Advanced Fragmentation Techniques for BioPharma Characterization

Similar documents
Electron Transfer Dissociation of N-linked Glycopeptides from a Recombinant mab Using SYNAPT G2-S HDMS

Improving Intact Antibody Characterization by Orbitrap Mass Spectrometry

Improved 6- Plex TMT Quantification Throughput Using a Linear Ion Trap HCD MS 3 Scan Jane M. Liu, 1,2 * Michael J. Sweredoski, 2 Sonja Hess 2 *

TOMAHAQ Method Construction

Rapid Distinction of Leucine and Isoleucine in Monoclonal Antibodies Using Nanoflow. LCMS n. Discovery Attribute Sciences

Peptide Targeted Quantification By High Resolution Mass Spectrometry A Paradigm Shift? Zhiqi Hao Thermo Fisher Scientific San Jose, CA

De novo Protein Sequencing by Combining Top-Down and Bottom-Up Tandem Mass Spectra. Xiaowen Liu

Self-assembling covalent organic frameworks functionalized. magnetic graphene hydrophilic biocomposite as an ultrasensitive

Thermo Fisher Scientific, San Jose, CA; 2 Kelleher Lab, Northwestern University, Evanston, IL; 3

Thermo Scientific LTQ Orbitrap Velos Hybrid FT Mass Spectrometer

Figure S1. Interaction of PcTS with αsyn. (a) 1 H- 15 N HSQC NMR spectra of 100 µm αsyn in the absence (0:1, black) and increasing equivalent

Thermo Fisher Scientific, San Jose, CA; 2 Kelleher Lab, Northwestern University, Evanston, IL; 3

Q Exactive TM : A True Qual-Quan HR/AM Mass Spectrometer for Routine Proteomics Applications. Yi Zhang, Ph.D. ThermoFisher Scientific

High-Field Orbitrap Creating new possibilities

HOWTO, example workflow and data files. (Version )

Protein Quantitation II: Multiple Reaction Monitoring. Kelly Ruggles New York University

Identification of Human Hemoglobin Protein Variants Using Electrospray Ionization-Electron Transfer Dissociation Mass Spectrometry

Applications of Mass Spectrometry for Biotherapeutic Characterization

Quantitation of a target protein in crude samples using targeted peptide quantification by Mass Spectrometry

Effective Strategies for Improving Peptide Identification with Tandem Mass Spectrometry

Increasing the Multiplexing of Protein Quantitation from 6- to 10-Plex with Reporter Ion Isotopologues

MS-based proteomics to investigate proteins and their modifications

Workflow concept. Data goes through the workflow. A Node contains an operation An edge represents data flow The results are brought together in tables

Targeted protein quantification

Translational Biomarker Core

Protein Quantitation II: Multiple Reaction Monitoring. Kelly Ruggles New York University

Measuring Drug-to-Antibody Ratio (DAR) for Antibody-Drug Conjugates (ADCs) with UHPLC/Q-TOF

HR/AM Targeted Peptide Quantification on a Q Exactive MS: A Unique Combination of High Selectivity, High Sensitivity, and High Throughput

Atomic masses. Atomic masses of elements. Atomic masses of isotopes. Nominal and exact atomic masses. Example: CO, N 2 ja C 2 H 4

Spectrum-to-Spectrum Searching Using a. Proteome-wide Spectral Library

Tutorial 1: Setting up your Skyline document

Structure of the α-helix

Interazioni di ioni con elettroni (ECD, ETD) e fotoni (Ion spectroscopy) Gianluca Giorgi. via Aldo Moro Siena

Relative quantification using TMT11plex on a modified Q Exactive HF mass spectrometer

NPTEL VIDEO COURSE PROTEOMICS PROF. SANJEEVA SRIVASTAVA

MS Based Proteomics: Recent Case Studies Using Advanced Instrumentation

Modeling Mass Spectrometry-Based Protein Analysis

A Platform to Identify Endogenous Metabolites Using a Novel High Performance Orbitrap MS and the mzcloud Library

Protein analysis using mass spectrometry

Methods for proteome analysis of obesity (Adipose tissue)

Comprehensive support for quantitation

Finnigan LCQ Advantage MAX

Your mass spec s sidekick

Nature Methods: doi: /nmeth Supplementary Figure 1. Fragment indexing allows efficient spectra similarity comparisons.

