HOOPERON A STATUS REPORT AFTER THE HIGGS. with M. Abdullah, A. DiFranzo, T. Tait, A. Rajaraman, A. Wijangco

Similar documents
FERMION PORTAL DARK MATTER

Dark Matter Annihilations in the Galactic Center

Dark Matter in the Galactic Center

Indirect dark matter detection and the Galactic Center GeV Excess

Searching for Dark Matter at the LHC

Collider searches for dark matter. Joachim Kopp. SLAC, October 5, Fermilab

The Galactic Center Excess. Kevork N. Abazajian

Beyond Simplified Models

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B.

Probing Dark Matter at the LHC

In collaboration w/ G. Giudice, D. Kim, JCP, S. Shin arxiv: Jong-Chul Park. 2 nd IBS-KIAS Joint High1 January 08 (2018)

ATLAS Missing Energy Signatures and DM Effective Field Theories

The Characterization of the Gamma-Ray Excess from the Central Milky Way

Cosmic Antiproton and Gamma-Ray Constraints on Effective Interaction of the Dark matter

Generic Dark Matter 13 TeV. Matteo Cremonesi FNAL On behalf of the ATLAS and CMS Collaborations Moriond EWK - March 18, 2016

The Characterization of the Gamma-Ray Excess from the Central Milky Way

Dark matter searches and prospects at the ATLAS experiment

LHC searches for dark matter.! Uli Haisch

Collider Searches for Dark Matter

Effective Theory for Electroweak Doublet Dark Matter

Constraining minimal U(1) B L model from dark matter observations

Nonthermal Dark Matter & Top polarization at Collider

Dark Matter searches with astrophysics

Annihilation Phenomenology. Christoph Weniger. GRAPPA, University of Amsterdam

arxiv: v1 [hep-ex] 19 Jul 2013

You can hide but you have to run:

Mono-X, Associate Production, and Dijet searches at the LHC

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation

Natural explanation for 130 GeV photon line within vector boson dark matter model

BSM Higgs Searches at ATLAS

Validity of the EFT interpretation of Monojet results at the LHC

Searching for spectral features in the g-ray sky. Alejandro Ibarra Technische Universität München

On behalf of the ATLAS and CMS Collaborations

Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics

Cristiano Alpigiani Shanghai Jiao Tong University Shanghai, 18 May 2017

On Symmetric/Asymmetric Light Dark Matter

Instituto de Fisica Teórica, IFT-CSIC Madrid. Marco Taoso. DM and the Galactic Center GeV excess

Fermionic DM Higgs Portal! An EFT approach

A realistic model for DM interactions in the neutrino portal paradigm

pmssm Dark Matter Searches On Ice! Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G.

Lecture 14. Dark Matter. Part IV Indirect Detection Methods

SPATIAL UNIFORMITY OF THE GALACTIC GAMMA-RAY EXCESS. Manoj Kaplinghat, UC Irvine

Chern-Simons portal Dark Matter

LHC searches for momentum dependent DM interactions

Gamma rays from Galactic pulsars: high- and lowlatitude

Constraints on Light WIMPs from Isotropic Diffuse γ-ray Emission

Cosmic Ray Excess From Multi-Component Dark Matter

The LHC Dark Matter Working Group. Antonio Boveia (Ohio State University)

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009

The WIMPless Miracle and the DAMA Puzzle

Gauged U(1) clockwork

Exotic scalars. Stefania Gori. Second MCTP Spring Symposium on Higgs Boson Physics. The University of Chicago & Argonne National Laboratory

Dark Matter searches in ATLAS: Run 1 results and Run 2 prospects

Dark Matter Searches in CMS. Ashok Kumar Delhi University - Delhi

Neutrinos and DM (Galactic)

Recent Searches for Dark Matter with the Fermi-LAT

Electroweak baryogenesis from a dark sector

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Not reviewed, for internal circulation only

VLQs at future colliders and implications for CHMs

PoS(LHCPP2013)016. Dark Matter searches at LHC. R. Bellan Università degli Studi di Torino and INFN

Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity

Pseudoscalar-mediated dark matter models: LHC vs cosmology

Non-Thermal Dark Matter from Moduli Decay. Bhaskar Dutta. Texas A&M University

Simplified models in collider searches for dark matter. Stefan Vogl

Recent results from the LHCb experiment

Non-Abelian SU(2) H and Two-Higgs Doublets

Dark matter at LHC (Mostly ATLAS) Ian Hinchliffe LBNL

Sho IWAMOTO. 15 Sep Osaka University. Based on [ ] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine)

Pseudoscalar portals into the dark sector

Symmetric WIMP Dark Matter and Baryogenesis

Stable or Unstable Light Dark Matter arxiv: v1 [hep-ph] 27 Jul 2015

Dark Matter in ATLAS

A computational tool of DM relic abundance and direct detection. M. Backovic, F. Maltoni, A. Martini, Mat McCaskey, K.C. Kong, G.

