Evans PDE Solutions, Chapter 2

Similar documents
Solutions from Chapter 9.1 and 9.2

THE WAVE EQUATION. part hand-in for week 9 b. Any dilation v(x, t) = u(λx, λt) of u(x, t) is also a solution (where λ is constant).

Hamilton Jacobi equations

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

1 Solutions to selected problems

Example on p. 157

MATH 351 Solutions: TEST 3-B 23 April 2018 (revised)

An Introduction to Malliavin calculus and its applications

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15.

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

4 Sequences of measurable functions

Vanishing Viscosity Method. There are another instructive and perhaps more natural discontinuous solutions of the conservation law

Lecture 10: The Poincaré Inequality in Euclidean space

Convergence of the Neumann series in higher norms

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Heat kernel and Harnack inequality on Riemannian manifolds

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

EXERCISES FOR SECTION 1.5

SOLUTIONS TO ECE 3084

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE

Chapter 2. First Order Scalar Equations

Lecture 10: Wave equation, solution by spherical means

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

Math 334 Fall 2011 Homework 11 Solutions

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

QUANTITATIVE DECAY FOR NONLINEAR WAVE EQUATIONS

Ch.1. Group Work Units. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

Existence Theory of Second Order Random Differential Equations

System of Linear Differential Equations

ENGI 9420 Engineering Analysis Assignment 2 Solutions

17. Weak and Strong Derivatives and Sobolev Spaces For this section, let Ω be an open subset of R d, p,q,r [1, ], L p (Ω) =

2. Nonlinear Conservation Law Equations

556: MATHEMATICAL STATISTICS I

SOLUTIONS TO ASSIGNMENT 2 - MATH 355. with c > 3. m(n c ) < δ. f(t) t. g(x)dx =

Chapter 6. Systems of First Order Linear Differential Equations

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence

t 2 B F x,t n dsdt t u x,t dxdt

Differential Equations

Positive continuous solution of a quadratic integral equation of fractional orders

7 Wave Equation in Higher Dimensions

Lie Derivatives operator vector field flow push back Lie derivative of

Theory of! Partial Differential Equations!

15. Vector Valued Functions

Fréchet derivatives and Gâteaux derivatives

Class Meeting # 10: Introduction to the Wave Equation

2 Some Property of Exponential Map of Matrix

Approximation Algorithms for Unique Games via Orthogonal Separators

Empirical Process Theory

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x

CHAPTER 12 DIRECT CURRENT CIRCUITS

Chapter 7: Solving Trig Equations

Theory of! Partial Differential Equations-I!

SPECTRAL EVOLUTION OF A ONE PARAMETER EXTENSION OF A REAL SYMMETRIC TOEPLITZ MATRIX* William F. Trench. SIAM J. Matrix Anal. Appl. 11 (1990),

Homework sheet Exercises done during the lecture of March 12, 2014

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

f(s)dw Solution 1. Approximate f by piece-wise constant left-continuous non-random functions f n such that (f(s) f n (s)) 2 ds 0.

Optimality Conditions for Unconstrained Problems

4.6 One Dimensional Kinematics and Integration

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that

û s L u t 0 s a ; i.e., û s 0

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

Math 10B: Mock Mid II. April 13, 2016

A Sharp Existence and Uniqueness Theorem for Linear Fuchsian Partial Differential Equations

Solutions to Assignment 1

DISCRETE GRONWALL LEMMA AND APPLICATIONS

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore

10. State Space Methods

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du.

4. Advanced Stability Theory

IMPLICIT AND INVERSE FUNCTION THEOREMS PAUL SCHRIMPF 1 OCTOBER 25, 2013

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP).

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures.

