One-Shot Quantum Information Theory I: Entropic Quantities. Nilanjana Datta University of Cambridge,U.K.

Similar documents
How many singlets are needed to create a bipartite state via LOCC?

Xiangwen Li. March 8th and March 13th, 2001

Computational and Statistical Learning theory Assignment 4

Excess Error, Approximation Error, and Estimation Error

Two Conjectures About Recency Rank Encoding

A Radon-Nikodym Theorem for Completely Positive Maps

Entanglement vs Discord: Who Wins?

y new = M x old Feature Selection: Linear Transformations Constraint Optimization (insertion)

Applied Mathematics Letters

Generalized measurements to distinguish classical and quantum correlations

arxiv:quant-ph/ Feb 2000

Ph 219a/CS 219a. Exercises Due: Wednesday 12 November 2008

1 Review From Last Time

XII.3 The EM (Expectation-Maximization) Algorithm

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

On the Construction of Polar Codes

On the Construction of Polar Codes

Recap: the SVM problem

On the Finite-Length Performance of Universal Coding for k-ary Memoryless Sources

LECTURE :FACTOR ANALYSIS

Fermi-Dirac statistics

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Designing Fuzzy Time Series Model Using Generalized Wang s Method and Its application to Forecasting Interest Rate of Bank Indonesia Certificate

Slobodan Lakić. Communicated by R. Van Keer

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003

Lecture 19 of 42. MAP and MLE continued, Minimum Description Length (MDL)

COS 511: Theoretical Machine Learning

Outline. Prior Information and Subjective Probability. Subjective Probability. The Histogram Approach. Subjective Determination of the Prior Density

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner.

Column Generation. Teo Chung-Piaw (NUS) 25 th February 2003, Singapore

CHAPTER 6 CONSTRAINED OPTIMIZATION 1: K-T CONDITIONS

System in Weibull Distribution

1 Definition of Rademacher Complexity

Universal communication part II: channels with memory

Least Squares Fitting of Data

für Mathematik in den Naturwissenschaften Leipzig

Chapter One Mixture of Ideal Gases

Quantum Mechanics for Scientists and Engineers

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013

Minimization of l 2 -Norm of the KSOR Operator

The Parity of the Number of Irreducible Factors for Some Pentanomials

Denote the function derivatives f(x) in given points. x a b. Using relationships (1.2), polynomials (1.1) are written in the form

Asymptotically Optimal Discrimination between Pure Quantum States

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

CHAPTER 7 CONSTRAINED OPTIMIZATION 1: THE KARUSH-KUHN-TUCKER CONDITIONS

04 - Treaps. Dr. Alexander Souza

On Syndrome Decoding of Punctured Reed-Solomon and Gabidulin Codes 1

Polynomial Barrier Method for Solving Linear Programming Problems

Finite Fields and Their Applications

Machine Learning. Support Vector Machines. Eric Xing. Lecture 4, August 12, Reading: Eric CMU,

BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS. Dariusz Biskup

ON THE NUMBER OF PRIMITIVE PYTHAGOREAN QUINTUPLES

On Pfaff s solution of the Pfaff problem

halftoning Journal of Electronic Imaging, vol. 11, no. 4, Oct Je-Ho Lee and Jan P. Allebach

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

The Order Relation and Trace Inequalities for. Hermitian Operators

The entanglement of purification

Quantum and Classical Information Theory with Disentropy

Study of the possibility of eliminating the Gibbs paradox within the framework of classical thermodynamics *

Chapter 12 Lyes KADEM [Thermodynamics II] 2007

!! Let x n = x 1,x 2,,x n with x j! X!! We say that x n is "-typical with respect to p(x) if

Preference and Demand Examples

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

Tests of Exclusion Restrictions on Regression Coefficients: Formulation and Interpretation

On the Eigenspectrum of the Gram Matrix and the Generalisation Error of Kernel PCA (Shawe-Taylor, et al. 2005) Ameet Talwalkar 02/13/07

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

Norm Bounds for a Transformed Activity Level. Vector in Sraffian Systems: A Dual Exercise

Block-error performance of root-ldpc codes. Author(s): Andriyanova, Iryna; Boutros, Joseph J.; Biglieri, Ezio; Declercq, David