Sho IWAMOTO. 7 Nov HEP phenomenology joint Cavendish DAMTP U. Cambridge

Dark matter, black holes, and the Fermi-LAT GeV excess

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis

MULTIPURPOSE MONOJETS AT THE LHC: DARK MATTER & NEUTRINOS

Dark Matter in the Universe

Non-detection of the 3.55 kev line from M31/ Galactic center/limiting Window with Chandra

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Phenomenology of Fourth Generation Neutrinos

Searches for dark matter at CMS and ATLAS

MULTIPURPOSE MONOJETS AT THE LHC: NEUTRINOS & DARK MATTER

PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS

arxiv: v1 [hep-ph] 29 Nov 2016

Surprises in (Inelastic) Dark Matter

A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING

Natural SUSY and the LHC

Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University

Searches for Physics Beyond the Standard Model. Jay Wacker. APS April Meeting SLAC. A Theoretical Perspective. May 4, 2009

Searches for Dark Matter with in Events with Hadronic Activity

BEYOND THE SM (II) Kaustubh Agashe (University of Maryland)

Baryogenesis and Particle Antiparticle Oscillations

Constraints on Effective Dark Matter Interactions. Tzu-Chiang Yuan ( ) Institute of Physics, Academia Sinica Taipei, Taiwan

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

Search for Dark Matter in the mono-x* final states with ATLAS

Dark-matter bound states

Transcription:

HEAVY HIDDEN HOOPERON A STATUS REPORT AFTER THE HIGGS Submitted to PRD [arxiv:14046528] Flip Tanedo with M Abdullah, A DiFranzo, T Tait, A Rajaraman, A Wijangco Santa Fe 2014 Workshop: LHC After The Higgs 4 July 2014 1 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 1/47 47

ATLAS-CONF-2012-147 outline14026703 ANNIHILATION DIRECT DETECTION on shell COLLIDER 2 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 2/47 47

Some assumptions Dark Matter Exists & couples to the Standard Model Ω h 2 01 pb c σ ann v Assume: Dirac DM, thermal relic See, eg Fady Bishara s talk for non-thermal example 3 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 3/47 47

How Dark Matter talks to the Standard Model sm sm sm sm sm sm ANNIHILATION DIRECT DETECTION COLLIDER Ω h 2 Exceptions: eg SIMP Miracle (14025143); DMdm (13122618); Agashe, Cui, et al (14057370) See talk by Yanou Cui 4 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 4/47 47

Light from Dark Matter DM coupling to SM induces γ interactions Parton shower & hadronization Adapted from D Zeppenfeld PITP05 Exceptions: eg RH neutrino portal, see Ian Shoemaker s talk 5 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 5/47 47

Light from Dark Matter: Shape Matters 40 GeV DM annihilating to SM pairs E Γ 2 dnγ de Γ 10 0 10 1 b Τ Μ W g 10 2 05 10 50 100 Extracted from Pythia via PPPC4DMID, Cirelli et al 10124515 6 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 6/47 47

Where to look: Galactic Center Gal S r Ct LOT OF D M 10 kpc FER M I Also look at dwarf spheroidals: m > 10 GeV for bb (13100828) NASA/JPL-Caltech/ESO/R Hurt Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 7/ 47 7/47

The γ-ray excess 14024090 14026703 molec gas Goodenough & Hooper (09102998, 10102752), Hooper & Linden (11100006), Abazajian et al (10114275, 12076047, 14024090), Boyarsky et al (10125839); Gordon & Macias (13065725); Daylan et al (14026703) + more recent model building papers 8 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 8/47 47

