Outline. 15. Descriptive Summary, Design, and Inference. Descriptive summaries. Data mining. The centroid

Similar documents
SPATIAL ANALYSIS. Transformation. Cartogram Central. 14 & 15. Query, Measurement, Transformation, Descriptive Summary, Design, and Inference

Class 9. Query, Measurement & Transformation; Spatial Buffers; Descriptive Summary, Design & Inference

Spatial Analysis I. Spatial data analysis Spatial analysis and inference

Lecture 4. Spatial Statistics

Luc Anselin Spatial Analysis Laboratory Dept. Agricultural and Consumer Economics University of Illinois, Urbana-Champaign

Lecture 9: Geocoding & Network Analysis

Nature of Spatial Data. Outline. Spatial Is Special

GIS = Geographic Information Systems;

Looking at Communities: Comparing Urban and Rural Neighborhoods

Geog 469 GIS Workshop. Data Analysis

Are You Maximizing The Value Of All Your Data?

An Introduction to Geographic Information System

Types of spatial data. The Nature of Geographic Data. Types of spatial data. Spatial Autocorrelation. Continuous spatial data: geostatistics

Representation of Geographic Data

GEOGRAPHY 350/550 Final Exam Fall 2005 NAME:

Linear Programming Applications. Transportation Problem

Introduction to GIS. Dr. M.S. Ganesh Prasad

Spatial Thinking and Modeling of Network-Based Problems

Sensitivity of estimates of travel distance and travel time to street network data quality

Introducing GIS analysis

Urban White Paper on Tokyo Metropolis 2002

GIS for ChEs Introduction to Geographic Information Systems

LOCATION OF PREHOSPITAL CARE BASIS THROUGH COMBINED FUZZY AHP AND GIS METHOD

The Journal of Database Marketing, Vol. 6, No. 3, 1999, pp Retail Trade Area Analysis: Concepts and New Approaches

Least-Cost Transportation Corridor Analysis Using Raster Data.

Neighborhood Locations and Amenities

Spatial Analyst. By Sumita Rai

Figure 8.2a Variation of suburban character, transit access and pedestrian accessibility by TAZ label in the study area

Give 4 advantages of using ICT in the collection of data. Give. Give 4 disadvantages in the use of ICT in the collection of data

Canadian Board of Examiners for Professional Surveyors Core Syllabus Item C 5: GEOSPATIAL INFORMATION SYSTEMS

21. Set cover and TSP

KAAF- GE_Notes GIS APPLICATIONS LECTURE 3

Acknowledgments xiii Preface xv. GIS Tutorial 1 Introducing GIS and health applications 1. What is GIS? 2

Spatial and Temporal Geovisualisation and Data Mining of Road Traffic Accidents in Christchurch, New Zealand

BROOKINGS May

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore

Quality and Coverage of Data Sources

Trip Distribution Modeling Milos N. Mladenovic Assistant Professor Department of Built Environment

Chapter 6. Fundamentals of GIS-Based Data Analysis for Decision Support. Table 6.1. Spatial Data Transformations by Geospatial Data Types

WHAT IS GIS? Source: Longley et al (2005) Geographic Information Systems and Science. 2nd Edition. John Wiley and Sons Ltd.

INTRODUCTION TO GEOGRAPHIC INFORMATION SYSTEM By Reshma H. Patil

Geog183: Cartographic Design and Geovisualization Winter Quarter 2017 Lecture 6: Map types and Data types

GIS for the Non-Expert

What is GIS? Introduction to data. Introduction to data modeling

Map your way to deeper insights

Introduction to Geographic Information Systems (GIS): Environmental Science Focus

The Traveling Salesman Problem New Mexico Supercomputing Challenge Final Report April 6 th, 2016 Team 104 School of Dreams Academy

Introduction To Raster Based GIS Dr. Zhang GISC 1421 Fall 2016, 10/19

Geographic Systems and Analysis

This lab exercise will try to answer these questions using spatial statistics in a geographic information system (GIS) context.

ENV208/ENV508 Applied GIS. Week 1: What is GIS?

Mapcube and Mapview. Two Web-based Spatial Data Visualization and Mining Systems. C.T. Lu, Y. Kou, H. Wang Dept. of Computer Science Virginia Tech

IMPERIAL COUNTY PLANNING AND DEVELOPMENT

M 225 Test 1 B Name SHOW YOUR WORK FOR FULL CREDIT! Problem Max. Points Your Points Total 75

Linking local multimedia models in a spatially-distributed system

Spatial Analysis using Vector GIS THE GOAL: PREPARATION:

Estimating Large Scale Population Movement ML Dublin Meetup

Cadcorp Introductory Paper I

Chapter 12. Key Issue Two: Why are consumer services distributed in a regular pattern?

Data Collection: What Is Sampling?

