Outside the Solar System

Similar documents
Galaxies. Beyond the Book. FOCUS Book. Make a model that helps demonstrate how the universe is expanding. Follow these steps:

Stars and Galaxies 1

TAKE A LOOK 2. Identify This star is in the last stage of its life cycle. What is that stage?

OUTSIDE THE SOLAR SYSTEM Outside the Solar System

Directed Reading A. Section: The Life Cycle of Stars TYPES OF STARS THE LIFE CYCLE OF SUNLIKE STARS A TOOL FOR STUDYING STARS.

Prentice Hall EARTH SCIENCE

Chapter Introduction Lesson 1 The View from Earth Lesson 2 The Sun and Other Stars Lesson 3 Evolution of Stars Lesson 4 Galaxies and the Universe

Life Cycle of a Star - Activities

A a system made up of millions. B a system made up of hundreds. C a system in which planets. D a star that has exploded in

Earth in Space. Stars, Galaxies, and the Universe

LESSON 1. Solar System

Beyond the Book. FOCUS Book

What is the solar system?

Beyond Our Solar System Chapter 24

Introduction to Astronomy

The Universe and Galaxies

Galaxies and Star Systems

The Universe. is space and everything in it.

CHAPTER 9: STARS AND GALAXIES

Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE

8/30/2010. Classifying Stars. Classifying Stars. Classifying Stars

The Universe. But first, let s talk about light! 2012 Pearson Education, Inc.

ANSWER KEY. Stars, Galaxies, and the Universe. Telescopes Guided Reading and Study. Characteristics of Stars Guided Reading and Study

Figure 19.19: HST photo called Hubble Deep Field.

The Universe and Galaxies. Adapted from:

Astronomy 1. 10/17/17 - NASA JPL field trip 10/17/17 - LA Griffith Observatory field trip

Understanding the Universe S TA R T ING WITH EARTH A ND B E YO ND

What is the sun? The sun is a star at the center of our solar system.

Stars & Galaxies. Chapter 27 Modern Earth Science

Stars and Galaxies. Content Outline for Teaching

Study Guide Chapter 2

Earth Science, 13e Tarbuck & Lutgens

Galaxies and the Universe

days to rotate in its own axis km in diameter ( 109 diameter of the Earth ) and kg in mass ( mass of the Earth)

Beyond the Book. FOCUS Book

CST Prep- 8 th Grade Astronomy

GALAXIES AND STARS. 2. Which star has a higher luminosity and a lower temperature than the Sun? A Rigel B Barnard s Star C Alpha Centauri D Aldebaran

Astronomy Universe: all of space and everything in it

Learning About Our Solar System

Earth Space Systems. Semester 1 Exam. Astronomy Vocabulary

25.2 Stellar Evolution. By studying stars of different ages, astronomers have been able to piece together the evolution of a star.

Stars & Galaxies. Chapter 27, Section 1. Composition & Temperature. Chapter 27 Modern Earth Science Characteristics of Stars

Beyond the Book. FOCUS Book

Properties of Stars. Characteristics of Stars

An Introduction to AST 112 Stars, Galaxies, and the Cosmos

A Science A Z Earth Series Word Count: 1,239. Written by David Dreier. Visit

Galaxies and Stars. 3. Base your answer to the following question on The reaction below represents an energy-producing process.

Test ABCDE. 1. What is the oldest era on the geological timescale? A. Precambrian B. Paleozoic C. Mesozoic D. Cenozoic

2. The distance between the Sun and the next closest star, Proxima Centuari, is MOST accurately measured in

What is Earth Science?

Introduction to the Night Sky

Universe Celestial Object Galaxy Solar System

Name Date Period. 10. convection zone 11. radiation zone 12. core

A Stars Characteristics

STARS AND GALAXIES. Part I: A Trip Through the Universe What We Will See

The Sun s center is much hotter than the surface. The Sun looks large and bright in the sky. Other stars look much smaller.

