of this in-vitro study, a diverse group of metallo-β-lactamase producing Enterobacteriaceae have been isolated from bloodstream infections in patients treated at our institution (18). These do not appear to be related to an ongoing outbreak and are of much concern. The higher rate of resistance to ceftazidime/avibactam reported in the Aitken study could be related to the emergence of resistance to ceftazidime/avibactam in the tested isolates that were obtained from a later period (2015) than the isolates tested in this current study (2010-2014). Nevertheless, based on our data, we conclude that the in-vitro activity of ceftazidime/avibactam is potent and broad enough to warrant its evaluation for the treatment of various infections in cancer patients, including empiric therapy of febrile episodes in patients with neutropenia. 6

118 Funding Information 119 120 121 122 123 This study was supported by a research grant from Allergan. Allergan was involved in the design of the study but had no involvement in the collection, analysis, interpretation of the data, or the publication process. MD Anderson Cancer Center received no compensation for preparing this manuscript. Downloaded from http://aac.asm.org/ on June 19, 2018 by guest 7

124 References 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 1. Nesher L, Rolston KV. 2014. The current spectrum of infection in cancer patients with chemotherapy related neutropenia. Infection 42:5-13. 2. Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, Raad, II, Rolston KV, Young JA, Wingard JR, Infectious Diseases Society of A. 2011. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin Infect Dis 52:e56-93. 3. Baker TM, Satlin MJ. 2016. The growing threat of multidrug-resistant Gram-negative infections in patients with hematologic malignancies. Leuk Lymphoma 57:2245-2258. 4. Gudiol C, Tubau F, Calatayud L, Garcia-Vidal C, Cisnal M, Sanchez-Ortega I, Duarte R, Calvo M, Carratala J. 2011. Bacteraemia due to multidrug-resistant Gram-negative bacilli in cancer patients: risk factors, antibiotic therapy and outcomes. J Antimicrob Chemother 66:657-663. 5. Perez F, Adachi J, Bonomo RA. 2014. Antibiotic-resistant gram-negative bacterial infections in patients with cancer. Clin Infect Dis 59 Suppl 5:S335-339. 6. See I, Freifeld AG, Magill SS. 2016. Causative Organisms and Associated Antimicrobial Resistance in Healthcare-Associated, Central Line-Associated Bloodstream Infections From Oncology Settings, 2009-2012. Clin Infect Dis 62:1203-1209. 7. Rapoport B, Klastersky J, Raftopoulos H, Freifeld A, Aoun M, Zinner SH, Rolston KV. 2016. The emerging problem of bacterial resistance in cancer patients; proceedings of a workshop held by MASCC "Neutropenia, Infection and Myelosuppression" Study Group during the MASCC annual meeting held in Berlin on 27-29 June 2013. Support Care Cancer 24:2819-2826. 8. Ortega M, Marco F, Soriano A, Almela M, Martinez JA, Munoz A, Mensa J. 2009. Analysis of 4758 Escherichia coli bacteraemia episodes: predictive factors for isolation of an antibiotic-resistant strain and their impact on the outcome. J Antimicrob Chemother 63:568-574. 8

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 9. Andria N, Henig O, Kotler O, Domchenko A, Oren I, Zuckerman T, Ofran Y, Fraser D, Paul M. 2015. Mortality burden related to infection with carbapenem-resistant Gram-negative bacteria among haematological cancer patients: a retrospective cohort study. J Antimicrob Chemother 70:3146-3153. 10. Zhanel GG, Lawson CD, Adam H, Schweizer F, Zelenitsky S, Lagace-Wiens PR, Denisuik A, Rubinstein E, Gin AS, Hoban DJ, Lynch JP, 3rd, Karlowsky JA. 2013. Ceftazidime-avibactam: a novel cephalosporin/beta-lactamase inhibitor combination. Drugs 73:159-177. 11. Falcone M, Paterson D. 2016. Spotlight on ceftazidime/avibactam: a new option for MDR Gramnegative infections. J Antimicrob Chemother doi:10.1093/jac/dkw239. 12. Hidalgo JA, Vinluan CM, Antony N. 2016. Ceftazidime/avibactam: a novel cephalosporin/nonbetalactam beta-lactamase inhibitor for the treatment of complicated urinary tract infections and complicated intra-abdominal infections. Drug Des Devel Ther 10:2379-2386. 13. (CLSI) CaLSI. 2015. M07-A10 - Methods for Dilution Antimicrobial Suseptibilty Tested for Bacteria that Grow Aerobically; Approved Standard - Tenth Edition, vol 35, Wayne, PA. 14. Allergan. 06/2016 2016. Highlights of Prescribing Information - Ceftazidime/Avibactam. http://www.allergan.com/assets/pdf/avycaz_pi. Accessed 15. (CLSI) CaLSI. 2015. M100S - Performance Standards for antimicrobial suseptibility testing, 26 ed, Wayne, PA. 16. Sader HS, Castanheira M, Flamm RK, Mendes RE, Farrell DJ, Jones RN. 2015. Ceftazidime/avibactam tested against Gram-negative bacteria from intensive care unit (ICU) and non-icu patients, including those with ventilator-associated pneumonia. Int J Antimicrob Agents 46:53-59. 17. Sader HS, Castanheira M, Flamm RK, Jones RN. 2016. Antimicrobial Activities of Ceftazidime- Avibactam and Comparator Agents against Gram-Negative Organisms Isolated from Patients with Urinary Tract Infections in U.S. Medical Centers, 2012 to 2014. Antimicrob Agents Chemother 60:4355-4360. 9