Supplementary Figure 1

Carbonyl-Reactive Tandem Mass Tag (TMT) Reagents for Mass Spectrometry-Based Quantitative Glycomics

Quantitative Proteomics

(Bio)chemical Proteomics. Alex Kentsis October, 2013

6 x 5 Ways to Ensure Your LC-MS/MS is Healthy

Tandem MS = MS / MS. ESI-MS give information on the mass of a molecule but none on the structure

Computational Methods for Mass Spectrometry Proteomics

Biological Mass Spectrometry

HR/AM Targeted Peptide Quantitation on a Q Exactive MS: A Unique Combination of High Selectivity, Sensitivity and Throughput

Powerful Scan Modes of QTRAP System Technology

Supporting Information

Thermo Scientific LTQ Velos Dual-Pressure Linear Ion Trap

Metabolomics in an Identity Crisis? Am I a Feature or a Compound? The world leader in serving science

PosterREPRINT COMPARISON OF PEAK PARKING VERSUS AUTOMATED FRACTION ANALYSIS OF A COMPLEX PROTEIN MIXTURE. Introduction

Chapter 5. Complexation of Tholins by 18-crown-6:

Reagents. Affinity Tag (Biotin) Acid Cleavage Site. Figure 1. Cleavable ICAT Reagent Structure.

Relative Quantitation of TMT-Labeled Proteomes Focus on Sensitivity and Precision

protein quantitation

The Power of LC MALDI: Identification of Proteins by LC MALDI MS/MS Using the Applied Biosystems 4700 Proteomics Analyzer with TOF/TOF Optics

Disulfide Linkage Characterization of Disulfide Bond-Containing Proteins and Peptides by Reducing Electrochemistry and Mass Spectrometry

Chapter 4. strategies for protein quantitation Ⅱ

Key questions of proteomics. Bioinformatics 2. Proteomics. Foundation of proteomics. What proteins are there? Protein digestion

Mass Spectrometry. Quantitative Mass Spectrometry Chiral Mass Spectrometry

Top-Down Characterization of Histones using 193 nm Ultraviolet Photodissociation (UVPD) Mass Spectrometry. Sylvester Greer, Jennifer Brodbelt*

Supporting Information

Thermo Finnigan LTQ. Specifications

Quantitation of TMT-Labeled Peptides Using Higher-Energy Collisional Dissociation on the Velos Pro Ion Trap Mass Spectrometer

Isobaric Labeling-Based Relative Quantification in Shotgun Proteomics

Structural Analysis of Proteins by Covalent Labeling and Mass Spectrometric Detection

Designed for Accuracy. Innovation with Integrity. High resolution quantitative proteomics LC-MS

TANDEM MASS SPECTROSCOPY

Qualitative Proteomics (how to obtain high-confidence high-throughput protein identification!)

Strategies for the Analysis of Therapeutic Peptides in Biofluids by LC-MS/MS. Lee Goodwin

PROTEIN AND PEPTIDE MASS SPECTROMETRY IN DRUG DISCOVERY

Chemical Lysine Modification at a single site. 2018/12/20 M1 Murata

Protein Identification Using Tandem Mass Spectrometry. Nathan Edwards Informatics Research Applied Biosystems