The Hooperon m = 40 GeV b Overall normalization set by present annihilation rate b E b = 40 GeV fits γ spectrum 10 GeV τ also fits σ b bv = 5 (15) 10 26 cm 3 s 1 γ =112 (14024090) γ =126 (14026703) ρ r γ (1 + r α ) γ β α Same ballpark as thermal relic σ (if s-wave) Goodenough & Hooper (09102998, 10102752), Hooper & Linden (11100006), Abazajian et al (10114275, 12076047, 14024090), Boyarskiy et al (1012:5839); Gordon & Macias (13065725); Daylan et al (14026703) + more recent model building papers 9 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 9/47 47

Some Recent Hooperon models Higgs Portal: Okada & Seto 13105991, Ipek et al 14043716 EFT: Huang et al 13107609; Alves et al 14035027 Coy DM: Dolan et al 14016458 Simplified Models: Berlin et al 14040022; Izaguirre et al 14042018 Flavored: Agrawal, Lin, et al 14041373; Agrawal, Gemmler, et al 14056709 On-Shell Mediator: Dolan et al 14044977; FT, Rajaraman, et al 14044977; 14045257; Martin et al 14050272 UV Models: Kyae & Park 13102284; Berlin et al 14055204; Agashe, Cui, et al 14057370; Cheung et al 14066372; Huang et al 14070038 Also: see talks by Jong-Chul Park and Tongyan Lin 10 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 10/47 47

Systematic Uncertainties Background affects signal Signal affects background FERMI Diffuse BG FERMI - molecular gas map Multiple independent analyses, but all based on FERMI diffuse BG Images adapted from Abazajian et al 14024090 11 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 11/47 47

Signal Affects Background A simple toy example: Total Observed Events 12 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 12/47 47

Signal Affects Background A simple toy example: Background A Background B 12 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 12/47 47

Signal Affects Background A simple toy example: Background A Signal A Background B 12 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 12/47 47

Signal Affects Background A simple toy example: Signal B Background B Background A 12 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 12/47 47

Systematic Uncertainties Background affects signal Signal affects background FERMI Diffuse BG FERMI - molecular gas map Multiple independent analyses, but all based on FERMI diffuse BG Images adapted from Abazajian et al 14024090 12 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 12/47 47

Millisecond Pulsar Alternative Hooper et al 10102752, 11100006; Abazajian et al 10114275, 12076047 14024090 Wharton et al 11114216, Yuan et al 14042318, Mirabal 13093248 nb: Hooper et al 13050830 MSP LMXB MSP Partner star accretion NASA/CXC/MWeiss LMXB morphology is spot on degenerate with DM for γ-ray excess 13 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 13/47 47

ATLAS-CONF-2012-147 outline14026703 ANNIHILATION DIRECT DETECTION on shell COLLIDER 14 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 14/47 47

Contact Interactions Dark Matter Heavy sm Dirac fermion b quark b = b b b DM SM interaction parameterized by a single coupling Λ 2 O = 1 Λ 2 ( Γ ) ( bγb b ) Parameterization in Goodman et al 10081783; see Alves et al 14035027 for Hooperon fit 15 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 15/47 47

Contact Interactions are not preferred Generically, contact interactions tightly constrained Require: s-wave annihilation D2 ( γ 5 ) ( qq) D4 ( γ 5 ) ( qγ 5 q) D5 ( γ µ ) ( qγ µ q) D6 ( γ µ γ 5 ) ( qγ µ q) D7 ( γ µ ) ( qγ µ γ 5 q) D8 ( γ µ γ 5 ) ( qγ µ γ 5 q) D9 ( σ µν ) ( qσ µν q) D10 ( σ µν γ 5 ) ( qσ µν q) D12 ( γ 5 ) G µν G µν D14 ( γ 5 ) G Gµν µν See analysis in Alves et al 14035027 for detailed analysis 16 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 16/47 47

Contact Interactions are not preferred Generically, contact interactions tightly constrained Require: s-wave annihilation D2 D4 D5 D6 D7 D8 D9 D10 D12 D14 ( γ 5 ) ( qq) ( γ 5 ) ( qγ 5 q) ( γ µ ) ( qγ µ q) ( γ µ γ 5 ) ( qγ µ q) ( γ µ ) ( qγ µ γ 5 q) ( γ µ γ 5 ) ( qγ µ γ 5 q) ( σ µν ) ( qσ µν q) ( σ µν γ 5 ) ( qσ µν q) ( γ 5 ) G µν G µν ( γ 5 ) G Gµν µν Mono-jet Mono-jet LUX (SI direct detection) Related to D8 Related to D5 Mono-jet, XENON100 (SD) UV completion? UV completion? Spectrum Spectrum See analysis in Alves et al 14035027 for detailed analysis 16 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 16/47 47

