ON A DIOPHANTINE EQUATION ON TRIANGULAR NUMBERS

Similar documents
FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP

arxiv: v1 [math.co] 12 Sep 2014

A combinatorial proof of multiple angle formulas involving Fibonacci and Lucas numbers

APPENDIX A Some Linear Algebra

Formulas for the Determinant

Difference Equations

Bernoulli Numbers and Polynomials

Math 217 Fall 2013 Homework 2 Solutions

Smarandache-Zero Divisors in Group Rings

DONALD M. DAVIS. 1. Main result

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS

Foundations of Arithmetic

Binomial transforms of the modified k-fibonacci-like sequence

Determinants Containing Powers of Generalized Fibonacci Numbers

REGULAR POSITIVE TERNARY QUADRATIC FORMS. 1. Introduction

Some congruences related to harmonic numbers and the terms of the second order sequences

Neryškioji dichotominių testo klausimų ir socialinių rodiklių diferencijavimo savybių klasifikacija

First day August 1, Problems and Solutions

The internal structure of natural numbers and one method for the definition of large prime numbers

Christian Aebi Collège Calvin, Geneva, Switzerland

Anti-van der Waerden numbers of 3-term arithmetic progressions.

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Randić Energy and Randić Estrada Index of a Graph

The binomial transforms of the generalized (s, t )-Jacobsthal matrix sequence

Differential Polynomials

International Mathematical Olympiad. Preliminary Selection Contest 2012 Hong Kong. Outline of Solutions

Another converse of Jensen s inequality

Problem Solving in Math (Math 43900) Fall 2013

Expected Value and Variance

On quasiperfect numbers

Finding Primitive Roots Pseudo-Deterministically

2.3 Nilpotent endomorphisms

Hyper-Sums of Powers of Integers and the Akiyama-Tanigawa Matrix

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method

MAT 578 Functional Analysis

Exercise Solutions to Real Analysis

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

The Number of Ways to Write n as a Sum of ` Regular Figurate Numbers

Projective change between two Special (α, β)- Finsler Metrics

Volume 18 Figure 1. Notation 1. Notation 2. Observation 1. Remark 1. Remark 2. Remark 3. Remark 4. Remark 5. Remark 6. Theorem A [2]. Theorem B [2].

h-analogue of Fibonacci Numbers

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence

The Jacobsthal and Jacobsthal-Lucas Numbers via Square Roots of Matrices

Lecture 3. Ax x i a i. i i

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS

Restricted divisor sums

THERE ARE INFINITELY MANY FIBONACCI COMPOSITES WITH PRIME SUBSCRIPTS

arxiv: v1 [math.ho] 18 May 2008

Homework Notes Week 7

The lower and upper bounds on Perron root of nonnegative irreducible matrices

ALGEBRA MID-TERM. 1 Suppose I is a principal ideal of the integral domain R. Prove that the R-module I R I has no non-zero torsion elements.

A summation on Bernoulli numbers

Affine transformations and convexity

REDUCTION MODULO p. We will prove the reduction modulo p theorem in the general form as given by exercise 4.12, p. 143, of [1].

Errors for Linear Systems

*********************************************************

Self-complementing permutations of k-uniform hypergraphs

On the average number of divisors of the sum of digits of squares

Zhi-Wei Sun (Nanjing)

On a one-parameter family of Riordan arrays and the weight distribution of MDS codes

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41,

SL n (F ) Equals its Own Derived Group

The Minimum Universal Cost Flow in an Infeasible Flow Network

General viscosity iterative method for a sequence of quasi-nonexpansive mappings

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

(2mn, m 2 n 2, m 2 + n 2 )

Chowla s Problem on the Non-Vanishing of Certain Infinite Series and Related Questions

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Dirichlet s Theorem In Arithmetic Progressions