Control Strategies for Small Molecule Components of Antibody-Drug Conjugates

Types of Analyzers: Quadrupole: mass filter -part1

SRM assay generation and data analysis in Skyline

LECTURE-13. Peptide Mass Fingerprinting HANDOUT. Mass spectrometry is an indispensable tool for qualitative and quantitative analysis of

microtof-q III Innovation with Integrity The bench-mark in accurate mass LC-MS/MS ESI-Qq-TOF

Peter A. DiMaggio, Jr., Nicolas L. Young, Richard C. Baliban, Benjamin A. Garcia, and Christodoulos A. Floudas. Research

Mass spectrometry has been used a lot in biology since the late 1950 s. However it really came into play in the late 1980 s once methods were

Mass Spectrometry. Hyphenated Techniques GC-MS LC-MS and MS-MS

Theory and Practical Consequences.

Multi-residue analysis of pesticides by GC-HRMS

Welcome! Course 7: Concepts for LC-MS

Proudly serving laboratories worldwide since 1979 CALL for Refurbished & Certified Lab Equipment LCQ Deca XP Plus

Novel quadrupole time-of-flight mass spectrometry for shotgun proteomics

DIA-Umpire: comprehensive computational framework for data independent acquisition proteomics

Supporting Information

Simplified Approaches to Impurity Identification using Accurate Mass UPLC/MS

Mass Spectrometry Based De Novo Peptide Sequencing Error Correction

Lecture 15: Realities of Genome Assembly Protein Sequencing

Quantitative Analysis of Synthetic Opioids in Urine using Exactive LC-MS System

SPECTRA LIBRARY ASSISTED DE NOVO PEPTIDE SEQUENCING FOR HCD AND ETD SPECTRA PAIRS

Transcription:

Advanced Fragmentation Techniques for BioPharma Characterization Global BioPharma Summit The world leader in serving science

Different modes of fragmentation to answer different questions or for different assays Peptide Mapping Site occupancy of PTM for mab or site of conjugation for ADC Top-Middle down (Figure from Coon et al., Analytical Chemistry, 2009) 2

MS Tools for Major Biopharma Characterization Workflows For all the routine characterization workflows. Mode of fragmentation: HCD From routine to the most challenging tasks. Mode of fragmentation: HCD CID ETD EThcD ETciD (UVPD - not commercial) 3

Etanercept: O-glycosylation 4

O-glycosylation of Etanercept Etanercept (trade name Enbrel) LPAQVAFTPYAPEPGSTC 18 RLREYYDQTAQMC 31 C 32 SKC 35 SPGQHAKVFC 45 TKTSDTVC 53 DS C 56 EDSTYTQLWNWVPEC 71 LSC 74 GSRC 78 SSDQVETQAC 88 TREQNRIC 96 TC 98 RPGWYC 104 ALS KQEGC 112 RLC 115 APLRKC 121 RPGFGVARPGTETSDVVC 139 KPC 142 APGTFSNTTSSTDIC 157 R PHQIC 163 NVVAIPGNASMDAVC 178 TSTSPTRSMAPGAVHLPQPVSTRSQHTQPTPEPSTAPST SFLLPMGPSPPAEGSTGDEPKSC 240 DKTHTC 246 PPC 249 PAPELLGGPSVFLFPPKPKDTLMIS RTPEVTC 281 VVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN GKEYKC 341 KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC 387 LVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC 445 SVMHEALHNH YTQKSLSLSPGK 1) 3 N-glycan sites 2) 13 reported O-glycosylation sites Sialic acids from the O-glycan were removed prior trypsin digestion Peptide mapping was performed on the tryptic digest 5