172 173 174 175 18. Aitken SL, Tarrand JJ, Deshpande LM, Tverdek FP, Jones AL, Shelburne SA, Prince RA, Bhatti MM, Rolston KV, Jones RN, Castanheira M, Chemaly RF. 2016. High Rates of Nonsusceptibility to Ceftazidime-avibactam and Identification of New Delhi Metallo-beta-lactamase Production in Enterobacteriaceae Bloodstream Infections at a Major Cancer Center. Clin Infect Dis 63:954-958. 176 177 178 179 180 181 182 183 184 185 186 187 188 10

189 190 Table 1 Comparative in vitro activities of ceftazidime/avibactam and comparator agents against bacterial isolates from cancer patients. 191 MIC50 MIC90 Antimicrobial Agent (ug ml -1 ) (ug ml -1 ) Range %S/R Escherichia coli (ESBL ) n=100 Meropenem 0.015 0.06 0.008-4 95.0/2.0 Ceftazidime 0.25 32 0.06 to >64 87.0/13.0 Trimethoprim/Sulfamethoxazole >32/608 >32/608 0.06/1.2 to >32/608 39.0/61.0 Tigecycline 0.5 1 0.25-8 97.0/1.0 Piperacillin/Tazobactam 4/4 128/4 1/4 to >256/4 82.0/13.0 Cefepime 0.06 4 0.015 to >64 87.0/9.0 Ceftazidime/Avibactam 0.06/4 0.25/4 0.015/4-8/4 100.0/0.0 Escherichia coli (ESBL +) n=50 Meropenem 0.015 1 0.008-8 90.0/2.0 Ceftazidime 8 >64 0.12 to >64 22.0/70.0 Trimethoprim/Sulfamethoxazole 0.12/2.4 >32/608 0.06/1.2 to >32/608 38.0/62.0 Tigecycline 0.25 1 0.25-1 100.0/0.0 Piperacillin/Tazobactam 4/4 >256/4 2/4 to >256/4 64.0/18.0 Cefepime 8 >64 0.03 to >64 14.0/74.0 Ceftazidime/Avibactam 0.06/4 1/4 0.015/4-16/4 98.0/2.0 Klebsiella spp (ESBL-) n=33 Meropenem 0.015 0.03 0.015 to 2 97.0/0.0 Ceftazidime 0.12 0.5 0.03 to >64 90.0/9.1 Trimethoprim/Sulfamethoxazole 0.25/4.8 >32/608 0.06/1.2 to >32/608 81.8/18.2 Tigecycline 0.5 2 0.5-4 97.0/0.0 Piperacillin/Tazobactam 4/4 32/4 0.5/4-256/4 87.9/9.1 11

