Positive solutions and nonlinear multipoint conjugate eigenvalue problems

Similar documents
NONLINEAR EIGENVALUE PROBLEMS FOR HIGHER ORDER LIDSTONE BOUNDARY VALUE PROBLEMS

Positive Solutions of Three-Point Nonlinear Second Order Boundary Value Problem

FUNCTIONAL COMPRESSION-EXPANSION FIXED POINT THEOREM

ON THE EXISTENCE OF POSITIVE SOLUTIONS OF HIGHER ORDER DIFFERENCE EQUATIONS. P. J. Y. Wong R. P. Agarwal. 1. Introduction

POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT BOUNDARY-VALUE PROBLEM. Ruyun Ma

TRIPLE POSITIVE SOLUTIONS FOR A CLASS OF TWO-POINT BOUNDARY-VALUE PROBLEMS

Positive Solutions of a Third-Order Three-Point Boundary-Value Problem

Positive and monotone solutions of an m-point boundary-value problem

Positive periodic solutions of nonlinear functional. difference equation

THREE SYMMETRIC POSITIVE SOLUTIONS FOR LIDSTONE PROBLEMS BY A GENERALIZATION OF THE LEGGETT-WILLIAMS THEOREM

Abdulmalik Al Twaty and Paul W. Eloe

Positive Solutions to an N th Order Right Focal Boundary Value Problem

LIFE SPAN OF BLOW-UP SOLUTIONS FOR HIGHER-ORDER SEMILINEAR PARABOLIC EQUATIONS

MULTIPLE POSITIVE SOLUTIONS FOR FOURTH-ORDER THREE-POINT p-laplacian BOUNDARY-VALUE PROBLEMS

Existence of a Positive Solution for a Right Focal Discrete Boundary Value Problem

MULTIPLE POSITIVE SOLUTIONS FOR KIRCHHOFF PROBLEMS WITH SIGN-CHANGING POTENTIAL

Sufficient conditions for functions to form Riesz bases in L 2 and applications to nonlinear boundary-value problems

Multiple positive solutions for a class of quasilinear elliptic boundary-value problems

ON THE OSCILLATION OF THE SOLUTIONS TO LINEAR DIFFERENCE EQUATIONS WITH VARIABLE DELAY

Research Article The Existence of Countably Many Positive Solutions for Nonlinear nth-order Three-Point Boundary Value Problems

ON THE EXISTENCE OF POSITIVE SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

Commentationes Mathematicae Universitatis Carolinae

NONLINEAR THREE POINT BOUNDARY VALUE PROBLEM

EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A QUASILINEAR SCHRÖDINGER EQUATIONS WITH SIGN-CHANGING POTENTIAL

EXISTENCE AND APPROXIMATION OF SOLUTIONS OF SECOND ORDER NONLINEAR NEUMANN PROBLEMS

SYNCHRONIZATION OF NONAUTONOMOUS DYNAMICAL SYSTEMS

POSITIVE SOLUTIONS FOR A SECOND-ORDER DIFFERENCE EQUATION WITH SUMMATION BOUNDARY CONDITIONS

MULTIPLICITY OF CONCAVE AND MONOTONE POSITIVE SOLUTIONS FOR NONLINEAR FOURTH-ORDER ORDINARY DIFFERENTIAL EQUATIONS

SOLVABILITY OF A QUADRATIC INTEGRAL EQUATION OF FREDHOLM TYPE IN HÖLDER SPACES

Positive Periodic Solutions of Systems of Second Order Ordinary Differential Equations

Even Number of Positive Solutions for 3n th Order Three-Point Boundary Value Problems on Time Scales K. R. Prasad 1 and N.