5 The Rational Canonical Form

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

A Simple Proof of Sylvester s (Determinants) Identity

Fixed points of IA-endomorphisms of a free metabelian Lie algebra

arxiv: v6 [math.nt] 23 Aug 2016

An (almost) unbiased estimator for the S-Gini index

Valuated Binary Tree: A New Approach in Study of Integers

More metrics on cartesian products

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

On the set of natural numbers

Convexity preserving interpolation by splines of arbitrary degree

(c) (cos θ + i sin θ) 5 = cos 5 θ + 5 cos 4 θ (i sin θ) + 10 cos 3 θ(i sin θ) cos 2 θ(i sin θ) 3 + 5cos θ (i sin θ) 4 + (i sin θ) 5 (A1)

On Two Exponents of Approximation Related to a Real Number and Its Square

Lecture 5 Decoding Binary BCH Codes

P.P. PROPERTIES OF GROUP RINGS. Libo Zan and Jianlong Chen

STEINHAUS PROPERTY IN BANACH LATTICES

= z 20 z n. (k 20) + 4 z k = 4

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

Math 261 Exercise sheet 2

Complex Numbers Alpha, Round 1 Test #123

Beyond Zudilin s Conjectured q-analog of Schmidt s problem

Linear Algebra and its Applications

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

MATH 281A: Homework #6

Modelli Clamfim Equazione del Calore Lezione ottobre 2014

On the spectral norm of r-circulant matrices with the Pell and Pell-Lucas numbers

The path of ants Dragos Crisan, Andrei Petridean, 11 th grade. Colegiul National "Emil Racovita", Cluj-Napoca

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013

Section 8.3 Polar Form of Complex Numbers

Transcription:

Mskolc Mathematcal Notes HU e-issn 787-43 Vol. 8 (7), No., pp. 779 786 DOI:.854/MMN.7.536 ON A DIOPHANTINE EUATION ON TRIANGULAR NUMBERS ABDELKADER HAMTAT AND DJILALI BEHLOUL Receved 6 February, 5 Abstract. A number N s a trangular number f t can be wrtten as N D C C C n for some natural number n. We study the problem of fndng all nonnegatve nteger solutons of the Dophantne equaton. C C C X/ C. C C C Y / D. C C C Z/. Usng ths equaton, some new and curous ncreasng nteger sequences are bult. Mathematcs Subject Classfcaton: D5; D4 Keywords: Dophantne equaton, trangular numbers. INTRODUCTION A trangular number s a number of the form T n D n P kd k D n.n C /=, where n s a natural number. So the frst few trangular numbers are ; ; 3; 6; ; 5; ; 8;... (sequence A7 n [6]). A well known fact about the trangular numbers s that X s a trangular number f and only f 8X C s a perfect square. Trangular numbers can be thought of as the numbers of dots needed to make a trangle. We are concerned by the Dophantne equaton of the form T X C T Y D T Z (.) Papers [ 5] gave many nterestng results concernng the problem of solvablty of Dophantne equatons related to trangular numbers. The am of ths paper s twofold: on the one hand, t gves all solutons of the Dophantne equaton (.), and on the other hand, t gves us a method of fndng explctly (and quckly) nfnte famles of solutons of (.) n where many new nteger sequences are derved.. GENERAL SOLUTION Let us start wth some techncal lemmas. Lemma. Let a;b;c;d N. Then ab D cd f and only f there exst p;q;m;n N such that a D mn; b D pq; c D mp and d D nq. c 7 Mskolc Unversty Press