Convexity preserving interpolation by splines of arbitrary degree

Entropies & Information Theory

DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR. Introductory Econometrics 1 hour 30 minutes

An Optimal Bound for Sum of Square Roots of Special Type of Integers

von Neumann capacity of noisy quantum channels

Near Optimal Online Algorithms and Fast Approximation Algorithms for Resource Allocation Problems

Lecture 3: Shannon s Theorem

Computing Correlated Equilibria in Multi-Player Games

Power law and dimension of the maximum value for belief distribution with the max Deng entropy

Collaborative Filtering Recommendation Algorithm

Machine Learning. What is a good Decision Boundary? Support Vector Machines

Solution 1 for USTC class Physics of Quantum Information

Quality of Routing Congestion Games in Wireless Sensor Networks

Statistical analysis of Accelerated life testing under Weibull distribution based on fuzzy theory

The Nature and Realization of Quantum Entanglement

Supplementary Information

3.1 ML and Empirical Distribution

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

10) Activity analysis

AN ANALYSIS OF A FRACTAL KINETICS CURVE OF SAVAGEAU

Gadjah Mada University, Indonesia. Yogyakarta State University, Indonesia Karangmalang Yogyakarta 55281

PROBABILITY AND STATISTICS Vol. III - Analysis of Variance and Analysis of Covariance - V. Nollau ANALYSIS OF VARIANCE AND ANALYSIS OF COVARIANCE

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e.

Decoupling Theorems MASTER THESIS: Oleg Szehr. arxiv: v1 [quant-ph] 17 Jul Marco Tomamichel, Frédéric Dupuis and Renato Renner

6.854J / J Advanced Algorithms Fall 2008

Linear Regression Analysis: Terminology and Notation

Finite Vector Space Representations Ross Bannister Data Assimilation Research Centre, Reading, UK Last updated: 2nd August 2003

arxiv: v3 [quant-ph] 14 Feb 2013

Lecture Notes on Linear Regression

arxiv:quant-ph/ v1 16 Mar 2000

PARTITIONS WITH PARTS IN A FINITE SET

Phys304 Quantum Physics II (2005) Quantum Mechanics Summary. 2. This kind of behaviour can be described in the mathematical language of vectors:

Transcription:

One-Shot Quantu Inforaton Theory I: Entropc Quanttes Nlanjana Datta Unversty of Cabrdge,U.K.

In Quantu nforaton theory, ntally one evaluated: optal rates of nfo-processng tasks, e.g., data copresson, transsson of nforaton through a channel, etc. under the assupton of an asyptotc, eoryless settng Assue: nforaton sources & channels are eoryless They are avalable for asyptotcally any uses

E.g. Transsson of classcal nforaton classcal nfo N Nosy quantu channel Optal rate (of classcal nforaton transsson): classcal capacty C( N) axu nuber of bts transtted per use of N eoryless: there s no correlaton n the nose actng on successve nputs n N : n successve uses of the channel; ndependent

To evaluate C( N): asyptotc, eoryless settng classcal nfo n n N uses x E n encodng ( n ) x nput N n N n ( n) x ( ) channel output D n decodng POVM x ' p ( n ) e One requres : prob. of error 0 as n C( N): Optal rate of relable nforaton transsson

Entropc Quanttes Optal rates of nforaton-processng tasks n the asyptotc, eoryless settng Copresson of Inforaton: Meoryless quantu nfo. source Data copresson lt: S( ), H von Neuann entropy [Schuacher] Info Transsson thro' a eoryless quantu channel C( N) Classcal capacty --gven n ters of the Holevo capacty ; Quantu capacty Q( N) N [Holevo, Schuacher, Westoreland] [Lloyd, Shor, Devetak] --gven n ters of the coherent nforaton ;

These entropc quanttes are all obtanable fro a sngle parent quantty; Quantu relatve entropy: For, 0; Tr 1 D( ) : Tr log Tr lg o supp supp e.g. Data copresson lt: S( ) : Tr lo D( I) g ( I)