The Big Bang Theory (page 854)

NSCI 314 LIFE IN THE COSMOS

Astronomy Part 1 Regents Questions

A protostar forming in the Orion Nebula. This also has protoplanetary discs, and will probably become a planetary system.

TEACHER BACKGROUND INFORMATION

Answers. The Universe. Year 10 Science Chapter 6

Galaxies Galore. Types of Galaxies: Star Clusters. Spiral spinning wit arms Elliptical roundish Irregular no set pattern

Stars and Galaxies. Evolution of Stars

STARS AND GALAXIES STARS

UNIT 1: THE UNIVERSE VOCABULARY

What Objects Are Part of the Solar System?

A Star is born: The Sun. SNC1D7-Space

3. c 4. a 5. f 6. b 7. e. 1. Stars are bright and hot. 2. Distances between stars are measured in light-years. 3. The sun is a yellow star.

THE UNIVERSE CHAPTER 20

Chapter 28 Stars and Their Characteristics

ASTRONOMY 1 FINAL EXAM 1 Name

Star. Planet. Chapter 1 Our Place in the Universe. 1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe?

TELESCOPES POWERFUL. Beyond the Book. FOCUS Book

THE SIZE AND STRUCTURE OF THE UNIVERSE

Chapter 21: Stars Notes

The Earth and the Universe

UNIT 3: Astronomy Chapter 26: Stars and Galaxies (pages )

Miami Dade County Public Schools Educational Transformation Office and the Division of Academics: Department of Science

Introduction to the Universe

Unit 1: The Earth in the Universe

9/5/16. Astronomy 1001 Syllabus Sec 1 T,Th AM; Sec 2 T,TH PM. Astronomy 1001 First Assignments: Chapter 1: A Modern View of the Universe

Stars and Galaxies. The Sun and Other Stars

CHAPTER 4 STARS, GALAXIES & THE UNIVERSE

Unit 7 Review Guide: The Universe

What is a star? A body of gases that gives off tremendous amounts of energy in the form of light & heat. What star is closest to the earth?

Chapter 1 Our Place in the Universe

Cambridge University Press Origins of Life in the Universe Robert Jastrow and Michael Rampino Excerpt More information PART I

To infinity, and beyond!

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14

Classifying Stars. Scientists classify stars by: 1. Temperature 2. Brightness

National Aeronautics and Space Administration. Glos. Glossary. of Astronomy. Terms. Related to Galaxies

1UNIT. The Universe. What do you remember? Key language. Content objectives

Galaxies. Say Thanks to the Authors Click (No sign in required)

Our Solar System: A Speck in the Milky Way

Section 25.1 Exploring the Solar System (pages )

CHAPTER 28 STARS AND GALAXIES

Mass: 1.99 x 1030 kg. Diameter: about km = 100 x the Earth diameter. Density: about kg/m3

Chapter 17 Solar System

Coriolis Effect - the apparent curved paths of projectiles, winds, and ocean currents

Transcription:

OUTSIDE THE SOLAR SYSTEM A Science A Z Earth Series Word Count: 1,785 Outside the Solar System Written by Patricia Walsh and Ron Fridell Visit www.sciencea-z.com www.sciencea-z.com