78 ABDELKADER HAMTAT AND DJILALI BEHLOUL Proof. Let a D AN p and b D N and B are fnte sets. The fact cd D A A p B B qˇ and d D ˇ ;ˇ ˇ wth D C qˇ ; n D B B A A pq; c D mp and d D nq: A A qˇ BN p where p ;q are prmes, ;ˇ mples that c D AN B B p BN qˇ and ˇ D ˇ C ˇ : If we put m D p and q D B B qˇ qˇ, where ; ; p A A ; p D then we obtan, a D mn; b D Lemma. Equaton (.) s equvalent to X.X C / D.Z Y /.Z C Y C /. Proof. Replacng T X by equaton (.) becomes X.X C /.e., Thus X.X C /, T Y by C Y.Y C / D Y.Y C / Z.Z C / ; and T Z by Z.Z C / X C X C Y C Y D Z C Z: (.) X.X C / D.Z Y /.Z C Y C /: Now, we are able to establsh the followng theorem. Theorem 8. All nonnegatve nteger solutons of the equaton T X CT Y D T Z are < X D mn gven by Y D :.nq mp / W m;n;p;q N Z D.nq C mp / where pq mn D and nq mp N: Proof. Accordng to Lemma, (.) s equvalent to X.X C / D.Z Y C /, thus thanks to Lemma, one has Therefore we get X D mn X C D pq Z Y D mp Z C Y C D nq where m;n;p;q N: X D mn Y D.nq mp / Y /.Z C

ON A DIOPHANTINE EUATION ON TRIANGULAR NUMBERS 78 Z D.nq C mp / where m;n;p;q N such that pq mn D and nq mp N: Example. p D 4; q D 7; m D 3 and n D 9. Clearly, X D 7; Y D 5 and Z D 37: 3. SOLUTIONS FAMILIES Frst of all, note that t s not easy to fnd ntegers m;n;p;q such that pq mn D and nq mp N: The usage of matrces enables us to obtan a large number of solutons of (.). In ths secton, we wll construct several nfnte many famles solutons of our trangular equaton. By completng squares n (.), we obtan Multplyng both sdes by 4, we get.x C / C.Y C / D.Z C / C 4 :.X C / C.Y C / D.Z C / C : By puttng, x D X C ; y D Y C and D Z C, we obtan x C y D C : (3.) Snce the proof of the followng proposton can be seen easly we omt t. Proposton. The two famles A are solutons of (3.) for all nteger a. @ a a @ a a Theorem. There exst some 33 matrces M; wth elements n f;;3g; such that f @ x y A s a soluton of (3.) then M@ x y A s also a soluton. Proof. Let M D It s clear that @ A B C E F G L M N @ A B C E F G L M N A Now, f the followng system holds A and let @ x y A D @ x y A a soluton of (3.). @ Ax C By C C Fy C G C Ex Lx C My C N A: A L C E D (3.) B C F M D C C G N D

78 ABDELKADER HAMTAT AND DJILALI BEHLOUL then AB LM C EF D AC LN C EG D BC MN C F G D.Ax C By C C / C.Fy C G C Ex /.Lx C My C N / D : It follows from ths, @ Ax C By C C Fy C G C Ex A s a soluton of (3.). Lx C My C N We wll explore, n fve steps, all solutons of the system.s/ are n the space f;;3g 9. Case : A D L D E D : B C F M D (3.3) C C G N D B C F D M (3.4) C C G D N BC MN C F G D : From (3.4), we obtan F D or B D ; then (3.3) mples B D M or F D M then F D or B D whch s mpossble. Case : A D ; L D E D : B C F M D C C G N D B M C F D (3.5) C N C G D (3.6) BC MN C F G D : Equatons (3.5) and (3.6) mply that B and C are even. Then from M F D 3 (3.7) N G D 5 (3.8) M F D N G D MN F G D 4: Equaton (3.7) gves M D ;F D and (3.8) gves N D 3;G D ;

then M D ON A DIOPHANTINE EUATION ON TRIANGULAR NUMBERS 783 @ A B C E F G L M N Case 3 : A D ;L D E D 3: A D @ 3 A: B C F M D C C G N D B 3M C 3F D (3.9) C 3N C 3G D (3.) BC MN C F G D : Equatons (3.9) and (3.) gve us B D C D 3; then F M D 8 G N D (3.) M C F D N C G D MN C F G D 9: It s easy to see that equaton (3.) s mpossble n f;;3g Case 4 : A D : Equaton 3. mples that L D ; E D : So, we get B C F M D C C G N D B M C F D (3.) C N C G D (3.3) BC MN C F G D : Equatons (3.) and (3.3) gve us F D G D ; thus M B D 3 (3.4) N C D 5 (3.5) M B D N C D BC MN C 4 D : Equaton (3.4) gves us M D ;B D and (3.5) gves N D 3;C D :