Results for peptide SMAPGAVHLPQPVSTR after processing HCD data HCD RT: 27.13-35.10 100 50 0 100 50 0 100 50 0 100 50 0 SM: 7G 30.40 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 Time (min) 31.57 29.17 29.72 29.83 30.96 31.12 32.24 32.39 32.60 32.98 33.27 33.81 33.97 29.07 27.82 29.60 29.99 30.26 30.53 30.69 31.04 32.71 27.75 SMAPGAVHLPQPVSTR S 186 MAPGAVHLPQPVS 199 T 200 R 29.81 30.26 30.73 32.43 33.44 33.74 33.95 32.43 34.11 SMAPGAVHLPQPVSTR + SMAPGAVHLPQPVSTR + NL: 5.21E5 m/z= 549.95 ms MS 20170406_E HCD30_tes NL: 3.95E7 m/z= 671.66 ms MS 20170406_E HCD30_tes NL: 6.19E7 m/z= 1189.5 ms MS 20170406_E HCD30_tes NL: 2.68E5 m/z= 686.53 ms MS 20170406_E 35.05 HCD30_tes 6

7

Data acquisition method on a Fusion Lumos: ETD methods Flexibility and ease of use to design acquisition method Scan priority Charge 3 ETD reaction time = 60 ms Charge 4 ETD reaction time = 40 ms Charge 5-7 ETD reaction time = 20 ms DDA method used to collect data to identify the sites of O-glycosylation. 8

Data acquisition method on a Fusion Lumos: ETD methods Flexibility and ease of use to design acquisition method 9

Data acquisition method on a Fusion Lumos: ETD methods Other useful methods: * HCD followed by ETD for every precursors. * HCD followed by ETD when specific product ions are present in the HCD MS2 spectrum 10

11

12

13

14

Results for peptide SMAPGAVHLPQPVSTR after processing ETD data ETD All of the O-glycosylation sites of peptide SMAPGAVHLPQPVSTR were successfully identified RT: 27.13-35.10 100 50 0 100 50 0 100 50 0 100 50 0 SM: 7G SMAPGAVHLPQPVSTR 30.40 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 Time (min) 31.57 29.17 29.72 29.83 30.96 31.12 32.24 32.39 32.60 32.98 33.27 33.81 33.97 29.07 27.82 29.60 29.99 30.26 30.53 30.69 31.04 32.71 27.75 SMAPGAVHLPQPVSTR S 186 MAPGAVHLPQPVS 199 T 200 R SMAPGAVHLPQPVSTR 29.81 30.26 30.73 32.43 33.44 33.74 33.95 32.43 SMAPGAVHLPQPVSTR 34.11 NL: 5.21E5 m/z= 549.95 ms MS 20170406_E HCD30_test NL: 3.95E7 m/z= 671.66 ms MS 20170406_E HCD30_test NL: 6.19E7 m/z= 1189.5 ms MS 20170406_E HCD30_test NL: 2.68E5 m/z= 686.53 ms MS 20170406_E 35.05 HCD30_test 15

Etanercept: leveraging ETD and MSn for disulfide bond mapping 16

Disulfide bond mapping: Etanercept Etanercept (trade name Enbrel) LPAQVAFTPYAPEPGSTC 18 RLREYYDQTAQMC 31 C 32 SKC 35 SPGQHAK VFC 45 TKTSDTVC 53 DSC 56 EDSTYTQLWNWVPEC 71 LSC 74 GSRC 78 SSD QVETQAC 88 TREQNRIC 96 TC 98 RPGWYC 104 ALSKQEGC 112 RLC 115 APL RKC 121 RPGFGVARPGTETSDVVC 139 KPC 142 APGTFSNTTSSTDIC 157 RPHQIC 163 NVVAIPGNASMDAVC 178 TSTSPTRSMAPGAVHLPQPVST RSQHTQPTPEPSTAPSTSFLLPMGPSPPAEGSTGDEPKSC 240 DKTHT C 246 PPC 249 PAPELLGGPSVFLFPPKPKDTLMISRTPEVTC 281 VVVDV SHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW LNGKEYKC 341 KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEM TKNQVSLTC 387 LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSC 445 SVMHEALHNHYTQKSLSLSPGK 17