Applying cluster analysis to 2011 Census local authority data

Algorithms and Complexity theory

DATA COLLECTION & SAMPLING

Introducing spatial measurements and statistics

Geo-Spatial Technologies Application To Customs

Motivation, Basic Concepts, Basic Methods, Travelling Salesperson Problem (TSP), Algorithms

Vocabulary: Samples and Populations

ArcGIS Pro: Analysis and Geoprocessing. Nicholas M. Giner Esri Christopher Gabris Blue Raster

Tractable & Intractable Problems

Transportation Problem

Course Introduction III

SPACE Workshop NSF NCGIA CSISS UCGIS SDSU. Aldstadt, Getis, Jankowski, Rey, Weeks SDSU F. Goodchild, M. Goodchild, Janelle, Rebich UCSB

BASIC SPATIAL ANALYSIS TOOLS IN A GIS. data set queries basic statistics buffering overlay reclassification

Development of statewide 30 meter winter sage grouse habitat models for Utah

Temporal vs. Spatial Data

Native species (Forbes and Graminoids) Less than 5% woody plant species. Inclusions of vernal pools. High plant diversity

Geometric Algorithms in GIS

The Attractive Side of Corpus Christi: A Study of the City s Downtown Economic Growth

NEW YORK DEPARTMENT OF SANITATION. Spatial Analysis of Complaints

Metrolinx Transit Accessibility/Connectivity Toolkit

THE 3D SIMULATION INFORMATION SYSTEM FOR ASSESSING THE FLOODING LOST IN KEELUNG RIVER BASIN

Texas A&M University

Understanding and Measuring Urban Expansion

NREL, Intro to GIS for Wind Energy Siting for IGERT Wind NSF

Basics of GIS. by Basudeb Bhatta. Computer Aided Design Centre Department of Computer Science and Engineering Jadavpur University

Appendixx C Travel Demand Model Development and Forecasting Lubbock Outer Route Study June 2014

Outline ESDA. Exploratory Spatial Data Analysis ESDA. Luc Anselin

Introduction to Integer Programming

Cluster Analysis using SaTScan

Everything is related to everything else, but near things are more related than distant things.

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

KENTUCKY HAZARD MITIGATION PLAN RISK ASSESSMENT

Mapping Earth. How are Earth s surface features measured and modeled?

Outline. Geographic Information Analysis & Spatial Data. Spatial Analysis is a Key Term. Lecture #1

Sampling The World. presented by: Tim Haithcoat University of Missouri Columbia

Spatial Data, Spatial Analysis and Spatial Data Science

ArcGIS Online Analytics. Mike Flanagan

Unsupervised Learning: K-Means, Gaussian Mixture Models

In this exercise we will learn how to use the analysis tools in ArcGIS with vector and raster data to further examine potential building sites.

Spatial analysis. Spatial descriptive analysis. Spatial inferential analysis:

Transcription:

Outline 15. Descriptive Summary, Design, and Inference Geographic Information Systems and Science SECOND EDITION Paul A. Longley, Michael F. Goodchild, David J. Maguire, David W. Rhind 2005 John Wiley and Sons, Ltd Data mining Descriptive summaries Optimization Hypothesis testing Data mining Analysis of massive data sets in search for patterns, anomalies, and trends spatial analysis applied on a large scale must be semi-automated because of data volumes widely used in practice, e.g. to detect unusual patterns in credit card use Descriptive summaries Attempt to summarize useful properties of data sets in one or two statistics The mean or average is widely used to summarize data centers are the spatial equivalent there are several ways of defining centers The centroid Found for a point set by taking the weighted average of coordinates The balance point

Optimization properties The centroid minimizes the sum of distances squared but not the sum of distances from each point the center with that property is called the point of minimum aggregate travel (MAT) the properties have frequently been confused, e.g. by the U.S. Bureau of the Census in calculating the center of U.S. population the MAT must be found by iteration rather than by calculation Applications of the MAT Because it minimizes distance the MAT is a useful point at which to locate any central service e.g., a school, hospital, store, fire station finding the MAT is a simple instance of using spatial analysis for optimization Dispersion A measure of the spread of points around a center Useful for determining positional error Related to the width of the kernel used in density estimation Spatial dependence There are many ways of measuring this very important summary property The semivariogram, see Chapter 13 measures spatial dependence over a range of scales The Moran and Geary indices, see Chapter 5 Descriptions of Pattern Many techniques depending on the type of features and whether they are differentiated by attributes (labeled) measures for unlabeled features look for purely geometric pattern measures for labeled features ask about patterns in the labels Patterns in Unlabeled Points Locations of disease, crimes, traffic accidents Do events tend to cluster more in some areas than others? Or are they random, equally likely anywhere? Or are they dispersed, such that points are less likely in areas close to other points?