Outside the Solar System KEY ELEMENTS USED IN THIS BOOK The Big Idea: As long as humans have existed, we have looked into the night sky with curiosity and wonder. At this point in history, we are fortunate to benefit from technology that allows us to see and study parts of the universe that earlier cultures never could have. However, we are also limited by our current knowledge and technology. As time marches on, humankind will continue to pursue an understanding of the universe and its many amazing features. Someday perhaps even in students lifetimes we may get answers to some key questions, including how the universe began and whether life exists anywhere besides on Earth. Key words: astronomer, big bang theory, black hole, cluster, constellation, cosmologist, deep space, dwarf, Earth, elliptical galaxy, exoplanet, galaxy, gas, gravity, irregular galaxy, life cycle, light-year, luminosity, mass, matter, Milky Way Galaxy, Moon, nebula, orbit, planet, solar system, space, spacecraft, spiral galaxy, star, Sun, supergiant, supernova, telescope, universe Key comprehension skills: Classify information Other suitable comprehension skills: Cause and effect; compare and contrast; main idea and details; identify facts; elements of a genre; interpret graphs, charts, and diagrams Key reading strategy: Ask and answer questions Other suitable reading strategies: Connect to prior knowledge; summarize; visualize; using a table of contents and headings; using a glossary and bold terms Written by Patricia Walsh and Ron Fridell www.sciencea-z.com Photo Credits: Front cover: ESO/IDA/Danish 1.5 m/r.gendler and A. Hornstrup; back cover: NASA, Andrew Fruchter and the ERO Team [Sylvia Baggett (STScI), Richard Hook (ST-ECF), Zoltan Levay (STScI)]; title page, page 14: NASA E/PO/Sonoma State University/Aurore Simonnet; page 3: istockphoto.com/ Stephan Hoerold; page 4: Eckhard Slawik/Photo Researchers, Inc.; pages 5 (top), 11 (bottom): Jupiterimages Corporation; page 5 (bottom left): istockphoto.com/jonathan Larsen; page 5 (bottom right): istockphoto.com/james Benet; page 6 (top left): NASA; page 6 (center left): istockphoto.com/christian Miller; page 6 (center right): NASA/JSC; page 6 (bottom right): istockphoto.com/yenwen Lu; page 7 (left): istockphoto.com/magalib; page 7 (right): istockphoto.com/jan Rysavy; page 8: Alan Dyer/Visuals Unlimited, Inc.; page 9: ESA/NASA/ SOHO; page 11 (top three): ESA and Justyn R. Maund (University of Cambridge); page 12 (bottom): X-ray: NASA/CXC/SAO, Optical: NASA/STScI; page 13 (top): NASA/ESA/JPL/Arizona State University; page 13 (bottom): NASA/JPL-Caltech/O. Krause (Steward Observatory); pages 15, 19 (bottom inset): NASA/JPL-Caltech; page 16 (top): ESO; page 16 (bottom): istockphoto.com/tpuerzer; page 17: NASA/CXC/M.Weiss; page 18 (top): NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/ Hubble Collaboration Acknowledgment: R. Chandar (Univ. Toledo) and J. Miller (Univ. Michigan); page 18 (bottom left): NASA, ESA and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration Acknowledgment: M. West (ESO, Chile); page 18 (bottom right): NASA/STScI; page 19 (top): istockphoto.com/paul LeFevre; page 19 (bottom main): NASA/JPL-Caltech/GSFC/SDSS; page 20: Andrew Doran/123RF; page 21: NASA and The Hubble Heritage Team (STScI/AURA) Illustration Credits: Pages 10, 12 (top): Cende Hill/ Learning A Z Outside the Solar System Learning A Z Written by Patricia Walsh and Ron Fridell All rights reserved. www.sciencea-z.com

The Milky Way, our galaxy, appears as a bright stripe of stars across the sky. Table of Contents Introducing Deep Space... 4 Exploring Space... 5 Winter nights tend to yield the clearest skies. Out of This World... 7 Among the Stars... 8 Star Life Cycles... 12 Watch Out for Black Holes... 14 The Search for Planets... 15 Swirling with the Galaxies... 17 An Expanding Universe... 20 Conclusion... 21 Glossary... 22 Index... 24 3 4 Introducing Deep Space Look up on a dark, clear night away from city lights. Do you see the points of light overhead? Most of the points of light you see are stars. Some points of light are really double stars that orbit, or go around, each other. Some points of light are groups of stars called galaxies. What you see and what you cannot see is all part of deep space. Deep space is everything beyond our solar system. It is space that is beyond our star the Sun and the planets, asteroids, and comets that orbit the Sun.