ON QUADRATIC INTEGRAL EQUATIONS OF URYSOHN TYPE IN FRÉCHET SPACES. 1. Introduction

EXISTENCE OF SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS WITH UNBOUNDED POTENTIAL. 1. Introduction In this article, we consider the Kirchhoff type problem

Nonlocal Cauchy problems for first-order multivalued differential equations

MULTIPLE SOLUTIONS FOR AN INDEFINITE KIRCHHOFF-TYPE EQUATION WITH SIGN-CHANGING POTENTIAL

On periodic solutions of superquadratic Hamiltonian systems

Stability properties of positive solutions to partial differential equations with delay

A NONLINEAR NEUTRAL PERIODIC DIFFERENTIAL EQUATION

EXISTENCE OF POSITIVE SOLUTIONS FOR p-laplacian THREE-POINT BOUNDARY-VALUE PROBLEMS ON TIME SCALES

Nontrivial solutions for fractional q-difference boundary value problems

JUNXIA MENG. 2. Preliminaries. 1/k. x = max x(t), t [0,T ] x (t), x k = x(t) dt) k

ASYMPTOTIC THEORY FOR WEAKLY NON-LINEAR WAVE EQUATIONS IN SEMI-INFINITE DOMAINS

INTERNATIONAL PUBLICATIONS (USA)

CONVERGENCE BEHAVIOUR OF SOLUTIONS TO DELAY CELLULAR NEURAL NETWORKS WITH NON-PERIODIC COEFFICIENTS

SIMULTANEOUS AND NON-SIMULTANEOUS BLOW-UP AND UNIFORM BLOW-UP PROFILES FOR REACTION-DIFFUSION SYSTEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR FOURTH-ORDER BOUNDARY-VALUE PROBLEMS IN BANACH SPACES

On Positive Solutions of Boundary Value Problems on the Half-Line

EXISTENCE OF SOLUTIONS TO A BOUNDARY-VALUE PROBLEM FOR AN INFINITE SYSTEM OF DIFFERENTIAL EQUATIONS

POSITIVE SOLUTIONS FOR NONLOCAL SEMIPOSITONE FIRST ORDER BOUNDARY VALUE PROBLEMS

A Dirichlet problem in the strip

ANALYSIS AND APPLICATION OF DIFFUSION EQUATIONS INVOLVING A NEW FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL

EXISTENCE OF POSITIVE SOLUTIONS OF A NONLINEAR SECOND-ORDER BOUNDARY-VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS

MULTIPLE SOLUTIONS FOR CRITICAL ELLIPTIC PROBLEMS WITH FRACTIONAL LAPLACIAN

NONLINEAR FREDHOLM ALTERNATIVE FOR THE p-laplacian UNDER NONHOMOGENEOUS NEUMANN BOUNDARY CONDITION

Research Article Nonlinear Systems of Second-Order ODEs

Xiyou Cheng Zhitao Zhang. 1. Introduction

Shih-sen Chang, Yeol Je Cho, and Haiyun Zhou

SEMILINEAR ELLIPTIC EQUATIONS WITH DEPENDENCE ON THE GRADIENT

POTENTIAL LANDESMAN-LAZER TYPE CONDITIONS AND. 1. Introduction We investigate the existence of solutions for the nonlinear boundary-value problem

ULAM-HYERS-RASSIAS STABILITY OF SEMILINEAR DIFFERENTIAL EQUATIONS WITH IMPULSES

MULTIPLE SOLUTIONS FOR THE p-laplace EQUATION WITH NONLINEAR BOUNDARY CONDITIONS

A COUNTEREXAMPLE TO AN ENDPOINT BILINEAR STRICHARTZ INEQUALITY TERENCE TAO. t L x (R R2 ) f L 2 x (R2 )

ON THE HÖLDER CONTINUITY OF MATRIX FUNCTIONS FOR NORMAL MATRICES

HARDY INEQUALITIES WITH BOUNDARY TERMS. x 2 dx u 2 dx. (1.2) u 2 = u 2 dx.