Contact Interactions are not preferred Generically, contact interactions tightly constrained Require: s-wave annihilation D2 100 ( γ 5 ) ( qq) Mono-jet D4 Contact Hooperon ( γ 5 ) ( qγ 5 q) (target) Mono-jet D5 ( γ µ ) ( qγ µ q) LUX (SI direct detection) D6 ( γ µ γ 5 ) ( qγ µ q) Related to D8 D7 ( γ µ ) ( qγ µ γ 5 q) Related to D5 D8 ruled out ( γ µ γ 5 ) ( qγ µ γ 5 q) Mono-jet, XENON100 (SD) D9 ( σ µν ) ( qσ µν q) UV completion? D10 50 ( σ µν γ 5 ) ( qσ µν q) UV completion? D12 ( γ 5 ) G µν G µν image Spectrum adapted from 14035027 D14 ( γ 10 5 ) G Gµν µν 15 20 Spectrum 25 30 35 40 45 50 See analysis in Alves et al 14035027 for detailed analysis D2 thermal relic D4 thermal relic LHC bound 16 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 16/47 47

Contact Interactions are not preferred Generically, contact interactions tightly constrained Require: s-wave annihilation D2 D4 D5 D6 D7 D8 D9 D10 D12 D14 ( γ 5 ) ( qq) Mono-jet 10 ( γ - 25 5 ) ( qγ 5 q) Mono-jet thermal relic ( γ µ ) ( qγ µ q) LUX (SI direct detection) 10 ( γ - 27 µ γ 5 ) ( qγ µ q) Related to D8 ( γ µ ) ( qγ µ γ 5 q) Related to D5 ( γ 10 µ - 29 γ 5 ) ( qγ µ γ 5 q) Mono-jet, XENON100 (SD) ( σ µν ) ( qσ µν q) UV completion? 10 ( σ µν - 31 γ 5 ) ( qσ µν q) UV completion? ruled out ( γ 5 ) G µν G µν Spectrum 10 10 15-33 image adapted from Alex Wijangco ( γ 5 ) G Gµν 20 30 50 70 100 µν Spectrum CMS D8 bound CMS D5 bound XENON100 SD (D8) bound LUX SI (D5) bound See analysis in Alves et al 14035027 for detailed analysis 16 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 16/47 47

Exceptions Contact O Exceptions: 1 Majorana DM: γ µ = 0 2 Tuning of chiral couplings (eg Zl + l ) 3 Non-decoupled mediator: m med < heavy Λ 2 b λ DM b b λ SM b 17 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 17/47 47

Simplified Models Renormalizable, capture physics of mediator (11052838) sm neutral Dark Matter Mediator sm λ DM λ SM Dirac fermion b quark λ DM λ SM Simplest example: Coy Dark Matter Dolan et al 14016458 Systematic studies: Chicago 14040022 Perimeter 14042018 18 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 18/47 47

Simplified Models Simplified models describe the m med < decoupling regime See Berlin et al 14040022 and Izaguirre et al 14042018 for a detailed survey of off-shell Simplified Hooperons See Boehm et al 14016458 for a prototype Model Elastic Near Future Reach? DM Mediator Interactions Number Scattering Direct LHC 1 Dirac Fermion Spin-0 5, ff SI (q/2m ) 2 (scalar) No Maybe 1 Majorana Fermion Spin-0 5, ff SI (q/2m ) 2 (scalar) No Maybe 2 Dirac Fermion Spin-0 5, f 5 f SD (q 2 /4mnm ) 2 Never Maybe 2 Majorana Fermion Spin-0 5, f 5 f SD (q 2 /4mnm ) 2 Never Maybe 3 Dirac Fermion Spin-1 µ, b µb SI loop (vector) Yes Maybe 4 Dirac Fermion Spin-1 µ, f µ 5 SD (q/2mn) f or Never Maybe SD (q/2m ) 5 Dirac Fermion Spin-1 µ 5, µ 5 f SD 1 Yes Maybe 5 Majorana Fermion Spin-1 µ 5, f µ 5 f SD 1 Yes Maybe 6 Complex Scalar Spin-0, f 5 f SD (q/2mn) 2 No Maybe 6 Real Scalar Spin-0 2, f 5 f SD (q/2mn) 2 No Maybe 6 Complex Vector Spin-0 B µb µ, f 5 f SD (q/2mn) 2 No Maybe 6 Real Vector Spin-0 BµB µ, f 5 f SD (q/2mn) 2 No Maybe 7 Dirac Fermion Spin-0 (t-ch) (1 ± 5 )b SI loop (vector) Yes Yes 7 Dirac Fermion Spin-1 (t-ch) µ(1 ± 5 )b SI loop (vector) Yes Yes 8 Complex Vector Spin-1/2 (t-ch) X µ µ (1 ± 5 )b SI loop (vector) Yes Yes 8 Real Vector Spin-1/2 (t-ch) Xµ µ (1 ± 5 )b SI loop (vector) Yes Yes Table from 14040022 19 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 19/47 47