Exploring Space For thousands of years, people used the stars to navigate their way across Earth s land and seas. About 500 years ago, people developed the first telescopes. Telescopes let them get a closer look at the objects in the night sky. Over time, telescopes have Galileo s telescope been improved in many ways. Today, huge telescopes sit on top of mountains. Space telescopes orbit Earth. Scientists also use another kind of telescope. The radio telescope detects radio waves given off by objects in space, which allows us to detect things that cannot be seen with optical telescopes. Humans have gone into space. We have even landed on the Moon. But no one from Earth has ever traveled farther than our Moon. No one has traveled outside our solar system into deep space. Pack your imagination. You re about to journey among the billions and billions of stars, planets, and galaxies in the universe. The Very Large Array in New Mexico has twentyseven radio telescopes working together. The Hubble Space Telescope was launched into orbit around Earth in 1990. It is about the size of a school bus. 5 6 The word telescope comes from the Greek word teleskopos. The word part tele- means far and -skopos means seeing. Our modern-day telescopes let us see far into space.

Out of This World You already know your space neighbors the Moon, the other planets, and our Sun. These are in our solar system. But it is only a very tiny part of a gigantic universe. Outside the solar system is vast space and billions and billions of other objects. It s time to leave Earth, and head toward deep space. Take a moment to look back over your shoulder as you zip past the outer planets of Uranus and Neptune. Earth looked like a blue dot for a while, but now it has disappeared. You are leaving our solar system. Did you feel a bump? It was caused by solar wind where the solar system ends and deep space begins. The bump should not have surprised you. Voyager 2, an unmanned spacecraft launched in 1977, let scientists know about the bumpy solar winds. You re traveling much faster than Voyager 2, so you might pass it as you cross into interstellar space. Among the Stars You ve traveled a very long distance now. You have come 4.2 light-years from Earth. You re arriving at Earth s nearest star neighbor. It s the dim and cool Proxima Centauri. Next you ll see Alpha Centauri. It is much brighter than dim Proxima. Up close, you can see that Alpha Centauri has two stars that are very much like our Sun. Standing on Earth, you saw constellations made of stars arranged in interesting shapes, like a lion and a centaur. But now you ll notice that these constellations aren t groups of dots on a flat Alpha Centauri surface. They re actually stars that are very far from one another. Beta Centauri Alpha and Beta Centauri are part of the constellation Centaurus. 7 8 The distance between stars is vast. Scientists use a measurement called a light-year to measure it. A light-year is the distance that light travels in one year. One light-year is about 9.5 trillion kilometers (5.9 trillion mi.). About how many kilometers (or mi.) from Earth is our closest star neighbor?

The Sun is only eight light-minutes away from Earth. This means that if you could travel very fast at the same speed that light travels the trip from Earth to the Sun would take only eight minutes. The sunlight you see now left the Sun eight minutes ago! From Earth, most stars look white because they are so far away. As you get a closer look, you ll see that stars have different colors. Some stars are hot and blue, and others are cool and red. The color of a star depends on the temperature at its surface. (Think of a fire: The hottest flames are blue, while cooler flames are red.) bright stars Star Types red supergiant blue supergiant Way out here in space, you can also see that not all stars are alike. Stars are different from one another in: size luminosity (brightness) temperature color life span Our Sun is a star. It looks very large and bright from Earth. That is because it is the closest star to Earth. But other stars are much bigger and brighter. As you fly through deep space, you ll see that stars are different in size. The sizes range from small dwarf stars to huge supergiants many times larger than our Sun. 9 10 dim stars red dwarf cool stars red giant Sirius blue giant Sun (yellow dwarf) Alpha Centauri A white dwarf hot stars