In real-world applcatons asyptotc eoryless settng not necessarly vald In practce: nforaton sources & channels are used a fnte nuber of tes; there are unavodable correlatons between successve uses (eory effects) Hence t s portant to evaluate optal rates for a fnte nuber of uses (or even a sngle use) of an arbtrary source or channel Evaluaton of correspondng optal rates: One-shot nforaton theory

One-shot nforaton theory classcal nfo N sngle use x E encodng x nput N N( x ) channel output D decodng POVM x ' One-shot classcal capacty error : C (1) ( N) Prob. of p e error: ax. nuber of bts that can be transtted on a sngle use of for soe N 0,

In the one-shot settng too Capactes, data copresson lt etc. are -- gven n ters of entropc quanttes Mn-/ax-/0- entropes (R.Renner) Obtanable fro certan (generalzed) relatve entropes Parent quanttes for optal rates n the one-shot settng D ( ) D ( ) D ( ) ax 0 n Max-relatve entropy 0-relatve Reny entropy Mn-relatve entropy super-parent : D ( ) Quantu Reny Dvergence (sandwched Reny relatve entropy) [Wlde et al; Muller-Lennert et al]

In the one-shot settng too Capactes, data copresson lt etc. are -- gven n ters of entropc quanttes Mn-/ax- entropes (R.Renner) Obtanable fro certan (generalzed) relatve entropes D ( ) D ( ) D ( ) ax 0 n 1 D( )? [ND, F.Ledtzky] D ( ) Quantu Reny Dvergence (sandwched Reny entropy) [Wlde et al; Muller-Lennert et al] 1 2 relatve Reny entropy D ( ) f [, ] 0

Outlne Matheatcal Tool: Sedefnte prograng Defntons of generalzed relatve entropes: D ( ), D ( ), D ( ) ax 0 n Propertes & operatonal sgnfcances of the Ther soothed versons Ther chldren: the n-, ax- and 0-entropes The super-parent : Quantu Reny Dvergence Relatonshp between D ( ) & D0 ( ) D ( )

Notatons & Defntons A H A quantu syste Hlbert space B ( H ): algebra of lnear operators actng on H P ( H ):set of postve operators D ( H ) P( H ): Lnear aps: If ts adjont ap: defned through set of densty atrces (states) : B ( H ) B( H ) A * : B A Tr ( ) Tr * ( ) B A B A Quantu operatons (quantu channels) : lnear CPTP ap B : A B

Matheatcal Tool Se-defnte prograng (SDP) A well-establshed for of convex optzaton The objectve functon s lnear n an nput constraned to a se-defnte cone Effcent algorths have been devsed for ts soluton

Matheatcal Tool (2) Se-defnte prograng (SDP) (, A, B); : P ( H ) P( H ) postvty-preservng ap Pral proble nze subject to AB, P ( H ), A B (forulaton:watrous) Dual proble AX axze Tr( BY ) Tr( ) ( X) B; subject to * ( Y) A; X 0; Y 0; Optal solutons: IF Slater s dualty condton holds.

Outlne Matheatcal Toolkt: Sedefnte prograng Defntons of generalzed relatve entropes: D ( ), D ( ), D ( ) ax 0 n

D ( H ), Defntons of generalzed relatve entropes P ( H ); supp supp ; Max-relatve entropy [ND] D ax ( ): nf : 2 ax 1/2 1/2 1/2 1/2 log ( ) 2 I Mn-relatve entropy [Dupus et al] D ( ): 2log n 1 2log F(, ) fdelty

D 0 Defntons of generalzed relatve entropes D ( H ), P ( H ); supp supp ; 0-relatve Reny entropy ( ): log Tr ( ) where denotes the projector onto supp contd. -relatve Reny entropy ( 1) 1 D 1 1 ( ): log Tr ( ) l D ( ) 0 = D ( ) 0

Propertes of generalzed relatve entropes Postvty: If, D ( H ), for * ax, 0, n D ( ) 0 * Data-processng nequalty: just as D( ) D ( ( ) ( )) D ( ) for any CPTP ap * * Invarance under jont untares: D ( UU UU ) D ( ) * * for any untary operator U Interestngly, D ( ) D ( ) D( ) D ( ) 0 n ax