Simplified Hooperons + on-shell mediators But: the m med < heavy regime also includes m med < m ie mediator is accessible as an on-shell annihilation mode b Can be dominant mode b Separates λ DM from λ SM on shell b b Admits limit λ SM λ DM Hides indirect detection signal from direct det & collider bounds Application to Hooperon: FT et al 14046528 (this talk) See also Dolan et al 14044977 and Martin et al 14050272 Previously: axion portal (Nomura & Thaler, 08105397), cascade annihilation (+ Mardon, Stolarski 09012926) 20 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 20/47 47

On-Shell Simplified Models sm neutral sm neutral Dark Matter Mediator λ DM Dirac fermion φ, V sm λ SM b quark Annihilation, σv γ-ray excess, relic abundance Constraints direct detection, colliders Requirements: m V,φ > 2m b λ DM 1 λ SM 1 21 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 21/47 47

On-Shell Simplified Options Require: s-wave annihilation: Med S (P) V (A) S (P) V (A) l-wave p (p) s (s) p (s) p (p) m 80 GeV 80 GeV 120 GeV 120 GeV Further Requirements: 2m > 2m V 3m φ for a spin-1 mediator for a spin-0 mediator 22 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 22/47 47

Dominance over off-shell on shell λ dm 2 λ dm λ sm on shell λ dm 3 4π λ dm λ sm Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 23/47 23 / 47

Back-of-the-Envelope Astrophysics eg from Pythia dφ(b, l) = n σv b b de γ 8πm 2 dn γ dx ρ 2 (r gal (b, l, x)) de γ los Particle Physics m DM n (40 GeV) n=2(3) for spin-1(0) λ DM 035 (125) for spin-1(0) More final states requires smaller σv ann for signal flux m sets injection energy, larger for more final states 24 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 24/47 47

Boosted mediators m Χ 120 GeV m φ 15 GeV m φ 45 GeV m φ 55 GeV m φ 60 GeV m Χ 120 GeV m φ 15 GeV m φ 45 GeV m φ 55 GeV m φ 60 GeV 20 40 60 80 100 20 40 60 80 100 The boost of the on-shell mediator shifts the primary (and hence photon) spectrum Top: 3φ Bot: 2V nb similar to Kaustubh Agashe s talk m Χ 80 GeV m V 15 GeV m V 30 GeV m V 55 GeV m V 60 GeV 0 20 40 60 0 25 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 25/47 47

Range of spectra For bin data D i and model spectrum S i : ( log Di log (λ 2n ) 2 dm S i ) goodness of fit = i log(02d i ) Ẉarning: This is not a 2 fit & these are not 1σ errors 26 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 26/47 47

Best fits m V [GeV] 2V 4b Fit m φ [GeV] 3φ 6b Fit m = 75 GeV m V = 29 GeV λ DM = 027 Br(V 2b)=100% m m = 110 GeV m φ = 20 GeV λ DM = 12 m 27 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 27/47 47

ATLAS-CONF-2012-147 outline14026703 ANNIHILATION DIRECT DETECTION on shell COLLIDER 28 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 28/47 47

Bounds on SM interactions sm sm sm sm sm sm ANNIHILATION DIRECT DETECTION COLLIDER Ω h 2 29 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 29/47 47

Bounds on SM interactions f med on shell N N f ANNIHILATION DIRECT DETECTION COLLIDER Ω h 2 29 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 29/47 47