Did you notice that the stars are in clusters? A group might be just two or three stars together. But some groups have many, many stars clustered together. A star cluster may look like one fuzzy star when you re far away. But as you zip in closer, you ll see that the group has thousands and thousands of stars. You don t have time to stop and count them. You still have a very long way to travel. A close look at a distant galaxy... shows a fuzzy cloud. If you look closer... you ll see that the cloud is made of lots of stars. As seen from Earth, stars seem to twinkle. But stars really have a steady light. The moving air in Earth s atmosphere causes the twinkling. The moving air changes the path of the star s light. Twinkle, twinkle, little star. 11 12 Star Life Cycles Stars are not living creatures. But we still say that they have life cycles. This is because stars form, exist for a long time, and then die. The life cycle of a star can last for billions of years. As a star goes through its life cycle, it changes. Sometimes it can look beautiful and unique. All stars, including our Sun, are balls of hot gas. They have layers of gas, including a dense core and lighter outer layers. The more gas the star has, the bigger it is. Bigger stars also have more mass. Mass is the amount of material, or matter, an object has. Generally, the bigger the star, the brighter it is. The brighter the star burns, the shorter its life cycle. Here s an expanding nebula. If you think it looks like a fuzzy cloud of gas and dust, you are correct. A nebula forms Inside a Star corona and chromosphere Cat s Eye Nebula photosphere convection zone radiative zone core

when the outer layers of a star fly outward. A nebula can be found where an old, giant star has exploded. New stars are being born in a nebula. Now speed Crab Nebula over to a supernova (below). Don t get too close. You ve found the biggest fireworks celebration you ve ever seen. When an old star collapses, it crushes its core. The crushing is like squeezing a rubber ball tighter and tighter. When you let go of a rubber ball, it suddenly springs back to shape. But in a supernova, when the crushed star springs back, it keeps expanding. It hurls matter into space in a brilliant explosion. This is how a supernova forms. One day, gravity will pull the cloud of gas and dust from the supernova back together. The cloud will heat up as it spins faster and faster. Nuclear fusion will fire up the core at the center. The cloud of gas will glow. Then the universe will have another star to shine for millions or billions of years. Watch Out for Black Holes Are you getting too close to a black hole? Steer away quickly or you could be sucked into it and never return. Black holes make traveling into deep space dangerous because they are mysterious. They cannot be seen, and we don t know all that much about them. A black hole is the core of a massive star that has exploded. After the explosion, the star collapsed back into itself. The collapsing center of the star has strong gravity. It pulls in all surrounding matter and energy. It is called a black hole because even light cannot escape it. supernova Artist s rendering of gas being sucked into a black hole 13 14

Artist s rendering of a planet orbiting two stars The Search for Planets Did you see any planets orbiting the stars? Every star, whether or not you can see it, could have planets orbiting it. Astronomers use ground-based and spacebased tools to find faraway planets. They look for a wobble in a star s movement. They look for a change in a star s brightness. Wobbling and dimming give astronomers clues that a planet is circling a star. An exoplanet is a planet that orbits any star other than our Sun. Most exoplanets found so far are giant gas planets. They are as big as or bigger than Saturn and Jupiter. But astronomers have also found smaller exoplanets that are almost the same size as Earth. Scientists keep finding more and more exoplanets in deep space. At this observatory in Chile, astronomers hope to discover new planets. They observe how stars wobble as they re pulled by the gravity of the planets that orbit them. Don t land on an exoplanet. None of the exoplanets we know about are friendly to human life. They all orbit very close to their star. This makes them much too hot for human beings to visit. Fly closer to the star called Upsilon Andromedae. Scientists think this star might have three giant planets circling it. 15 16 A planetary system has a star and the planets, moons, asteroids, comets, and dust that orbit the star.