The K Function Captures how density of points varies with distance away from a reference point By comparing to what would be expected in a random distribution of points Point pattern of individual tree locations. A, B, and C identify the individual trees analyzed in the next slide. (Source: Getis A, Franklin J 1987 Second-order neighborhood analysis of mapped point patterns. Ecology 68(3): 473-477). What do you eyes tell you? How reliable? Clustered, dispersed,- random? A) No close neighbors more trees than expected elsewhere- Clustered C) Fewer trees than expected at all distances - Dispersed Analysis of the local distribution of trees around three reference trees in the previous slide (see text for discussion). (Source: Getis A, Franklin J 1987 Second-order neighborhood analysis of mapped point patterns. Ecology 68(3): 473-477). Pattern in Labeled Features How are the attributes (labels) distributed over the features? Clustered, with neighboring features having similar values Random, with labels assigned independently of location Dispersed, with neighboring features having dissimilar values In the map window the states are colored according to median house value, with the darker shades corresponding to more expensive housing. In the scatterplot window the three points colored yellow are instances where a state of below-average housing value is surrounded by states of above-average value.

Fragmentation statistics Measure the patchiness of data sets e.g., of vegetation cover in an area Useful in landscape ecology, because of the importance of habitat fragmentation in determining the success of animal and bird populations populations are less likely to survive in highly fragmented landscapes Three images of part of the state of Rondonia in Brazil, for 1975, 1986, and 1992. Note the increasing fragmentation of the natural habitat as a result of settlement. Such fragmentation can adversely affect the success of wildlife populations. Optimization Spatial analysis can be used to solve many problems of design A spatial decision support system (SDSS) is an adaptation of GIS aimed at solving a particular design problem Optimizing point locations The MAT is a simple case: one service location and the goal of minimizing total distance traveled The operator of a chain of convenience stores or fire stations might want to solve for many locations at once where are the best locations to add new services? which existing services should be dropped? Location-allocation problems Design locations for services, and allocate demand to them, to achieve specified goals Goals might include: minimizing total distance traveled minimizing the largest distance traveled by any customer maximizing profit minimizing a combination of travel distance and facility operating cost The optimal location of the optimal number of facilities Location-allocation problems Provision of a service to satisfy a spatially dispersed demand demand for the service exists at a large number of widely dispersed sites impossible to provide the service everywhere e.g. every household needs a source of groceries, but impossible to provide a grocery store at each household for reasons of cost (economies of scale) service must be provided from a few, centralized locations ("sites") Sometimes the number of sites is known in advance, e.g. McDonalds wishes to locate 3 restaurants in city x in other cases the optimum number of sites is one aspect of the solution

Location-allocation problems Location-allocation problems Two elements to the problem: 1. Location where to put the central facilities (and possibly how many, how big) 2. Allocation which subsets of the demand should be served from each site ("trade areas", "service areas") Routing problems Search for optimum routes among several destinations The traveling salesman problem find the shortest tour from an origin, through a set of destinations, and back to the origin Routing service technicians for Schindler Elevator. Every day this company s service crews must visit a different set of locations in Los Angeles. GIS is used to partition the day s workload among the crews and trucks (color coding) and to optimize the route to minimize time and cost. The Traveling Salesman Problem Given a finite number of "cities" along with the cost of travel between each pair of them, find the cheapest way of visiting all the cities and returning to your starting point. In May 2004, the traveling salesman problem of visiting all 24,978 cities in Sweden was solved: a tour of length 855,597 TSPLIB units (approximately 72,500 kilometers) was found and it was proven that no shorter tour exists. This is currently the largest solved TSP instance, surpassing the previous record of 15,112 cities through Germany set in April 2001

Optimum paths Find the best path across a continuous cost surface between defined origin and destination to minimize total cost cost may combine construction, environmental impact, land acquisition, and operating cost used to locate highways, power lines, pipelines requires a raster representation Solution of a least-cost path problem. The white line represents the optimum solution, or path of least total cost, across a friction surface represented as a raster. The area is dominated by a mountain range, and cost is determined by elevation and slope. The best route uses a narrow pass through the range. The blue line results from solving the same problem using a coarser raster. Hypothesis testing Hypothesis testing is a recognized branch of statistics A sample is analyzed, and inferences are made about the population from which the sample was drawn The sample must normally be drawn randomly and independently from the population Hypothesis testing with spatial data Frequently the data represent all that are available e.g., all of the census tracts of Los Angeles It is consequently difficult to think of such data as a random sample of anything not a random sample of all census tracts Tobler s Law guarantees that independence is problematic unless samples are drawn very far apart Possible approaches to inference Treat the data as one of a very large number of possible spatial arrangements useful for testing for significant spatial patterns Discard data until cases are independent no one likes to discard data Use models that account directly for spatial dependence Be content with descriptions and avoid inference SPATIAL ANALYSIS Six categories: Queries and reasoning Measurements Transformations Descriptive summaries Optimization Hypothesis testing