Indirect: Antiprotons? [cm 3 / s] 10-22 PAMELA bounds Einasto MED Antiproton Flux Constraints PAMELA p + bounds: currently not constraining Maybe AMS-02 10-23 10-24 10-25 10-26 Einasto MIN Einasto MAX AMS-02 sensitivity thermal relic adapted from 13017079 but large propagation uncertainty, still lots of wiggle room See talk by Jong-Chul Park (14043741) Also: recently, 14066027 presents stronger bounds from p +, e +, radio 10-27 10 50 100 500 30 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 30/47 47

Collider: mono-b See talk by Tongyan Lin, (13036638) See Daylan et al 14024090 (EFT), Izaguirre et al 14041373 (simplified model) Mono-object analyses: UCI (10051286, 10081783, 11081196), Fermilab (10053757, 11030240), others λ φ SM 02 λ V SM 06 Conservative estimate: m q/m 3 λ DM λ SM s 1 Simplified model > EFT: Graesser, Shoemaker, et al (11072666, 11125457); UCI (11112359); Busoni et al (13072253); Dolan, et al (13086799) 31 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 31/47 47

Collider: search for the mediator Prototype: gauged U(1) B, bounds from LEP (Carone, Murayama) hep-ph/9411256 Bound λ SM 1 See also Dobrescu & Yu 13062629, Dobrescu & Frugiuele 14043947 See Queiroz & Shepherd 14032309, Burgess et al 11034556 for mixing bounds 32 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 32/47 47

Collider: search for the mediator Open question: what about φ γγ? eg search for lepto-phobic, gauge-phobic Higgs at LHC? 95% CL upper limit σ(pp φ γγ) [pb] 5 45 4 35 3 25 2 15 1 s=8 TeV, γγ 50 55 60 65 70 75 80 85 90 m φ [GeV] 1 09 08 07 06 05 04 03 02 01 0 Selection Efficiency Courtesy of D Whiteson 2γ with p T > 20 GeV and η < 24 33 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 33/47 47

Direct Detection LUX SI 13108214, XENON100 SD 12075988 Mediator coupling to SM Λ SM 10 1 10 2 10 3 10 6 10 20 30 40 50 60 70 Γ 5 1 Γ Μ Γ Μ Γ 5 Γ Μ Γ 5 Γ Μ Γ Μ Γ 5 Γ Μ Γ 5 Γ Μ Γ Μ γ 5 γ 5 is q 4 suppressed, no bound below λ SM < 4π 34 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 34/47 47

Viability of a Thermal Relic 2 2 Hooperon: σv in right ballpark for thermal relic (s-wave) Ω h 2 6 10 26 cm 3 /s σv ann ( Ω h 2) obs = 012 2 n SM particles has n larger σv : dφ(b, l) = n σv ann de γ 8πm 2 dn γ dx ρ 2 (r gal (b, l, x)) de γ los m 2 n 2 (40 GeV) 2 σv ann n σ b bv So: can we still get Ω h 2 from freeze-out? 35 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 35/47 47

Vector Mediator as Thermal Relic ρ(r) = ρ r γ 0 1 + rα r 0 r α 0 γ β α σ b bv = (15) 5 10 26 cm 3 s 1 γ =126 (14026703) γ =112 (14024090) b b Ballpark of thermal relic σ σv ann between 3 10 10 26 cm 3 s 1 Vector mediator works for Dirac 36 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 36/47 47

Spin-0 Mediator as Thermal Relic Scalar mediator is more difficult, 1 σv ann = 3 σv b b 2 p-wave irreducible contributions on shell λ dm xf 4π 3 on shell Is there any way to same thermal freeze out? 37 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 37/47 47

Millisecond Pulsar Partial Alternative? Hooper et al 10102752, 11100006; Abazajian et al 10114275, 12076047 14024090 Wharton et al 11114216, Yuan et al 14042318, Mirabal 13093248 nb: Hooper et al 13050830 MSP LMXB MSP Partner star NASA/CXC/MWeiss accretion LMXB morphology is spot on degenerate with DM for γ-ray excess 38 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 38/47 47

ATLAS-CONF-2012-147 outline14026703 ANNIHILATION DIRECT DETECTION on shell COLLIDER 39 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 39/47 47