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

Let us start with a two dimensional case. We consider a vector ( x,

The Strong Law of Large Numbers

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS

Average Number of Lattice Points in a Disk

Endpoint Strichartz estimates

Math 527 Lecture 6: Hamilton-Jacobi Equation: Explicit Formulas

Expert Advice for Amateurs

A Note on Superlinear Ambrosetti-Prodi Type Problem in a Ball

arxiv: v1 [math.pr] 4 Aug 2016

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR

GRADIENT ESTIMATES FOR A SIMPLE PARABOLIC LICHNEROWICZ EQUATION. Osaka Journal of Mathematics. 51(1) P.245-P.256

4. The multiple use forestry maximum principle. This principle will be derived as in Heaps (1984) by considering perturbations

On Two Integrability Methods of Improper Integrals

Mixing times and hitting times: lecture notes

Stochastic models and their distributions

Transcription:

Auhors: Joe Benson, Denis Bashkirov, Minsu Kim, Helen Li, Ale Csar Evans PDE Soluions, Chaper Joe:,,; Denis: 4, 6, 4, 8; Minsu:,3, 5; Helen: 5,8,3,7. Ale:, 6 Problem. Wrie down an eplici formula for a funcion u solving he iniial-value problem { u + b Du + cu on R n (, ) u g on R n { } Here c R and b R n are consans. Sol: Fi and, and consider z(s) : u( + bs, + s) Then ż(s) b Du + u cu( + bs, + s) cz(s) Therefore, z(s) De cs, for some consan D. We can solve for D by leing s. Then, z( ) u( b, ) g( b) De c i.e. D g( b)e c Thus, u( + bs, + s) g( b)e c(+s) and so when s, we ge u(, ) g( b)e c. Problem. Prove ha Laplace s equaion u is roaion invarian; ha is, if O is an orhogonal n n mari and we define v() : u(o) ( R) hen v. Soluion: Le y : O, and wrie O (a i j ). Thus, v() u(o) u(y) where y j n i a ji i. This hen gives ha v i n j n j u y j y j i u y j a ji

Thus, v. v n a... a n.. a n... a nn O T u y. u y n D v O T D y u u y. u y n Now, v D v D v (O T D y u) (O T D y u) (O T D y u) T O T D y u (D y u) T (O T ) T O T D y u (D y u) T OO T D y u (D y u) T D y u because O is orhogonal (D y u) (D y u) u(y) Problem 3. Modify he proof of he mean value formulas o show for n 3 ha ( u() gds + nα(n)r n n(n )α(n) ) f d, n r n Soluion: Se and Then, φ () n provided φ(r) ( α(n) n (See he proof of Thm) φ() B(,r) u f in B (, r) u g on B(, r). B(,r) u(y)ds (y), < r, nα(n) n B(,) u(y)ds (y) nα(n)r n B(,r) B(,) u(y)dy ) n gds. nα(n)r n B(,r) ( f dy ) α(n) n B(,) f dy. α(n) n B(,)

3 Le ɛ > be given. () φ(ɛ) φ(r) r ɛ φ ()d Using inegraion by pars, we compue r r φ ()d f dyd ɛ ɛ nα(n) n B(,) r f dyd nα(n) ɛ n B(,) ([ f dy nα(n) n n B(,) ( r n(n )α(n) ɛ n ( : I n(n )α(n) r n r gds φ ()d. nα(n)r n B(,r) ɛ ] r B(,) B(,r) ɛ r ɛ n f ds d r n f dy + J ). n B(,r) B(,) f ds d ) f dy + ɛ n B(,ɛ) f dy ) Observe ha and J : ɛ n B(,ɛ) f dy C ɛ, for some consan C > B(,ɛ) f ()d n r d B(,) f ds. n As ɛ, I + J B(,ɛ) lim ɛ r ɛ f ()d. Thus, n φ ()d n(n )α(n)( f ()d B(,r) n ( n(n )α(n) ) f d. n r n Therefore, leing ɛ, we have from () ( u() φ() gds + nα(n)r n B(,r) n(n )α(n) B(,r) ) f d. n r n B(,r) r n B(,r) f dy ) Problem 4. We say v C (Ū) is subharmonic if (a) Prove for subharmonic v ha v() B(,r) v in U. v dy for all B(, r) U. (b) Prove ha herefore ma Ū v ma U v. (c) Le φ : R R be smooh and conve. Assume u is harmonic and v : φ(u). Prove v is subharmonic.