Disulfide bond mapping: Etanercept Etanercept (trade name Enbrel) LPAQVAFTPYAPEPGSTC 18 RLREYYDQTAQMC 31 C 32 SKC 35 SPGQHAK VFC 45 TKTSDTVC 53 DSC 56 EDSTYTQLWNWVPEC 71 LSC 74 GSRC 78 SSD QVETQAC 88 TREQNRIC 96 TC 98 RPGWYC 104 ALSKQEGC 112 RLC 115 APL RKC 121 RPGFGVARPGTETSDVVC 139 KPC 142 APGTFSNTTSSTDIC 157 RPHQIC 163 NVVAIPGNASMDAVC 178 TSTSPTRSMAPGAVHLPQPVST RSQHTQPTPEPSTAPSTSFLLPMGPSPPAEGSTGDEPKSC 240 DKTHT C 246 PPC 249 PAPELLGGPSVFLFPPKPKDTLMISRTPEVTC 281 VVVDV SHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW LNGKEYKC 341 KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEM TKNQVSLTC 387 LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSC 445 SVMHEALHNHYTQKSLSLSPGK The N-terminal side of this sample is not as expected. The first 2 amino acids are missing. 18

Disulfide Bond Mapping: Etanercept Etanercept (trade name Enbrel) LPAQVAFTPYAPEPGSTC 18 RLREYYDQTAQMC 31 C 32 SKC 35 SPGQHAKVFC 45 TKTSDTVC 53 DS C 56 EDSTYTQLWNWVPEC 71 LSC 74 GSRC 78 SSDQVETQAC 88 TREQNRIC 96 TC 98 RPGWYC 104 ALS KQEGC 112 RLC 115 APLRKC 121 RPGFGVARPGTETSDVVC 139 KPC 142 APGTFSNTTSSTDIC 157 R PHQIC 163 NVVAIPGNASMDAVC 178 TSTSPTRSMAPGAVHLPQPVSTRSQHTQPTPEPSTAPST SFLLPMGPSPPAEGSTGDEPKSC 240 DKTHTC 246 PPC 249 PAPELLGGPSVFLFPPKPKDTLMIS RTPEVTC 281 VVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN GKEYKC 341 KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC 387 LVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC 445 SVMHEALHNH YTQKSLSLSPGK The N-terminal side peptide contains one cysteine. The HCD search result of the non-reduced sample suggests that the N-terminal peptide is linked to two other peptides through disulfide bonds. 19

Leveraging ETD and MSn for disulfide bond mapping Workflow of the MS2 ETD MS3 HCD for disulfide bond peptide identification Dual-Pressure Linear Ion Trap Ultra-High Field Orbitrap Analyzer Ion Routing Multipole 3 fragment channels after ETD of disulfide bond peptide 20

Leveraging ETD and MSn for disulfide bond mapping Workflow of the MS2 ETD MS3 HCD for disulfide bond peptide identification Dual-Pressure Linear Ion Trap Ultra-High Field Orbitrap Analyzer Ion Routing Multipole 3 fragment channels after ETD of disulfide bond peptide 21

deconvoluted spectrum MS2 ETD Spectrum Peptide: AQVAFTPYAPEPGSTC 18 R-EYYDQTAQMC 31 C 32 SK-VFC 45 TK 22

Peptide: AQVAFTPYAPEPGSTC 18 R-EYYDQTAQMC 31 C 32 SK-VFC 45 TK MS3 HCD spectrum of AQVAFTPYAPEPGSTC 18 R. 23

Peptide: AQVAFTPYAPEPGSTC 18 R-EYYDQTAQMC 31 C 32 SK-VFC 45 TK MS3 HCD spectrum of EYYDQTAQMC 31 C 32 SK using a) the Orbitrap or b) the ion trap mass analyzers. 24

Peptide: AQVAFTPYAPEPGSTC 18 R-EYYDQTAQMC 31 C 32 SK-VFC 45 TK MS3 HCD spectrum of VFC 45 TK. 25