EXISTENCE OF POSITIVE SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS

POSITIVE SOLUTIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH DERIVATIVE TERMS

SELF-ADJOINTNESS OF SCHRÖDINGER-TYPE OPERATORS WITH SINGULAR POTENTIALS ON MANIFOLDS OF BOUNDED GEOMETRY

EXISTENCE OF SOLUTIONS FOR A RESONANT PROBLEM UNDER LANDESMAN-LAZER CONDITIONS

FUZZY SOLUTIONS FOR BOUNDARY VALUE PROBLEMS WITH INTEGRAL BOUNDARY CONDITIONS. 1. Introduction

ON CONTINUITY OF MEASURABLE COCYCLES

Existence and iteration of monotone positive solutions for third-order nonlocal BVPs involving integral conditions

Boundary Value Problems For Delay Differential Equations. (Ravi P Agarwal, Texas A&M Kingsville)

The aim of this paper is to obtain a theorem on the existence and uniqueness of increasing and convex solutions ϕ of the Schröder equation

EXISTENCE OF THREE WEAK SOLUTIONS FOR A QUASILINEAR DIRICHLET PROBLEM. Saeid Shokooh and Ghasem A. Afrouzi. 1. Introduction

SOLVABILITY OF MULTIPOINT DIFFERENTIAL OPERATORS OF FIRST ORDER

CONTINUATION METHODS FOR CONTRACTIVE AND NON EXPANSIVE MAPPING (FUNCTION)

ELLIPTIC EQUATIONS WITH MEASURE DATA IN ORLICZ SPACES

ON THE BEHAVIOR OF SOLUTIONS OF LINEAR NEUTRAL INTEGRODIFFERENTIAL EQUATIONS WITH UNBOUNDED DELAY

NONTRIVIAL SOLUTIONS TO INTEGRAL AND DIFFERENTIAL EQUATIONS

K-DIMENSIONAL NONLOCAL BOUNDARY-VALUE PROBLEMS AT RESONANCE. 1. Introduction In this article we study the system of ordinary differential equations

MONOTONE POSITIVE SOLUTION OF NONLINEAR THIRD-ORDER TWO-POINT BOUNDARY VALUE PROBLEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER NONLINEAR HYPERBOLIC SYSTEM

Fixed point theorem utilizing operators and functionals

SYMMETRIC INTEGRALS DO NOT HAVE THE MARCINKIEWICZ PROPERTY

HOMOCLINIC SOLUTIONS FOR SECOND-ORDER NON-AUTONOMOUS HAMILTONIAN SYSTEMS WITHOUT GLOBAL AMBROSETTI-RABINOWITZ CONDITIONS

HAIYUN ZHOU, RAVI P. AGARWAL, YEOL JE CHO, AND YONG SOO KIM

MAXIMALITY OF SUMS OF TWO MAXIMAL MONOTONE OPERATORS

Multi-Term Linear Fractional Nabla Difference Equations with Constant Coefficients

NONLINEAR DIFFERENTIAL INEQUALITY. 1. Introduction. In this paper the following nonlinear differential inequality

SPACES ENDOWED WITH A GRAPH AND APPLICATIONS. Mina Dinarvand. 1. Introduction

SOLUTION OF AN INITIAL-VALUE PROBLEM FOR PARABOLIC EQUATIONS VIA MONOTONE OPERATOR METHODS

A DISCRETE BOUNDARY VALUE PROBLEM WITH PARAMETERS IN BANACH SPACE

Positive periodic solutions of higher-dimensional nonlinear functional difference equations

On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings

Positive solutions of BVPs for some second-order four-point difference systems

POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEM OF SINGULAR FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATION

Piecewise Smooth Solutions to the Burgers-Hilbert Equation

COMBINED EFFECTS FOR A STATIONARY PROBLEM WITH INDEFINITE NONLINEARITIES AND LACK OF COMPACTNESS

Banach Algebras of Matrix Transformations Between Spaces of Strongly Bounded and Summable Sequences

Journal of Inequalities in Pure and Applied Mathematics

Transcription:

Electronic Journal of Differential Equations, Vol. 997(997), No. 3, pp.. ISSN: 72-669. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp (login: ftp) 47.26.3. or 29.2.3.3 Positive solutions and nonlinear multipoint conjugate eigenvalue problems Paul W. Eloe & Johnny Henderson Abstract Values of λ are determined for which there exist solutions in a cone of the n th order nonlinear differential equation, u (n) = λa(t)f(u), <t<, satisfying the multipoint boundary conditions, u (j) (a i)=,jn i, i k, where = a < a 2 < < a k =, and k ni = n, i= where a and f are nonnegative valued, and where both lim f(x)/ x x + and lim x f(x)/ x exist. Introduction Let n 2and2knbe integers, and let = a <a 2 < <a k =be fixed. Also, let n,...,n k be positive integers such that n i = n. i= We are concerned with determining eigenvalues, λ, for which there exist solutions, that are positive with respect to a cone, of the nonlinear multipoint conjugate boundary value problem, where (A) f : R [, ) is continuous, u (n) = λa(t)f(u), <t<, (.) u (j) (a i )=, jn i, ik, (.2) (B) a :[,] [, ) is continuous and does not vanish identically on any subinterval, and (C) f = f(x) f(x) lim x + x and f = lim x x exist. 99 Mathematics Subject Classifications: 34B, 34B5. Key words and phrases: multipoint, nonlinear eigenvalue problem, cone. c 997 Southwest Texas State University and University of North Texas. Submitted: December 7, 996. Published January 22, 997. k

2 Positive Solutions EJDE 997/3 This work constitutes a complete generalization, in the conjugate problem setting, of the paper by Henderson and Wang [6] which was devoted to the eigenvalue problem (.), (.2) for the case n = 2andk= 2. While the paper [6] arose from a cornerstone paper by Erbe and Wang [2], which was devoted to n =2andk= 2 for the cases when f is superlinear (i.e., f =andf = ) and when f is sublinear (i.e., f = and f = ), the development since has been rapid. For example, Eloe and Henderson [6] gave a most general extension of [6] for (.), (.2) in the case of arbitrary n and k = 2. Other partial extensions have been given for higher order boundary value problems, as well as results for multiple solutions, in both the continuous and discrete settings; see for example [, 2, 4, 8, 9,, 5, 7, 2, 22, 23]. Foundational work for this paper is the recent study by Eloe and McKelvey [] of (.), (.2), for arbitrary n, k =3andn =n 3 =. For the case of n =2andk= 2, (.), (.2) describes many phenomena in the applied mathematical sciences such as, to name a few, nonlinear diffusion generated by nonlinear sources, thermal ignition of gases, and chemical concentrations in biological problems where only positive solutions are meaningful; see, for example [3, 4, 2, 27]. Higher order boundary value problems for ordinary differential equations arise naturally in technical applications. Frequently, these occur in the form of a multipoint boundary value problem for an n th order ordinary differential equation, such as an n-point boundary value problem model of a dynamical system with n degrees of freedom in which n states are observed at n times; see Meyer [24]. It is noted in [24] that, strictly speaking, boundary value problems for higher order ordinary differential equations are a particular class of interface problems. One example in which this is exhibited is given by Keener [8] in determining the speed of a flagellate protozoan in a viscous fluid. Another particular case of a boundary value problem for a higher order ordinary differential equation arising as an interface problem is given by Wayner, et al. [28] in dealing with a study of perfectly wetting liquids. We now observe that, for n = 2, positive solutions of (.), (.2) are concave. This concavity was exploited in [2, 6] and in many of the extensions cited above in defining a cone on which a positive operator was defined. A fixed point theorem due to Krasnosel skii [9] was then applied to yield positive solutions for certain intervals of eigenvalues. In defining an appropriate cone, inequalities that provide lower bounds for positive functions as a function of the supremum norm have been applied. The inequality to which we refer may be stated as follows: If y C (2) [, ] is such that y(t), t, andy (t), t, then y(t) 4 max s y(s), 4 t 3 4. (.3) Inequality (.3) was recently generalized by Eloe and Henderson [5] in the following sense:

EJDE 997/3 Paul W. Eloe & Johnny Henderson 3 then Let n 2and2ln. If y C (n) [, ] is such that where y = max s ( ) n l y (n) (t), t, y (j) () =, j l, y (j) () =, j n l, y(t) 4 m y, 4 t 3 4, (.4) y(s) and m =max{l, n l}. An inequality analogous to (.4) for a Green s function was also given in [6]. In a later paper, Eloe and Henderson [7] obtained a further generalization of (.4) for solutions of differential inequalities satisfying the multipoint conjugate boundary conditions (.2). In that same paper [7], an analogous inequality was also derived for a Green s function associated with y (n) = and (.2). It is that generalization of (.4) as it applies to solutions of (.), (.2) which eventually leads to the main results of this paper. In Section 2, we state the generalization of (.4) as it applies to solutions of (.), (.2). We also state the analogous inequality for a Green s function that will be used in defining a positive operator on a cone. The Krasnosel skii fixed point theorem is also stated in that section. Then, in Section 3, we give an appropriate Banach space and construct a cone on which we apply the fixed point theorem to our positive operator, thus yielding solutions of (.), (.2), for open intervals of eigenvalues. 2 Preliminaries In this section, we state the Krasnosel skii fixed pointed theorem to which we referred in the introduction. Prior to this, we will state the generalization of (.4) as given in [7]. For notational purposes, set α i = k j=i+ n j,ik, let S i (a i,a i+ ), i k, be defined by S i =[(3a i +a i+ )/4, (a i +3a i+ )/4], let and let a = min {a i+ a i }, ik m =max{n n,n n k }. Theorem 2. Assume y C (n) [, ] is such that y (n) (t), t, andy satisfies the multipoint boundary conditions (.2). Then, for each i k, ( ) αi y(t) y ( a 4 )m, t S i, (2.)

4 Positive Solutions EJDE 997/3 where y = max t y(t). The Krasnosel skii fixed point theorem will be applied to a completely continuous integral operator whose kernel, G(t, s), is the Green s function for satisfying (.2). It is well-known [3] that y (n) =, t, (2.2) ( ) αi G(t, s) > on(a i,a i+ ) (, ), i k. (2.3) For the remainder of the paper, for <s<, let τ(s) (, ) be defined by G(τ(s),s) = sup G(t, s), (2.4) t so that, for each i k, ( ) αi G(t, s) G(τ(s),s) on [a i,a i+ ] [, ]. (2.5) Then in analogy to (2.), Eloe and Henderson [7] proved the following inequality for G(t, s). Theorem 2.2 Let G(t, s) denote the Green s function for (2.2), (.2). Then, for <s<and i k, ( ) αi G(t, s) ( a 4 )m G(τ(s),s), t S i. (2.6) We mention that inequality (2.6) is closely related to inequalities derived for G(t, s) by Pokornyi [25, 26]. Inequalities (2.5) and (2.6) are of fundamental importance in defining positive operators to which we will apply the following fixed point theorem [9]. Theorem 2.3 Let B be a Banach space, and let P Bbe a cone in B. Assume Ω, Ω 2 are open subsets of B with Ω Ω Ω 2, and let T : P ( Ω 2 \Ω ) P be a completely continuous operator such that, either (i) Tu u,u P Ω,and Tu u,u P Ω 2,or (ii) Tu u,u P Ω,and Tu u,u P Ω 2. Then T has a fixed point in P ( Ω 2 \Ω ).