4 (d) Prove v : Du is subharmonic, whenever u is harmonic. Soluion. (a) As in he proof of Theorem, se φ(r) : v ds (y) and obain B(,r) φ (r) r v(y)dy. n For < ɛ < r, B(,r) r ɛ B(,r) φ (s)ds φ(r) φ(ɛ). Hence, φ(r) lim φ(ɛ) v(). Therefore, ɛ v dy v dy α(n)r n α(n)r n α(n)r n B(,r) r r ( ) v(z) ds (z) ds B(,s) nα(n)s n φ(s) ds r ns n v() ds v() r n (b) We assume ha U R n is open and bounded. For a momen, we assume also ha U is conneced. Suppose ha U is such a poin ha v( ) M : ma Ū v. Then for < r < dis(, U), M v( ) v dy M. B(,r) Due o coninuiy of v, an equaliy holds only if v M wihin B(, r). Therefore, he se u ({M}) U { U u() M} is boh open and relaively closed in U. By he connecedness of U, v is consan wihin he se U. Hence, i is consan wihin Ū and we conclude ha ma Ū v ma U v. Now le {U i i I} be he conneced componens of U. Pick any U and find j I such ha U j. We obain v() ma U j and conclude ha ma Ū v ma U v. (c) For (,..., n ) U and i, j n, v i j () v ma U j v ma v U φ(u()) φ (u()) u () u () + φ (u()) i j i j u i j (). Since φ is conve, hen φ () for any R. Recall ha u is harmonic and obain n ( ) u n ( ) u v φ (u) + u φ (u). i i (d) We se v : Du n k v i j () ( u k i ). k For (,..., n ) U and i, j n, n [ u u () () + u ] 3 u () (). i k i j k i j k i

5 Therefore, v n ( ) u + u ( u i k i k k k ), i ( ) u n u ( ) ( ) u v + u. i k k k i k i,k n k i,k n Problem 5: Prove ha here eiss a consan C, depending only on n, such ha ( ) ma u C ma g + ma f B(,) B(,) B(,) whenever u is a smooh soluion of u f in B (, ) u g on B(, ). Proof: Le M : ma B(,) f, hen we define v() u() + M n and w() u() + M n. We firs consider v(). Noe ha So, v() is a subharmonic funcion. From Problem 4 (b), we have v u M f M. Tha is Then, for w(), we have Again, we can ge i.e. ma B(,) ma v() ma v() ma g + M B(,) B(,) B(,) n. u() ma v() ma g + B(,) B(,) n ma f. B(,) w u M f M. ma w() ma w() ma g + M B(,) B(,) B(,) n. ma B(,) u() ma w() ma g + B(,) B(,) n ma f. B(,) Combining hese wo ogeher, we finally proved he problem. Problem 6. Use Poisson s formula for he ball o prove r n r (r + ) u() u() r + n rn u() (r ) n whenever u is posiive and harmonic in B (, r). This is an eplici form of Harnack s inequaliy.

6 Soluion. Since y B(, r), hen y + r. Therefore, u() r nα(n)r r nα(n)r B(,r) B(,r) r n r (r + ) n g(y) ds (y) y n g(y) (r + ) ds (y) r n rn (r + ) n g(y)ds (y) r n r u() (r + ) n B(,r) g(y)ds (y) nα(n)r n B(,r) r+ The inequaliy u() r n u() can be proven in a similar way. (r ) n Problem 7. Prove Poisson s formula for a ball: Assume g C( B(, r)) and le u() r g(y) nα(n)r B(,r) y ds (y) for n B (, r). Show ha Proof. Problem 8. Le u be he soluion of u in R n + u g on R n + given by Poisson s formula for he half-space. Assume g is bounded and g() for R n +, le. Show Du is no bounded near. (Hin: Esimae u(λe n) u() λ.) Proof: From formula (33) on page 37, we have u() n nα(n) and u() g(). Thus, using hin, we ge u(λe n ) u() g(y) λ nα(n) λe n y dy n nα(n) R n + y R n + Taking absolue value on boh sides, we have u(λe n) u() λ nα(n) I I. R n + g(y) y n dy, g(y) λe n y dy + n nα(n) y R n + y > R n + g(y) λe n y dy n nα(n) y > R n + g(y) λe n y n dy g(y) λe n y n dy