Model Building Spin-1 Mediator Prototype is gauged U(1) B, expect universal coupling to quarks Exception? ρ-like states in composite Higgs? (Contino et al 11091570) Spin-0 Mediator L φ-sm = λ uy u ij Λ φh Qu R + λ dy d ij Λ φ H Qd R + λ lyij l Λ φ H Ll R Recent UV completion through Higgs-portal -portal: Ipek et al 14043716 Dark Matter Mediator Higgs sm Exception? φ 1 φ 2 is s-wave on-shell (Nomura & Thaler 08105397) See also Agrawal et al 14041373 for flavored DM 40 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 40/47 47

Pre-conclusion: on-shell mediators med Mass [gev] Interaction Coupling spin m m mes DM SM λ dm λ sm Relic? spin-0 110 20 γ 5 1 12 < 008 MSP? γ 5 γ 5 < 002 spin-1 45 14 γ µ γ µ 018 < 10 6 γ = 13 γ µ γ 5 γ µ γ 5 < 0004 γ µ γ 5 γ µ < 0006 γ µ γ µ γ 5 < 002 spin-1 assumes universal coupling to quarks, spin-0 is b-philic * est mono-b projected, all other bounds from direct detection Combined with on-shell mediators, there is a range of Hooperon masses (both lighter and heavier than usual) Framework to parametrically separate indirect signal from direct/collider bounds 41 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 41/47 47

Moving forward: Now what? FERMI analysis in progress! What to think about now? I Bounds See Jong-Chul s talk eg last week, Bringmann et al 14066027 II Morphology eg black hole distortion of DM profile in dwarfs (14062424) and the galactic center (14064856) III Spectrum Generalize DM templates; feeds into fit 42 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 42/47 47

Spectrum Recall: signal spectrum matters for fit Background A Signal A Background B Full astrophysical fit for non-standard DM decays ( 4, 6 SM, tc) In progress, FT with Nic Canac Left image adapted from Abazajian et al 14024090 43 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 43/47 47

Playing with the Spectrum See FT et al 4046528, Martin et al 14050272, and FT work in progress 6g 2 [ τ τ (85%) or b b (15%) ] E 2 γdnγ/deγ E 2 γdnγ/deγ E γ [GeV] E γ [GeV] Data: b b residual, for comparison only Need to re-fit! Can bend spectra (eg interpolate between τ and b spectra) Mixture with hard spectra (leptons) can access DM masses below conventional Hooperon 44 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 44/47 47

Self-Interacting Dark Matter? This framework contains all the pieces for SIDM See talk by Ian Shoemaker E 2 dn Γ de Γ GeV cm 2 s 1 10 7 10 8 4q, m Χ 27 GeV 2b GCE 4g, m Χ 27 GeV 05 1 5 10 m V = 1 GeV, preliminary only Non-trivial fit: small scale structure sets m V light and m (m V ) dn γ/de γ is more subtle near m V Λ QCD Figure from Tulin et al 13023898 Work in progress with Hai-Bo Yu 45 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 45/47 47

Electron spectrum? γ spectrum from electrons is usually too hard But (14057928): Inverse Compton spectrum from electrons injected 1 Myr ago from a source of E = 4 10 52 erg for different diffusion indices 46 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 46/47 47

Conclusion Diffuse γ-ray Excess: maybe DM, maybe pulsars Comprehensive simplified model analyses for 2 SM On-shell mediators separate indirect from direct/collider searches Think about morphology and spectrum Official FERMI analysis soon! Independent of Pass 7 FERMI diffuse background used by other groups Look for: spectrum, systematic errors 47 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 47/47 47

Back-up Slides (for posting to the web) 47 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 47/47 47

Spin-1: b-philic vs universal q m V [GeV] 2V 4b Fit m V [GeV] 2V 4q Fit m = 75 GeV m V = 29 GeV λ DM = 027 Br(V 2b)=100% m m = 45 GeV m φ = 14 GeV λ DM = 18 Cascade smears spectrum m 47 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 47/47 47

Dominance over off-shell on shell λ dm 2 λ dm λ sm on shell λ dm 3 4π λ dm λ sm Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 47/47 47 / 47

Indirect: on-shell contamination Fit Fit λ SM + λ SM + m [GeV] m [GeV] b-philic vector universal vector 47 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 47/47 47

Indirect: on-shell contamination Fit λ SM + m [GeV] 47 / Flip Tanedo fliptanedo@uciedu Heavy Hidden Hooperon 14046528 47/47 47