EJDE 997/3 Paul W. Eloe & Johnny Henderson 5 3 Solutions in a Cone In this section, we apply Theorem 2.3 to the eigenvalue problem (.), (.2). The keys to satisfying the hypotheses of the theorem are in selecting a suitable cone and in inequalities (2.5) and (2.6). As is standard, u C[, ] is a solution of (.), (.2) if, and only if, u(t) =λ G(t, s)a(s)f(u(s))ds, t, where G(t, s) is the Green s function for (2.2), (.2). We let B = C[, ], and for y B, define y =sup t y(t). Then (B, ) is a Banach space. The cone, P, in which we shall exhibit solutions is defined by P = {x B for i k, ( ) αi x(t) on[a i,a i+ ], and min t Si ( ) αi x(t) ( a 4 )m x }. Theorem 3. Assume that conditions (A), (B) and (C) are satisfied. Then, for each λ satisfying, 4 m a m k G( 2,s) a(s)dsf <λ< there is at least one solution of (.), (.2) belonging to P. G(τ(s),s) a(s)dsf, (3.) Proof We remark that a special case in the arguments result when f =. However, the modifications required for that case, in the following proof, are straightforward, and so we omit those details. Let λ be given as in (3.), and let ɛ> be such that 4 m S i G( 2,s) a(s)ds(f ɛ) λ a m k i= G(τ(s),s) a(s)ds(f + ɛ). We seek a fixed point of the integral operator T : P Bdefined by Tu(t)=λ G(t, s)a(s)f(u(s))ds, u P. (3.2) First, let u Pand let t [, ]. Then, for some i k, we have t [a i,a i+ ], and by (2.3) and (2.5), ( ) αi Tu(t) = λ λ ( ) αi G(t, s)a(s)f(u(s))ds G(τ(s),s) a(s)f(u(s))ds,

6 Positive Solutions EJDE 997/3 so that Tu λ G(τ(s),s) a(s)f(u(s))ds. (3.3) Moreover, for u P and t S i,ik, we have from (2.6) and (3.3), min( ) αi Tu(t) = minλ t S i t S i ( a 4 )m λ ( a 4 )m Tu. ( ) αi G(t, s)a(s)f(u(s))ds G(τ(s),s) a(s)f(u(s))ds As a consequence T : P P. The standard arguments can also be used to verify that T is completely continuous. We begin with f. There exists an H > such that f(x) (f + ɛ) x, for < x <H.So,ifwechooseu P with u = H, then from (2.5) Tu(t) λ So, Tu u.weset Then λ λ u, t. G(τ(s),s) a(s)f(u(s))ds G(τ(s),s) a(s)(f + ɛ) u(s) ds G(τ(s),s) a(s)ds(f + ɛ) u Ω ={x B x <H }. Tu u, for u P Ω. (3.4) Next, we consider f. There exists an H 2 > such that f(x) (f ɛ) x, for all x H 2.LetH 2 =max{2h,( 4 a )m H2 }, and define Ω 2 = {x B x <H 2 }. Let u P with u = H 2. Then, for each i k, min t Si ( ) αi u(t) ( a 4 )m u H 2. Moreover, there exists i k such that 2 [a i,a i+]. Then, by (2.3),

EJDE 997/3 Paul W. Eloe & Johnny Henderson 7 ( ) αi Tu( 2 ) = λ = λ Thus, Tu u. Hence, k ( ) αi G( 2,s)a(s)f(u(s))ds G( 2,s) a(s)f(u(s))ds λ G( 2,s) a(s)f(u(s))ds k λ G( 2,s) a(s)(f ɛ) u(s) ds λ( a k 4 )m G( 2,s) a(s)ds(f ɛ) u u. Tu u, for u P Ω 2. (3.5) We apply part (i) of Theorem 2.3 in obtaining a fixed point, u, oft that belongs to P ( Ω 2 \Ω ). The fixed point, u, is a desired solution of (.), (.2), for the given λ. The proof is complete. 2 Remark 3. It follows from Theorem 3., if f is superlinear (i.e., f =and f = ), then (.), (.2) has a solution, for each <λ<. Theorem 3.2 Assume that conditions (A), (B) and (C) are satisfied. Then, for each λ satisfying 4 m a m k G( 2,s) a(s)dsf <λ< there is at least one solution of (.), (.2) belonging to P. G(τ(s),s) a(s)dsf, (3.6) Proof Let λ be as in (3.6), and choose ɛ> such that a m k i= 4 m S i G( 2,s) a(s)ds(f ɛ) λ G(τ(s),s) a(s)ds(f + ɛ). Let T be the cone preserving, completely continuous operator that was defined by (3.2).