Since g is bounded, so i is obvious ha I is bounded and independen of λ. For I, in his case, g(y) y, so I y nα(n) y R n λe + n y dy n y (λ+ y ) n nα(n) B n (,r) y R n + y (λ + y ) n dy Noe ha for fied y, is increasing when λ is decreasing o, so by Monoone Convergence heorem, we have y lim λ nα(n) y R n (λ + y ) dy n + y y R n y dy n + y B n (,) y dy n dr ds (y) C y n r n rn dr. So, Du is unbounded near. 7 Problem. Suppose u is smooha nd solves u u in R n (, ). (i) Show u λ (, ) : u(λ, λ ) also solves he hea equaion for each λ R. (ii) Use (i) o show v(, ) : Du(, ) + u (, ) solves he hea equaion as well. (i) u λ (, ) λ u (λ, λ ) and u λi (, ) λu(λ, λ ) for each i. Then u λi i (, ) λ u i (λ, λ ). Consequenly, u λ λ u and u λ u λ λ (u u), so u λ solves he hea equaion for all λ R. (ii) We differeniae u(λ, λ ) u(λ,..., λ n, λ ) wih respec o λ we ge k u k (λ,..., λ k, λ ) + λu (λ,..., λ n, λ ) D(λ, λ ) + u (λ, λ ). k Taking λ, we hen have ha v(, ) Du(, ) + u (, ). u is smooh, so he second derivaives of u(λ, λ ) are coninuous, meaning he mied parials are equal. Therefore, v v u(λ, λ λ ) u(λ, λ λ ) u(λ, λ λ ) u(λ, λ λ ) (u λ λ u λ ), since u λ saisfies he hea equaion for all λ. Thus v does as well. Problem : Assume n and u(, ) v( ). a) Show u u if and only if () 4zv (z) + ( + z)v (z) (z > )

8 b) Show ha he general soluion of () is v(z) c z e s/4 s / ds + d c) Differeniae v( ) wih respec o and selec he consan c properly, so as o obain he fundamenal soluion Φ for n. Soluion: a) Assume ha u u. Then and So u u implies ha or If we le z, we ge 4z v u v ( ) ( ) ( ) u v + 4 v 4 v ( ) ( ) ( ) v + 4 v ( ) + ( + ) ( ) v ( v (z) + + z ) v (z) Muliplying his equaion by gives he desired equaliy. For he oher direcion, reverse he seps, and hence our proof is done. b) (by inegraing) 4zv + ( + z)v v v z 4 log(v ) log z z 4 + c v C v Cz / e z/4 z e s/4 s / ds + d

9 as is desired. c) v(z) c z e s/4 s / ds + d ( ) v c e s/4 s / ds + d ( ) v c ( ) e 4 / or ( ) v c e 4 Now we wan o inegrae over R and se he inegral equal o. Thus we ge Leing y or c e 4 d 4, we ge dy (4) / d and subsiuing, we ge c 4c 4e y dy e y dy Employing he ideniy e y dy π and solving for c, we ge Thus, c 4 π ( ) Φ(, ) : v c e 4 is easily shown o solve he equaion π e 4 Φ Φ Problem. Wrie down an eplici formula for a soluion of u u + cu f in R n (, ) u g on R n { }, where c R.

Soluion: Se v(, ) u(, )e C. Then, v u e C + Ce C u and v i i u i i e C. v v u e C + Ce C u e C u e C (u u + Cu) e C f. So, v is a soluion of v v e C f in R n (, ) v g on R n { }, By (7) (p.5), v(, ) Φ( y, )g(y)dy + R n Φ( y, s)e Cs f (y, s)dyds R n where Φ is he fundamenal soluion of he hear equaion. Since v(, ) u(, )e C, we have u(, ) e C( Φ( y, )g(y)dy + Φ( y, s)e Cs f (y, s)dyds ). R n R n Problem 3: Given g : [, ] R, wih g(), derive he formula u(, ) e 4( s) 4π ( s) 3/ g(s)ds, > for a soluion of he iniial/boundary-value problem u u inr + (, ) u onr + { }, u g on{ } [, ). Proof. We define So, we have and u(, ) g() >, v(, ) u(, ) + g(). u (, ) g () >, v (, ) u (, ) + g (), u (, ) >, v (, ) u (, ).