Antibody Drug Conjugates 26

ADCs are heterogeneous mixture Brentuximab vedotin Adcetris Trastuzumab Emtansine Kadcyla Light Chain: 12 Lysines Heavy Chain: 32 Lysines Cysteine-linked Lysine-linked FDA-approved ADCs Peptide mapping Goal: Identifying conjugated peptides and sites of conjugation 27

28

Trastuzumab emtansine: conjugated peptides Subset of identified conjugated peptides # K 2 1 2 2 3 2 1 ADYEKHK AKGQPR ALPAPIEKTISK ASQDVNTAVAWYQQKPGK TKPR 29

30

31

Trastuzumab emtansine site occupation: ETD spectrum z 4 z 3 Z 3 299.1840 (+1) ( -3.0 ppm) Dmass = 1084.4594 Da K (128.0949) + MCC-DM1 (956.3644) Z 4 692.3253 (+2) ( -1.9 ppm) ETD spectrum allows unambiguous identification of the conjugation site ASQDVNTAVAWYQQK 39 PGK 42 APK 45.99 min; m/z= 649.916 (+5); ETD Relative Abundance 20160525_fsn10361_TDM1_smart_mNBA_targetETD_0P3_20ms_04pmNBA_2AfteCali #5880 RT: 46.41 AV: 1 NL: 3.55E4 F: FTMS + p ESI d Full ms2 649.9127@etd20.00 [150.0000-2000.0000] 900.1154 100 649.9147 z=3 z=5 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 176.1024 z=? 260.1471 z=? 304.1607 z=1 359.6571 518.2562 z=? z=? 419.1882 z=? 812.3932 z=4 548.2264 z=1 1083.1908 z=3 696.0023 z=3 763.3984 z=3 982.1383 z=3 1160.5668 z=1 1350.1721 z=2 1376.7234 z=1 1255.1453 z=2 1540.7869 1624.7864 z=1 z=2 1451.6891 z=? 1726.8646 z=1 1861.9128 z=1 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 m/z 32

Trastuzumab emtansine site occupation 790.3785 (+2) ( -3.3 ppm) 931.4632 (+2) ( -2.1 ppm) c 14 c 17 c 14 Dmass = 282.1694 Da K (128.0949) + P (97.0528) +G (57.0215) c 17 ASQDVNTAVAWYQQKPGKAPK 45.99 min; m/z= 649.916 (+5); ETD Relative Abundance 20160525_fsn10361_TDM1_smart_mNBA_targetETD_0P3_20ms_04pmNBA_2AfteCali #5880 RT: 46.41 AV: 1 NL: 3.55E4 F: FTMS + p ESI d Full ms2 649.9127@etd20.00 [150.0000-2000.0000] 900.1154 100 649.9147 z=3 z=5 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 176.1024 z=? 260.1471 z=? 304.1607 z=1 359.6571 518.2562 z=? z=? 419.1882 z=? 812.3932 z=4 548.2264 z=1 1083.1908 z=3 696.0023 z=3 763.3984 z=3 982.1383 z=3 1160.5668 z=1 1350.1721 z=2 1376.7234 z=1 1255.1453 z=2 1540.7869 1624.7864 z=1 z=2 1451.6891 z=? 1726.8646 z=1 1861.9128 z=1 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 m/z 33

Trastuzumab emtansine: conjugated peptides Subset of identified conjugated peptides # K 2 1 2 2 3 2 1 34

35

Middle-down: ETD 36

Main parameters that can be controlled for ETD fragmentation on an Orbitrap Fusion mass spectrometer. Isolation window AGC target for precursor ions and reagent Reaction time Supplemental energy 37

Light Chain of Trastuzumab ETD settings: 300Da isolation window, 3E5 precursor, 7E5 reagent, 10 ms reaction time MS/MS Due to the complexity of the spectra in top-down analysis, high resolution is required 38