Operatonal nterpretaton of the ax-relatve entropy Multple state dscrnaton proble: ts state Bob He does easureents to nfer the state: POVM Hs optal average success probablty: p a quantu syste & told 1 * 1 succ E1,.., E 1 : ax Tr 2 E 1,.., E : 0 E I; E I 1 E wth prob. 1 1

Theore 3 [M.Mosony & ND]: The optal average success probablty n ths ultple state dscrnaton proble s gven by: * p succ 1 n ax 1 D ax ( ) 2

Sketch of proof: Let 1 : bass n C Let 1 1 : 1,.., 1 * 1 : ax Tr E E succ E p 1 : 1 ax Tr ( )] [ POVM E E ( ); Tr ax Tr I Y Y Y C C H P H 1 ( ); E Y C P H Tr ; E I Y C H ( ) C P H

Sketch of proof: Let 1 : bass n C Let 1 1 : 1,.., 1 * 1 : ax Tr E E succ E p 1 : 1 ax Tr ( )] [ POVM E E ( ); Tr ax Tr I Y Y Y C C H P H 1 ( ); E Y C P H Tr ; E I Y C H ( ) C P H

Let 1 : p * 1 succ E1,.., E 1 Sketch of proof: bass n C Let : ax Tr E E 1 : POVM 1 : ax Tr [ ( E )] 1 1 P ( C H ) ax Tr YP ( C H ); Tr Y I C H Y Y 1 E Tr Y E I ; C P ( C H ); H SDP dualty condton holds [Koeng, Renner, Schaffner]

Pral proble Dual proble nze subject to AX axze Tr( BY ) Tr( ) ( X) B; subject to * ( Y) A; X 0; Y 0; nze subject to Tr( AX ) * =Tr : P ( C H ) P( H ) C Tr X I X C X 0; Tr( I X) Tr X H B : P ( H ) P( C H ); ax Tr YP ( C H ); Tr Y I C ; A H I H ; ( X) I X C Y * =TrC

* succ Sketch of proof contd: p n Tr X : X 0, I X ; C : n Tr X : X 0, X 1,2,.., 1 I X C 1 n Tr X : X 0, X 1,2,.., X 1 1 1 1 X X; TrX TrX TrX 1 n X : 0, 1, 2,.., D ( H ) 1 n ax 1 M D TrX X =Tr X ; ; X TrX nf : 2 ax ( ) 2 Dax ( )

Operatonal nterpretaton of 0 Quantu bnary Bob receves a state hypothess testng: He does a easureent to nfer whch state t s POVM A Possble errors Type I Type II Error probabltes [ ] Tr(( I A) ) Tr( A ) ( I A) or & [ ] nference D (null hypothess) ( ): log Tr ( ) actual state Type I Type II (alternatve hypothess)

Suppose (POVM eleent) A Prob(Type I error) Prob(Type II error) Tr(( I A) ) Tr( A ) 0 Tr( ) Bob never nfers the state to be when t s BUT D 0 ( ) : log Tr 0 ( ) 2 D Hence 0 = Prob(Type II error Type I error = zero)

Suppose (POVM eleent) A Prob(Type I error) Prob(Type II error) Tr(( I A) ) Tr( A ) 0 Tr( ) Bob never nfers the state to be when t s BUT D 0 ( ) : log Tr In fact, n Prob(Type II error Type I error = zero) * 0 0 2 D ( )

0.e., let 0A Ifor soe 0. Tr ( A ) 1 ( ) log * log Tr D 0 0 log *? 0AI Tr ( A ) 1 Tr(( I A) ); 0 Tr ( A) Tr ( ) 1 For choose A such that Tr ( A) 1 D ( ) 0 Soothed relatve entropes What f Bob has a sngle copy of the state but one allows non-zero but sall value of the Prob(Type I error)? * n Tr ( A ) * n Tr ( A ) log * ax log(tr ( A)) Hypothess testng relatve entropy [Wang & Renner] 0AI Tr ( A ) 1 D ( ) H

Copare operatonal sgnfcances of D & D( ) D( ) arses n asyptotc bnary hypothess testng Suppose Bob s gven any dentcal copes of the state He receves *( n) ( n) [0,1) : : 1 n ( n) n n H ( ) Bob s POVM A I A n,( ) Mnu type II error when type I error *( n) l log ( n) D( ) n [Quantu Sten s Lea] n