Hence, By formula (3) on page 49, we ge v(, ) Noe ha(page 46 Lemma) g () >, v (, ) v (, ) g (). v(, ), v(, ). { 4π( s) so when >, we le y z and obain Inegraing by pars, we ge u(, ) v(, ) + g() u(, ) v(, ) + e (y ) 4( s) g (s)dyds 4π( s) e (y ) 4( s) dy, g (s)ds 4π ( s) π ( s) π ( s) / I + I + } e (y ) 4( s) g (s)dyds 4π( s) e (y ) 4( s) dy e (y ) 4( s) dy g (s)ds e z 4( s) dz dg(s) e z 4( s) dz g(s) s s g(s) π ( s) 3/ ds + g(s) π ( s) / ds g(s) π ( s) 3/ ds g(s) π ( s) / ds g(s) g(s) π ( s) 3/ ds e z 4( s) dz e z 4( s) z 4( s) dz e z 4( s) dz z ( s) de z 4( s) e z 4( s) dz 4π ( s) 3/ ds ( z) e z 4( s) z z g(s) π ( s) 3/ ds I + e 4( s) 4π ( s) 3/ g(s)ds. e z 4( s) dz

Now, we focus on I and define w o be z 4ɛ, Thus, we proved Ne, we need o show ha Noe ha for any fied δ >. u(, ) I lim ɛ + g() lim ɛ + lim u(, ) lim + + ɛ / π π /4ɛ e z 4ɛ dz g( ɛ) e w dw. e 4( s) 4π ( s) 3/ g(s)ds, >. lim u(, ) g(). + + lim + g() lim + g() lim + 4π δ δ 4π 4π e 4( s) ( s) 3/ g(s)ds δ δ 4π e 4( s) ( s) 3/ g(s)ds e 4( s) ( s) 3/ ds e 4s s3/ ds For fied, we le s /w and ge Hence, we are done. lim u(, ) g() lim + + g() lim + g() π /δ π π /δ w 3 e w 3 4 e w 4 dw e w 4 dw g(). w dw 3 Problem 4. We say v C (U T) is a subsoluion of he hea equaion if v v in U T. (a) Prove for a subsoluion v ha v(, ) 4r n for all E(, ; r) U T. (b) Prove ha herefore ma ŪT v ma ΓT v E(,;r) y v(y, s) ( s) dyds

3 Soluion. (a) We may well assume upon ranslaing he space and ime coordinaes ha and. As in he proof of Theorem 3, se φ(r) : v(y, s) y r n s dyds, and derive For < ɛ < r, ψ(y, s) : n E(r) log( 4πs) + y 4s + n log r φ (r) 4n vψ n n v r n+ yi y i dyds E(r) s i n 4nv r n+ yi ψ yi n s v y i y i dyds. i r ɛ E(r) φ (z)dz φ(r) φ(ɛ). y Hence, φ(r) lim φ(ɛ) v(, ) lim ɛ ɛ ɛ E(ɛ) dyds 4v(, ), and he saemen follows. n s (b) Suppose here eiss a poin (, ) U T wih u(, ) M : ma ŪT u. Then for all sufficienly small r >, E(, ; r) U T. Using he resul proved above, we deduce M v(, ) y v(y, s) dyds M, 4r n ( s) since E(, ;r) y 4r n E(, ;r) ( s) dyds. Conclude ha u E(, ;r) M. The argumen used in he proof of Theorem 4 will finish he proof. Problem 5. (a) Show he general soluion of he PDE u y is u(, y) F() + G(y) for arbirary funcions F,G. (b) Using he change of variables ξ +, η, show u u if and only if u ξη. (c) Use (a),(b) o rederive d Alember s formula. Soluion: (a) u y u f () u(, y) f ()d + G(y) u y u y g(y) u(, y) g(y)dy + F()

4 This implies u(, y) F() + G(y). (b) ξ+η, y ξ η Define ũ : u ( ξ+η, ξ η ) ũ ξ u + u and ũ ξη 4 u 4 u + 4 u 4 u 4 (u u ) Hence, ũ ξη u u. (c) By (b), u u u ξη, and u(ξ, η) F(ξ) + G(η) by (a),i.e, u(, y) F( + ) + G( ). Since u(, ) g, u (, ) h, (3) u(, ) F() + G() g(), Inegraion (4) F() G() Thus, u (, ) F () G () h() h(y)dy + C, C:consan. () + (3); F() ( g() + h(y)dy + C ) () (3); G() ( g() h(y)dy C ) u(, y) F( + ) + G( ) ( + g( + ) + h(y)dy + C ) + ( g( ) h(y)dy C ) ( + g( + ) + h(y)dy + C + g( ) + h(y)dy C ) [ g( + ) + g( ) ] + + h(y)dy ( R, ). Problem 6. Assume E (E, E, E 3 ) and B (B, B, B 3 ) solve Mawell s equaions: E curl B B curl E div B div E Show ha u u where u B i or E i for i,, 3. Soluion.