Effect of parent ion AGC and ETD reaction time on sequence coverage (Trastuzumab) % residue cleavages for AGC target value of 3E5 or 1E6 at different ETD reaction times LC Orbitrap LPC HPC Ion Trap MP0 Q1 Ion Routing Multipole ETD C-Trap 1 st parent ion isolation in Q1 1 st parent trapped in the ion trap Injection of ETD reagent 1 st parent: ETD dissociation 39

Effect of parent ion AGC and ETD reaction time on sequence coverage (Trastuzumab) % residue cleavages for AGC target value of 3E5 or 1E6 at different ETD reaction times LC Fc Fd 40

Effect of parent ion AGC and ETD reaction time on sequence coverage (Trastuzumab) % residue cleavages for AGC target value of 3E5 or 1E6 at different ETD reaction times LC 41

Middle Down: Orbitrap Tribrid Fusion Lumos LC Fd Fc High sequence coverage for the light chain, Fc and Fd were obtained from the combined ETD and EThcD experiments. 42

Fd (43%) Fc (52%) LC (60%) Fd (26%) Fc (32%) LC (40%) Fd (61%) Fc (67%) LC (78%) NIST mab: middle down experiment using ETD and UVPD One acquisition with ETD 10 ms One acquisition with UVPD 12 ms ETD 10 ms + UVPD 12 ms 43

Fd (43%) Fc (52%) LC (60%) Fd (26%) Fc (32%) LC (40%) Fd (61%) Fc (67%) LC (78%) NIST mab: middle down experiment using ETD and UVPD One acquisition with ETD 10 ms One acquisition with UVPD 12 ms ETD 10 ms + UVPD 12 ms 44

Hydrogen Deuterium Exchange 45

HDX-MS workflow MS1 46

Moving from MS only to MS/MS HDX experiment using ETD Deuterium Content Under normal operation condition, minimal scrambling is observed on the ETD Spectrum 3.0 2.5 Orbitrap Fusion HHHHHHIIKIIK 2.0 Literature 1.5 1.0 0.5 0.0 C2 C3 C4 C5 C6 C7 C8 C9 C10 (Martin Zehl, Kasper D. Rand, Ole N. Jensen, and Thomas J. D. Jørgensen J. AM. CHEM. SOC. 2008, 130, 17453 17459 9 17453) Minimal deuterium scrambling ETD measurement with different instruments and source conditions (No deuterium is retained on Histidine due to fast exchange with solvent) 47

Moving from MS only to MS/MS HDX experiment using ETD Pinpoint the Protein Ligand Binding Site with ETD Deuterium Deuterium labeled labeled protein protein and protein+ligand biding biding sample s sample s C and C Z and fragments Z fragments mass mass differences vs. sequence vs. sequence position. position. From From C3 to C3 C14 to C14 mass mass differences were were from from 0.03 0.03 to 0.2. to 0.2. Start Start from from C17, C17, the Δthe mass Δ mass increased increased to around to around 1 and 1 stay and stay at at the same the same level level for the for rest the rest of the of C the fragments. C fragments. C14 C14 was was identified identified as significant as significant change change area. area. Significant change was observed around Z 8 -Z 10 is consistent with the C fragments plot. Combine the two plot results, the potential binding site was predicted. 48

Summary ETD is a must have type of fragmentation for in-depth characterization of biotherapeutic proteins. High sequence coverage for middledown experiments allows quick characterization assays. Orbitrap Fusion Lumos offers multiple types of fragmentation and ease of use to tackle the most challenging task. 49

Thank you! Acknowledgements Kelly Broster Rowan Moore Terry Zhang Aaron Bailey Kyle D Silva Michael Blank Simon Cubbon Stephane Houel Jonathan Josephs John Rontree Helene Cardasis Seema Sharma Romain Huguet Vlad Zabrouskov Jennifer Sutton Mark Sanders 50