Operatonal nterpretatons n bnary hypothess testng D ( ) H One-shot settng; Sngle copy of the state: log * D( ) Asyptotc eoryless settng; Multple copes of the state: 1 n *( n) l log ( n) n [0,1) : n n (Bob receves dentcal copes of the state: or )

0. Sooth ax-relatve entropy D ( ) ax B ( ) : n D ( ) ax B ( ) : 0,Tr 1: F(, ) 1 fdelty 2 D ax ( ) & D ( ) 2 H can both be forulated as SDPs

Outlne Matheatcal Toolkt: Sedefnte prograng Defntons of generalzed relatve entropes: D ( ), D ( ), D ( ) ax 0 n Propertes & operatonal sgnfcances of the Ther chldren: the n-, ax- and 0-entropes

Just as: D ( ), D ( ) & D ( ) ax 0 n von Neuann entropy as parent quanttes for other entropes S D I ( ) ( ) ( I) H n ( ): D ax ( I) log ax H 0 ( ): ( ) D I 0 log rank( ) H ax ( ): D ( I) n [Renner] 2log Tr

Other n- & ax- entropes For a bpartte state AB : A B Condtonal entropy S( A B) S( ) S( ) Condtonal n-entropy H n ax D( I ) ( A B) : ax D ( I ) Max-condtonal entropy H H ax 0 AB B ax n B AB A B ( A B) : ax D ( I ) 0-condtonal entropy B 0 AB A B ( A B) : ax D ( I ) B B AB A B AB A B

They have nterestng atheatcal propertes: e.g. Dualty relaton: [Koeng, Renner, Schaffner]: For any purfcaton ax : ABC of a bpartte state H ( A B) H ( A C) n AB (just as for the von Neuann entropy): H ( A B) H( A C) -- and -- nterestng operatonal nterpretatons:

Condtonal n-entropy Operatonal nterpretatons axu achevable snglet fracton Condtonal ax-entropy [Koeng, Renner, Schaffner] decouplng accuracy Condtonal 0-entropy one-shot entangleent cost under LOCC [F.Busce, ND]

Operatonal nterpretatons contd. Condtonal n-entropy Max. achevable snglet fracton d 1 H H H AB A B A B d 1 AB AB AB 2 n ( AB ) 2 d ax F (d ), B : CPTP : ( ) A B AB AB fdelty Gven the bpartte state t s the axu overlap wth the snglet state quantu operatons AB, AB, that can be acheved by local on the subsyste B. B ax. entangled state [Koeng, Renner, Schaffner]

Operatonal nterpretatons contd. Condtonal ax-entropy Decouplng accuracy Dstance of AB, fro a product state H 2 ax ( AB ) 2 d ax F, A A AB A B B fdelty How rando appears fro the pont of vew of an adversary who has access to B. no correlatons; I A copletely xed state on HA d A Fro the cryptographc pont of vew: A B decoupled [Koeng, Renner, Schaffner]

Operatonal nterpretatons contd. Condtonal 0-entropy one-shot entangleent cost One-shot Entangleent Dluton Bell states Bell : LOCC Alce AB Bob One-shot entangleent cost E (1) ( ): C AB n = nu nuber of Bell states needed to prepare a sngle copy of AB va LOCC

Pure-state ensebles: and E E Operatonal nterpretatons contd. Theore [F.Busce & ND]: One-shot perfect entangleent cost of a bpartte state AB under LOCC: E (1) ( ) n H ( A R) C AB 0 p, ; AB p E p RAB R R AB AB E E Tr, RA B RAB AB AB AB classcal-quantu state E condtonal 0-entropy

Outlne Matheatcal Toolkt: Sedefnte prograng Defntons of generalzed relatve entropes: D ( ), D ( ), D ( ) ax 0 n Propertes & operatonal sgnfcances of the and ther chldren: the n-, ax- and 0-entropes Ther soothed versons The super-parent : Quantu Reny Dvergence D ( )