5 curl(curl E) curl( B ) ) ( B 3 y + B z, B 3 + B z, B + B y curl B E E However, we also know ha curl(curl E) (div E) E E. Then E i saisfies u u for i,, 3. Similarly, curl(curl B) curl E B, and curl(curl B) (div B) B B, so B i saisfies u u for i,, 3. Problem 7.(Equipariion of energy) Le u C (R [, )) solve he iniial value problem for he wave equaion in one dimension: u u in R (, ) u g; u h on R { }. Suppose g, h have compac suppor. The kineic energy is k() : energy is p() : u (, )d. Prove (i) k() + p() is consan in. Proof. (i.) We define e() k() + p() we have d e() d (ii) k() p() for all large enough imes. u u d Hence, e() e(). (ii.)by d Alember s formula on page 68, we have So, and u(, ) ( u + u u u + u u d u (, )d and he poenial ) d. Since g, h have compac suppor, so u u d u (u u ) d. [ g( + ) + g( ) ] + + h(y)dy. u [ g ( + ) g ( ) ] + [h( + ) + h( )], u [ g ( + ) + g ( ) ] + [h( + ) h( )].

6 We assume ha here eiss a posiive consan M so ha [ M, M] supp(g ) and [ M, M] supp(h). Noe ha for a fied > M, M M < M + M and M + M M + M <. Thus, when > M : (a) < M + M. Then we have So, h( + ) g( + ). (b) M + M <. Then, u 4 g ( ) + 4 h( ) g ( )h( ) u. u 4 g ( + ) + 4 h( + ) + g ( + )h( + ) u. (c) Oherwise g ( + ) g ( ) h( + ) h( ). So, combining all he cases, i is obvious ha when > M, k() p(). Problem 8. Le u solve { u u in R 3 (, ) u g, u h on R 3 { }, where g, h are smooh and have compac suppor. Show here eiss a consan C such ha u(, ) C/ ( R 3, > ). Soluion. From he condiions i follows ha here eis R, M > such ha sp g, sp h B(, R) and g(y) M, Dg(y) M, h(y) M for any y R 3. Kirchhoff s formula gives he soluion of he iniial-value problem: u(, ) h(y) + g(y) + Dg(y) (y ) ds (y). B(,) Denoe by Σ he inersecion B(, ) B(, R). Observe ha he area of Σ is no greaer han he area of he sphere B(, R). Then, for >, we obain h(y) + Dg(y) (y ) ds (y) B(,) 4π h(y) + Dg(y) (y ) ds (y) B(,) B(,R) h(y) + Dg(y) y ds (y) 4π B(,) B(,R) 4π 4πR (M + M) R M.

For >, using he same argumen, we ge g(y) ds (y) 4π B(,) B(,) B(,R) g(y) ds (y) 4π 4πR M R M R M. Noice now ha he area Σ is no greaer han he area of he sphere B(, ). Then for <, g(y) ds (y) 4π g(y) ds (y) 4π 4π M M. B(,) B(,) B(,R) Wihou loss of generaliy, we can ake R >. Then, combining he esimaes obained above, we conclude u(, ) 3R M. 7 Evans PDE Soluions, Chaper 5 Ale: 4, Helen: 5, Rob H.: Problem. Suppose k {,,...}, < γ <. Prove C k,γ (Ū) is a Banach space. Soluion:. Firs we show ha C k,γ (Ū) is a norm, where we recall ha and u C k,γ (Ū) D α u C(Ū) + [D α u] C,γ (Ū), α k [u] C,γ (Ū) sup y U α k { u() u(y) y γ }. For he sake of opaqueness we now omi subscrips on all norms unless i is unclear from cone.. For any λ R we have firs λu() λu(y) u() u(y) [λu] sup λ sup λ [u],,y U y γ,y U y γ and cerainly So D α (λu) C(Ū) λd α u λ D α u. λu D α (λu) + [D α (λu)] α k α k λ D α u + λ [D α u] α k λ u. 3. If u i is obvious ha u. On he oher hand, u implies ha D α u C(Ū) α k