Swirling with the Galaxies You could spend a long time looking at the stars in deep space. But stop. Take a look at where you have been. You ve been looking at some of the stars in the Milky Way Galaxy. A galaxy is a large system of stars. Between the stars is interstellar gas and dust. All of it is held together by gravity. The Milky Way Galaxy is just one of more than 125 billion galaxies in the universe. Some of those galaxies have a few million stars. Others have billions or even trillions of stars. The Milky Way has more than 100 billion stars. Rev up your engines. You re going to cross the Milky Way Galaxy. You have a long way to go. Even at the speed of light, it will take 100,000 years to cross the Milky Way from edge to edge. Do you see how the Milky Way is shaped like a disk? Do you see the bulge in the middle? Look at the arms of stars that spiral out from the bulge. The Milky Way is a spiral galaxy. Galaxies come in three shapes spiral, elliptical, and irregular. Elliptical galaxies look like flattened circles. Irregular galaxies have stars scattered around. Now set your sights on another spiral galaxy, Andromeda. It s the nearest galaxy to the Milky Way, but it s still far away. It is two million lightyears from your home on Earth. The Andromeda Galaxy is more than twice the size of the Milky Way. spiral galaxy Artist s rendering of the Milky Way Galaxy Sun 17 18 elliptical galaxy irregular galaxy

An Expanding Universe Scientists who study the origins, or beginnings, of the universe are called cosmologists. They study deep space to gather scientific information. They use the information to develop theories, or big ideas. Their primary theory about the origin of the universe is called the big bang theory. Andromeda Galaxy After you visit the Andromeda Galaxy, keep on going. You ll pass billions of other galaxies. Just as you saw clusters of stars, you ll see galaxies in clusters, too. This theory states that the entire universe began in a single instant 14 or 15 billion years ago. It began with a very powerful explosion. The explosion created all time and space. It created all matter and energy. The big bang theory also states that the universe is still expanding. Barred Spiral Galaxy A galaxy cluster has hundreds or even thousands of galaxies. Artist s rendering of the big bang 19 20

Glossary Rainbow image of the Egg Nebula Conclusion astronomers big bang theory black hole clusters scientists who study planets, stars, galaxies, and other objects in space (p. 15) the theory that suggests that the universe began from a single, enormous explosion and is still expanding (p. 20) a region of space with a gravitational field so intense that nothing can escape it (p. 14) close groups of similar objects (p. 11) It s time to return to your home on Earth. In your imaginary journey, you traveled out of our solar system. You visited stars. You zoomed across the Milky Way Galaxy. You continued on to the next galaxy. You gazed farther outward, looking at billions of galaxies. You even tried to understand our universe. You can return to the universe every night. Just look up into the starry night sky. The light from distant stars will guide you. Your imagination will take you out into deep, deep space. 21 22 cosmologists deep space exoplanet scientists who study the origin and structure of the universe (p. 20) the open areas between solid bodies in the universe beyond the solar system (p. 4) any planet that exists outside the solar system (p. 16)

galaxies light-years luminosity nebula orbit solar system stars large collections of planets, gas, dust, and millions or billions of stars, bound together by gravity (p. 4) units of distance in astronomy equal to the distance that light travels in one year (p. 8) a measure of the amount of radiating or reflected light coming off a star or other celestial object; brightness (p. 9) a region or cloud of interstellar dust and gas appearing as a bright or dark patch (p. 12) to revolve around another object (p. 4) a star and the celestial bodies that revolve around it; a planetary system (p. 4) bodies in outer space, made of hot gases, that shine in the night sky (p. 4) supernova telescopes constellations, 8 galaxy types, 18 gravity, 13, 14, 16, 17 the death explosion of a massive star, resulting in a sharp increase in brightness followed by a gradual fading (p. 13) instruments used to make distant objects look closer (p. 5) Index Milky Way Galaxy, 3, 17, 18, 21 solar wind, 7 space exploration history, 5, 6 star life cycles, 12, 13 star types, 9, 10 twinkle, 11 universe, 6, 7, 13, 17, 20, 21 Voyager, 7 23 24