D ( ) D ( ) D ( ) ax 0 n Max-relatve entropy O-relatve Reny entropy Mn-relatve entropy super-parent : D ( ) Quantu Reny Dvergence (sandwched Reny entropy) [Wlde et al; Muller-Lennert et al]

super-parent : Quantu Reny Dvergence (sandwched Reny entropy) [Wlde et al; Muller-Lennert et al] D ( ) D ( ) D ( ) ax 0 n 1 2 D( ) 1 D ( ) D ( ) f [, ] 0

D ( H ), For (0,1) (1, ) : D Quantu Reny Dvergence 1 ( : Tr ) log ( ) ; 1 where Note: If [, ] 0 Tr ( Tr ( ) P ( H ); supp supp ; 1 2 2 ) 2 1 2 Tr 1 Tr D ( ) 1 log Tr ( 1 ) 1 D ( ) -relatve Reny entropy

D ( H ), For D Quantu Reny Dvergence 1 ( : Tr ) log ( ) ; 1 where Note: If [, ] 0 (0,1) (1, ) : Tr ( ) P ( H ); supp supp ; 1 2 2 1 Non-coutatve generalzaton of D ( ) Tr ( 2 ) 2 Tr 1 Tr D ( ) 1 log Tr ( 1 ) 1 D ( ) -relatve Reny entropy

Two propertes of Quantu Reny Dvergence (1) Data-processng nequalty; For [Frank & Leb; Beg 2013] holds also for D ( ( ) ( ) ) D ( ) : D ( ), D( ), D ( ) n 1 2 1 1, 2 CPTP ap ax

Two propertes of Quantu Reny Dvergence 1 (1) Monotoncty under CPTP aps : For, 2 [Frank & Leb; Beg 2013] holds also for D ( ( ) ( ) ) D ( ) D ( ), D( ), D ( ) n (2) Jont convexty: D For 1 1, 2 ( p p ) p D ( ) holds also for D n ( ), D ( ) Note: D ( ) ax s quas-convex: [ND] ax ax [Frank & Leb] D ( p p ) ax D ( ) ax 1 n

What about D ( )? 0

Outlne Matheatcal Toolkt: Sedefnte prograng Defntons of generalzed relatve entropes: D ( ), D ( ), D ( ) ax 0 n Propertes & operatonal sgnfcances of the Ther chldren: the n-, ax- and 0-entropes Ther soothed versons The super-parent : Quantu Reny Dvergence D ( ) Relatonshp between D ( ) & D0 ( ) & ts plcaton

Theore: [ND, F.Ledtzky] If For, 0,Tr 1; f then supp supp, l D ( ) = D ( ) 0...(1) 0 0 supp supp ; then (1) does not necessarly hold D ( ): Quantu Reny Dvergence D ( ): 0 0-relatve Reny entropy D ( ) D ( ) D ( ) ax 0 n D( ) D ( ) D ( ) f [, ] 0

Theore: [ND, F.Ledtzky] If For, 0,Tr 1; f then supp supp, Proof (key steps): (1) (2) If l D ( ) = D ( ) 0...(1) 0 supp supp : 0 supp supp ; then (1) does not necessarly hold D l D ( ) l D ( ) 0 0 (Arak-Leb-Thrrng nequalty) supp supp : ( ) D ( ) If 0 0 0. l D ( ) D ( )...( b) ( a)&( b) (1) supp supp ; (a varant of the Pnchng lea) f D ( )...( a ) 0

Proof of the fact: If l D ( ) = D ( ) 0 A sple counterexaple: 0 supp supp, then does not necessarly hold 1 0 ; 0 0 1 c c 1 c (0,1)., 0,, 0. D ( ) 0 0 l D ( ) = - log(1 c) 0 0;

Suary Generalzed relatve entropes: D ( ), D ( ), D ( ) ax 0 n Propertes & soe operatonal sgnfcances D ( ): ax n ultple state dscrnaton, D 0 ( ): n bnary hypothess testng D0 D H Ther soothed versons; Ther chldren: the n-, ax- and 0-entropes The super-parent : Quantu Reny Dvergence D ( ) & D ( ) Relatonshp between 0 ( ) ( ) Operatonal sgnfcances of condtonal entropes D ( )

Thank you! Thanks also to: F.Busce, F.Brandao, M-H.Hseh, F.Ledtzky, M.Mosony, R.Renner, T.Rudolph,