Cefepime 0.03 0.25 0.008 to >64 90.9/6.1 Ceftazidime/Avibactam 0.06/4 0.12/4 0.015/4-1/4 100.0/0.0 Klebsiella spp (ESBL +) n=34 Meropenem 0.03 0.05 0.012-2 97.1/0.0 Ceftazidime >64 >64 0.12 to >64 14.7/79.4 Trimethoprim/Sulfamethoxazole >32/608 >32/608 0.06/1.2 to >32/608 26.5/73.5 Tigecycline 2 8 0.25-8 64.7/11.8 Piperacillin/Tazobactam 64/4 >256/4 2/4 to >256/4 35.3/44.1 Cefepime 32 >64 0.12 to >64 35.3/61.8 Ceftazidime/Avibactam 0.25/4 1/4 0.03/4-4/4 100.0/0.0 Klebsiella spp (CRE) n=28 Meropenem >32 >32 4 to >32 0.0/100.0 Ceftazidime >64 >64 >64 0.0/100.0 Trimethoprim/Sulfamethoxazole >32/608 >32/608 >32/608 0.0/100.0 Tigecycline 4 8 1 to 32 14.3/35.7 Piperacillin/Tazobactam >256/4 >256/4 >256/4 0.0/100.0 Cefepime >64 >64 >64 0.0/100.0 Ceftazidime/Avibactam 1/4 16/4 0.5/4 to >32/4 82.1/17.9 Enterobacter spp (n=42) Meropenem 0.03 0.06 0.015 to >32 97.6/2.4 Ceftazidime 0.25 64 0.06 to >64 71.4/28.6 Trimethoprim/Sulfamethoxazole 0.25/4.8 2/38 0.12/2.4 to >32/608 88.1/11.9 Tigecycline 1 4 0.25-8 85.7/7.1 Piperacillin/Tazobactam 4/4 128/4-1/4 to >256/4 71.4/16.7 Cefepime 0.06 2 0.015 to >64 95.2/4.8 Ceftazidime/Avibactam 0.25/4 0.5/4 0.015/4 to >32/4 97.6/2.4 Citrobacter spp. (n=4) Meropenem - - 0.015-32 75.0/25.0 Ceftazidime - - 0.25 to >64 50.0/50.0 12

Trimethoprim/Sulfamethoxazole - - 0.06/1.2 to >32/608 50.0/50.0 Tigecycline - - 0.5-4 75.0/0.0 Piperacillin/Tazobactam - - 4/4 to >256/4 50.0/25.0 Cefepime - - 0.06 to >64 75.0/25.0 Ceftazidime/Avibactam - - 0.06/4-0.5/4 100.0/0.0 Serratia marcesens (n=30) Meropenem 0.25 0.5 0.025-1 100.0/0.0 Ceftazidime 0.5 1 0.12-32 93.3/6.7 Trimethoprim/Sulfamethoxazole 0.5/9.5 8/152 0.12/2.4 to >32/608 83.3/16.7 Tigecycline 2 4 1-8 83.3/6.7 Piperacillin/Tazobactam 4/4 8/4 1/4 to >256/4 90.0/3.3 Cefepime 0.5 2 0.06-8 90.0/0.0 Ceftazidime/Avibactam 0.5/4 1/4 0.12/4-1/4 100.0/0.0 Pseudomonas aeruginosa (n=70) Meropenem 0.5 2 0.03 to >32 91.4/7.1 Ceftazidime 2 32 0.5 to >64 87.1/11.4 Trimethoprim/Sulfamethoxazole 16/304 32/608 2/38 to >32/608 ---- Tigecycline 8 16 2 to >32 ---- Piperacillin/Tazobactam 4/4 64/4 0.25/4 to >256/4 85.7/7.1 Cefepime 2 16 0.25-64 88.6/7.1 Ceftazidime/Avibactam 2/4 4/4 0.5/4 to >32/4 98.6/1.4 Pseudomonas aeruginosa, multidrug resistant (n=51) Meropenem 8 >32 0.12 to >32 21.6/62.7 Ceftazidime 8 64 1 to >64 62.7/29.4 Trimethoprim/Sulfamethoxazole >32/608 >32/608 2/38 to >32/608 ---- Tigecycline 16 >32 4 to >32 ---- Piperacillin/Tazobactam 64/4 >256/4 4/4 to >256/4 35.3/49.0 Cefepime 16 64 1 to >64 37.3/29.4 Ceftazidime/Avibactam 4/4 >32/4 1/4 to >32/4 82.4/17.6 13