8 for every α k. In paricular his is rue for α so ha he supremum of D u u on U is, i.e. u. 4. Finally we mus prove he riangle inequaliy. We know he riangle inequaliy is rue for he sup norm C(Ū). We can also see ha for any α which makes sense [D α (u + v)] [D α u + D α v] [D α u] + [D α v]. Therefore we can easily conclude u + v D α (u + v) + [D α (u + v)] α k α k ( D α u + D α v ) + ([D α u] + [D α v]) α k u + v. 5. We need only show ha C k,γ (U) is complee. So le {u m } be a Cauchy sequence. Then {u m (){ is a Cauchy sequence for every, so define u o be he poinwise limi of he u m. Now if V is any bounded subse of U, hen V is compac, so ha u m u uniformly on any V. Since he u m are uniformly coninuous on V by assumpion, his implies ha u is uniformly coninuous on V as well (and so, a foriori u C(U)). Therefore u C(Ū). Wha we would really like would be o have u C k (Ū). Bu similar argumens show ha u has derivaives D α u for all α k on U by resricing firs o bounded subses of U o find he derivaives and hen using uniform convergence on hese subses o show he derivaives mus also be uniformly coninuous on bounded subses since he D α u m were. This leaves us wih only showing ha he norm of u is finie, so ha in fac u C k,γ (U). Bu for every n we have u n u sup D α u n () D α D α u n () D α u n (y) D α u() + D α u(y) u() + sup α k U α k,y U y γ lim m α k lim m u n u m. sup D α u n () D α u m () + U α k sup,y U α k D α u n () D α u n (y) D α u m () + D α u m (y) y γ In paricular, since {u m } is Cauchy here is some N so ha n, m N implies u n u m. Leing m approach, his implies ha u N u <. Now he riangle inequaliy applies o give Problem 4. u u N u + u N < + u N <. Assume U is bounded and U N i V i. Show here eis C funcions ζ i (i,..., N) such ha ζ, supp ζ i V i i,..., N N i ζ i on U. The funcions {ζ i } N for a pariion of uniy.

Soluion. Assume U is bounded and U N i V i. Wihou loss of generaliy, we may assume ha he V i are open, for if hey are no, we can replace V i by is inerior. We noe ha, since U is bounded, U is compac. Each U has a compac neighbourhood N conained in V i for some i. Then {N} is an open cover of U, which hen has a finie subcover N,..., N n. We now le F i be he union of he N k conained in V i. F i is he compac since i is he finie union of compac ses. The C version of Urysohn s Lemma (Folland, p.45) allows us o find smooh funcions ξ,..., ξ N such ha ξ i on F i and supp(ξ i ) V i. Since he F i cover U, U { : n ξ i () > } and we can use Urysohn again o find ζ C wih ζ on U and supp(ζ) { : n ξ i () > }. Now, we le ξ N ζ, so N+ ξ i > everywhere. We hen ake ξ i ζ i N+ ξ j as our pariion of uniy. Problem 5 (Helen) Prove ha if n and u W,p (, ) for some p <, hen u is equal a.e. o an absoluely coninuous funcion, and u which eiss a.e. belongs o L p (, ). Proof. Since u W,p (, ), so by definiion on page 4 and 44, we have some funcion v L p (, ) such ha u Dφd vφd, φ Cc ((, )). (,) (,) Noe ha v L p (, ), so by Hölder s inequaliy, we have v L v L p L q <, which means v L (, ). Thus, we can define funcion f () on (, ) by he following formula f () u( ) + v()d, (, ). According o he Fundamenal Theorem of Calcalus, f is absoluely coninuous. Now we will prove u f a.e. By he definiion of f, we have f v a.e. So for any φ Cc ((, )) we ge f Dφd f φd vφd. Therefore, (,) (,) (,) ( f u) Dφd φ C c (,) ((, )), which means u f + cons. And noe ha u( ) f ( ), hence u f a.e. So u eiss a.e. and saisfy u v a.e., so u L p (, ). 9