784 ABDELKADER HAMTAT AND DJILALI BEHLOUL We obtan M D @ A B C E F G L M N A D @ 3 A: Case 5 : A D 3: Equaton ( ) n.s/ mples that : L D 3;E D : Now B C F M D C C G N D 3B 3M C F D (3.6) 3C 3N C G D (3.7) BC MN C F G D : Equatons (3.6) and (3.7) gve us F D G D 3; thus M B D 8 N C D (3.8) B M C D C N C D BC MN C 9 D : It s easy to see that equaton (3.8) s mpossble n f;;3g : Corollary. The equaton (.) admts nfnte many solutons. Proof. Let M D M and @ x y A D @ A a soluton of (3.) then M n @ A s a soluton of (3.) for all nteger n : 4. NEW INTEGER SEUENCES Usng the on-lne Encyclopeda of nteger sequences (see [6]), we can easly check that the followng two nteger sequences formed by solutons X of trangular equaton (.) : ;5;35;3;79;699;439;3545;375;79973::: and ;8;54;3; 884; 988; 645; 37338; 75864; 6887;::: are new. 4.. Constructons : We start wth @ 3 a soluton of (3.), thanks to theorem, by multplyng recursvely by M, we 3 obtan

@ 3 7 @ 4783 47 833 665 857 ON A DIOPHANTINE EUATION ON TRIANGULAR NUMBERS 785 @ 7 69 99 @ 47 49 577 @ 744 744 9 388 899 @ 379 377 3363 @ 599447 599449 69537 @ 3859 386 96 @ 8783 878 4 43 ::: are also solutons of (3.). We get, x D 3;;7;47;379;3859;8783;4783;744;599447;::: But x D X C ; so X D ;5;35;3;79;699;439;3545;375;79973;::: s a new sequence of odd ntegers formed by solutons X of our trangular equaton (.). : We start wth @ 5 A a soluton of (3.), thanks to theorem, by multplyng recursvely by M, we obtan 5 @ 7 @ 9 3 @ 645 649 @ 3769 3773 @ 977 98 @ 8 8 5 7 57 95 5333 383 8 65 @ 746637 746 64 55 97 @ 43579 435 733 654 77 @ 5363745 5363749 35869755 ::: are also solutons of (3.). We get, x D ;7;9;645;3769;977;8;746637;43579;5363745;::: But x D X C ; then X D ;8;54;3;884;988;645;37338;75864;6887;::: s a new sequence of even ntegers formed by solutons X of our trangular equaton (. ). REFERENCES [] M. A. Bennett, A queston of Serpnsk on trangular numbers. Integers, vol. 5, no., pp. A5,, 5. [] J. A. Ewell, On sums of three trangular numbers. Fbonacc uart., vol. 6, no. 4, pp. 33 335, 988. [3] I. Joshua and J. Lenny, Arthmetc progressons nvolvng trangular numbers and squares. J. Comb. Number Theory, vol. 5, no. 3, pp. 65 79, 3. [4] R. Keskn and O. Karaatl, Some new propertes of balancng numbers and square trangular numbers. J. Integer Seq., vol. 5, no., pp. Artcle..4, 3,. [5] W. Serpnsk, Theorem on trangular numbers. Elem. Math., vol. 3, pp. 3 3, 968. [6] N. Sloane, The On-Lne Encyclopeda of Integer Sequences., https://oes.org/.

786 ABDELKADER HAMTAT AND DJILALI BEHLOUL Authors addresses Abdelkader Hamtat A.T.N. Laboratory, Faculty of Mathematcs, USTHB BP 3, El Ala, 6, Bab Ezzouar, Algers ALGERIA E-mal address: ahamttat@gmal.com Djlal Behloul A.T.N. Laboratory, Faculty of Mathematcs, USTHB BP 3, El Ala, 6, Bab Ezzouar, Algers ALGERIA E-mal address: dbehloul@yahoo.fr