Stenotrophomonas maltophilia (n=41) Meropenem >32 >32 1 to >32 ---- Ceftazidime 64 >64 1 to >64 24.4/68.3 Trimethoprim/Sulfamethoxazole >32/608 >32/608 0.06/1.2 to >32/608 34.1/65.9 Tigecycline 4 8 0.1-16 ---- Piperacillin/Tazobactam >256/4 >256/4 16/4 to>256/4 ---- Cefepime 64 >64 2 to >64 22.0/78.0 Ceftazidime/Avibactam 32/4 >32/4 0.5/4 to >32/4 34.1/65.9 Acinetobacter spp (n=14) Meropenem 0.25 >32 0.015 to >32 64.3/28.6 Ceftazidime 16 >64 0.06 to >64 42.9/50.0 Trimethoprim/Sulfamethoxazole 0.5/9.5 >32/608 0.06/1.2 to >32/608 78.6/21.4 Tigecycline 2 8 0.25-16 ---- Piperacillin/Tazobactam 64/4 >256/4 0.125/4 to >256/4 42.9/50.0 Cefepime 8 >64 0.06 to >64 50.0/50.0 Ceftazidime/Avibactam 16/4 >32/4 0.12/4 to >32/4 42.9/57.1 Methicillin susceptible Staphylococcus aureus (n=24) Meropenem 0.06 0.12 0.06-0.25 100.0/0.0 Ceftazidime 8 16 8-16 100.0/0.0 Trimethoprim/Sulfamethoxazole 0.06/1.2 0.06/1.2 0.06/1.2-0.25/4.8 100.0/0.0 Tigecycline 0.25 0.25 0.12-0.5 100.0/0.0 Piperacillin/Tazobactam 1/4 2/4 0.5/4-4/4 100.0/0.0 Cefepime 2 4 1/4 100.0/0.0 Ceftazidime/Avibactam 8/4 16/4 8/4-16/4 100.0/0.0 192 193 14

194 195 Table 2 Resistance to Ceftazidime/Avibactam and comparator agents among Enterobacteriaceae and Pseudomonas aeruginosa 196 Non-CRE Enterobacteriaceae CRE Enterobacteriaceae N=288 N=33 Resistant Resistant n = (%) n = (%) Ceftazidime 88 (30.6) 33 (100.0) Cefepime 67 (23.3) 33 (100.0) Meropenem 0 (0.0) 33 (100.0) Pipracillin/Tazobactam 44 (15.3) 33 (100.0) Tigecycline 10 (3.5) 10 (30.3) Trimethoprim/Sulfamethoxazole 131 (45.5) 33 (30.3) Ceftazidime/Avibactam 1 (0.3) 6 (18.2) P. aeruginosa (non-mdr) P. aeruginosa (MDR) N=70 N=51 Resistant Resistant n = (%) n = (%) Ceftazidime 8 (11.4) 15 (29.4) Cefepime 5 (7.1) 15 (29.4) Meropenem 5 (7.1) 32 (62.7) 15

Pipracillin/Tazobactam 5 (7.1) 25 (49.0) Ceftazidime/Avibactam 1 (1.4) 9 (17.6) 197 198 199 200 201 202 203 204 205 206 207 208 209 16

210 211 Table 3 - Comparative in vitro activities of ceftazidime/avibactam and comparator agents against bacterial isolates from cancer patients E. coli ESBL- (n=100) 0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 Meropenem 10 74 5 3 1 0 2 0 3 2 0 0 0 Ceftazidime 0 0 0 2 24 47 9 2 2 1 0 0 2 2 9 (>64) Trimethoprim/Sulfamethoxazole 0 0 0 11 13 8 1 4 2 0 1 0 1 59 (>32/608) Tigecycline 0 0 0 0 0 20 55 19 3 2 1 0 0 piperacillin/tazobactam 0 0 0 0 0 0 0 8 38 25 6 5 3 2 3 0 Cefepime 0 2 23 40 11 5 5 0 1 3 1 0 0 1 8 (>64) Ceftazidime/Avibactam 0 11 13 37 27 2 2 2 1 3 2 0 0 E. coli ESBL+ (n=50) 0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 Meropenem 2 25 10 5 2 0 0 1 4 0 1 0 0 Ceftazidime xxx xxx 0 0 2 2 1 1 2 3 4 7 5 13 10 (>64) Trimethoprim/Sulfamethoxazole xxx xxx xxx 7 7 2 1 1 0 1 0 0 0 31 (>32/608) Tigecycline xxx 0 0 0 0 14 29 7 0 0 0 0 0 piperacillin/tazobactam xxx xxx xxx xxx 0 0 0 0 10 5 9 8 6 3 1 1 20 Cefepime 0 0 1 1 0 0 2 0 3 4 2 5 3 9 (>64) Ceftazidime/Avibactam xxx 3 5 10 12 13 1 4 1 0 0 1 0 Klebsiella spp, ESBL- (n=33) 0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 Meropenem 0 18 12 1 0 0 1 0 1 0 0 0 0 0 0 0 Ceftazidime 0 0 2 5 12 4 7 0 0 0 0 0 0 1 2 (>64) Trimethoprim/Sulfamethoxazole 0 0 0 2 3 16 4 1 1 0 0 0 1 5 (>32/608) Tigecycline 0 0 0 0 0 0 17 10 5 1 0 0 0 piperacillin/tazobactam 0 0 0 0 0 0 2 1 12 6 4 4 1 0 2 1 Cefepime 1 4 13 7 4 1 0 0 0 1 0 0 0 0 2 (>64) Ceftazidime/Avibactam 2 1 21 6 1 1 1 0 0 0 0 0 Klebsiella spp, ESBL+ (n=34) 0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 10 (>256/4) 7 (>256/4) 17

Meropenem 0 6 16 6 1 1 1 2 1 0 0 0 0 Ceftazidime 0 0 0 0 1 0 3 0 0 1 2 2 4 3 23 Trimethoprim/Sulfamethoxazole 0 0 0 1 3 1 3 0 1 1 0 0 1 (>32/608) Tigecycline 0 0 0 0 0 1 4 8 9 8 4 0 0 piperacillin/tazobactam 0 0 0 0 0 0 0 0 2 3 4 3 4 3 3 7 13 Cefepime 0 0 0 0 1 2 1 0 6 1 2 1 4 3 (>64) Ceftazidime/Avibactam 0 0 1 4 8 14 3 3 1 0 0 0 0 Klebsiella spp, CRE (n=28) 0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 Meropenem 0 0 0 0 0 0 0 0 0 1 4 2 5 16 (>32) Ceftazidime 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 (>64) Trimethoprim/Sulfamethoxazole 0 0 0 0 0 0 0 0 0 0 0 0 0 28 (>32/608) Tigecycline 0 0 0 0 0 0 0 1 3 14 9 0 1 piperacillin/tazobactam 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 Cefepime 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (>64) Ceftazidime/Avibactam 0 0 0 0 0 0 7 8 6 2 0 3 0 2 (>32) Enterobacter spp (n=42) 0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 Meropenem 0 6 25 7 2 0 1 0 0 0 0 0 0 1 (>32) Ceftazidime 0 0 0 2 3 17 5 1 1 1 0 1 1 5 5 (>64) Trimethoprim/Sulfamethoxazole 0 0 0 4 13 7 9 3 1 1 0 0 0 4 (>32/608) Tigecycline 0 0 0 0 0 2 9 20 5 3 3 0 0 piperacillin/tazobactam 0 0 0 0 0 0 0 4 11 8 4 3 1 4 5 1 Cefepime 0 5 6 14 4 1 3 1 6 0 0 0 0 1 1 (>64) Ceftazidime/Avibactam 0 1 2 2 11 14 7 3 1 0 0 0 0 1 (>32/4) Citrobacter spp (n=4) 0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 Meropenem 0 1 2 0 0 0 0 0 0 0 0 0 1 18 (>64) 5 (>256/4) 28 (>256/4) 1 (>256/4) 18

Ceftazidime 0 0 0 0 0 1 0 1 0 0 0 0 0 0 2 (>64) Trimethoprim/Sulfamethoxazole 0 0 0 1 1 0 0 0 0 0 0 0 0 2 (>32/608) Tigecycline 0 0 0 0 0 0 1 0 2 1 0 0 0 piperacillin/tazobactam 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 Cefepime 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 (>64) Ceftazidime/Avibactam 0 0 0 1 0 2 1 0 0 0 0 0 0 Serratia marcesens (n=30) 0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 Meropenem 0 0 9 3 1 5 11 1 0 0 0 0 0 Ceftazidime 0 0 0 0 4 7 6 11 0 0 0 1 1 Trimethoprim/Sulfamethoxazole 0 0 0 0 2 10 9 4 0 1 2 0 0 2 (>32) Tigecycline 0 0 0 0 0 0 0 2 23 3 2 0 0 piperacillin/tazobactam 0 0 0 0 0 0 0 4 10 7 6 0 1 1 0 0 Cefepime 0 0 0 4 5 3 8 6 1 1 2 0 0 0 Ceftazidime/Avibactam 0 0 0 0 4 6 8 12 0 0 0 0 0 Pseudomonas aeruginosa, Sens (n=70) 0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 Meropenem 0 0 1 4 6 21 16 11 5 1 4 0 0 1 (>32) Ceftazidime 0 0 0 0 0 0 1 9 32 12 7 1 2 4 2 (>64) Trimethoprim/Sulfamethoxazole 0 0 0 0 0 0 0 0 2 7 24 14 16 7 (>32/608) Tigecycline 0 0 0 0 0 0 0 0 1 3 32 28 5 1 (>32) piperacillin/tazobactam 0 0 0 0 0 1 0 1 6 27 16 9 2 3 1 0 Cefepime 0 0 0 0 0 1 1 4 32 14 10 3 4 1 Ceftazidime/Avibactam 0 0 0 0 0 0 2 15 42 5 5 0 0 1 (>32/4) Pseudomonas aeruginosa, MDR (n=51) 0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 Meropenem 0 0 0 0 1 0 1 3 6 8 12 10 3 7 (>32) Ceftazidime 0 0 0 0 0 0 0 1 6 16 9 4 2 8 5 (>64) Trimethoprim/Sulfamethoxazole 0 0 0 0 0 0 0 0 2 1 4 5 10 29 (>32/608) Tigecycline 0 0 0 0 0 0 0 0 0 1 7 22 15 6 (>32) 1 (>256/4) 1 (>256/4) 4 (>265/4) 19

piperacillin/tazobactam 0 0 0 0 0 0 0 0 0 3 3 12 4 4 4 6 Cefepime 0 0 0 0 0 0 0 2 2 3 12 17 9 2 4 (>64) Ceftazidime/Avibactam 0 0 0 0 0 0 0 4 10 17 11 3 0 6 (>32/4) Stenotrophomonas maltophilia (n=41) 0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 Meropenem 0 0 0 0 0 0 0 1 0 1 3 0 4 32 (>32) Ceftazidime 0 0 0 0 0 0 0 2 6 0 2 3 5 9 14 (>64) Trimethoprim/Sulfamethoxazole 0 0 0 1 2 0 5 3 3 4 2 0 2 19 (>32/608) Tigecycline 0 0 0 0 1 0 1 2 9 17 8 3 0 piperacillin/tazobactam 0 0 0 0 0 0 0 0 0 0 0 2 2 6 1 2 Cefepime 0 0 0 0 0 0 0 0 3 0 0 6 11 14 7 (>64) 15 Ceftazidime/Avibactam 0 0 0 0 0 0 1 3 8 2 0 6 6 (>32/4) Acinetobacter spp. (n=14) 0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 Meropenem 0 1 3 0 0 3 0 1 1 1 0 0 1 3 (>32) Ceftazidime 0 0 0 1 0 0 1 1 0 2 1 1 2 1 4 (>64) Trimethoprim/Sulfamethoxazole 0 0 0 1 0 4 2 3 1 0 0 0 0 3 (>32/208) Tigecycline 0 0 0 0 0 1 0 3 5 3 1 1 0 piperacillin/tazobactam 0 0 0 0 1 1 1 0 1 0 1 1 0 1 0 1 Cefepime 0 0 0 1 0 0 1 0 2 0 3 0 0 2 5 (>64) Ceftazidime/Avibactam 0 0 0 0 2 0 0 0 1 2 1 1 2 5 (>32/4) Methicillin suceptible S. aureus (n=24) 0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 Meropenem 0 0 0 15 7 2 0 0 0 0 0 0 0 Ceftazidime 0 0 0 0 0 0 0 0 0 0 18 6 0 0 Trimethoprim/Sulfamethoxazole 0 0 0 22 1 1 0 0 0 0 0 0 0 Tigecycline 0 0 0 0 5 17 2 0 0 0 0 0 0 piperacillin/tazobactam 0 0 0 0 0 0 5 13 4 2 0 0 0 0 0 0 Cefepime 0 0 0 0 0 0 0 1 14 9 0 0 0 15 (>256/4) 28 (>256/4) 6 (>256/4) 20

Ceftazidime/Avibactam 0 0 0 0 0 0 0 0 0 0 19 5 0 212 213 Downloaded from http://aac.asm.org/ 21 on June 19, 2018 by guest