8 Positive Solutions EJDE 997/3 Beginning with f, there exists an H > such that f(x) (f ɛ) x, for < x H. Choose u Pwith u = H. As in Theorem 3., there exists i k such that 2 [a i,a i+]. Then ( ) αi Tu( 2 ) = λ = λ k ( ) αi G( 2,s)a(s)f(u(s))ds G( 2,s) a(s)f(u(s))ds λ G( 2,s) a(s)f(u(s))ds k λ G( k= S i 2,s) a(s)(f ɛ) u(s) ds λ( a k 4 )m G( 2,s) a(s)ds(f ɛ) u u. Therefore, if we let then Ω = {x B x <H }, Tu u, for u P Ω. (3.7) We now consider f. There exists an H 2 > such that f(x) (f + ɛ) x, for all x H 2. There are the two cases, (a) f is bounded, or (b) f is unbounded. For (a), suppose N > is such that f(x) N, for all x R. Let H 2 = max{2h, Nλ G(τ(s),s) a(s)ds}. Then, for u P with u = H 2, Thus, Tu u. So, if then Tu(t) λ λn G(t, s) a(s)f(u(s))ds G(τ(s),s) a(s)ds u, t. Ω 2 ={x B x <H 2 },

EJDE 997/3 Paul W. Eloe & Johnny Henderson 9 Tu u, for u P Ω 2. (3.8) For case (b), let H 2 > max{2h, H 2 } be such that f(x) f(h 2 ), for < x H 2. Let u Pwith u = H 2,andchooset [, ]. Then, for some i k, t [a i,a i+ ], and by (2.5), ( ) αi Tu(t) = λ = λ λ λ = λ u, so that Tu u. For this case, if we let ( ) αi G(t, s)a(s)f(u(s))ds G(t, s) a(s)f(u(s))ds G(τ(s),s) a(s)f(h 2 )ds G(τ(s),s) a(s)ds(f + ɛ)h 2 G(τ(s),s) a(s)ds(f + ɛ) u Ω 2 = {x B x <H 2 }, then Tu u, for u P Ω 2. Thus, regardless of the cases, an application of part (ii) of Theorem 2.3 yields a fixed point of T which belongs to P ( Ω 2 \Ω ). This fixed point is a solution of (.), (.2) corresponding to the given λ. The proof is complete. 2 Remark 3.2 We observe that, if f is sublinear (i.e., f = and f =), then Theorem 3.2 yields a solution of (.), (.2), for all <λ<. References [] R. P. Agarwal and P. J. Y. Wong, Eigenvalues of boundary value problems for higher order differential equations, Math. Problems in Eng., in press. [2] R. P. Agarwal and P. J. Y. Wong, Eigenvalue characterization for (n, p) boundary value problems, J. Austral. Math. Soc. Ser. B: Appl. Math., in press. [3] W. Coppel, Disconjugacy, Lecture Notes in Mathematics, vol. 22, Springer-Verlag, Berlin and New York, 97.

Positive Solutions EJDE 997/3 [4] P. W. Eloe and J. Henderson, Positive solutions for (n, ) conjugate boundary value problems, Nonlin. Anal., in press. [5] P. W. Eloe and J. Henderson, Inequalities based on a generalization of concavity, Proc. Amer. Math. Soc., in press. [6] P. W. Eloe and J. Henderson, Posititive solutions and nonlinear (k, n k) conjugate eigenvalue problems, Diff. Eqn. Dyn. Sys. in press. [7] P. W. Eloe and J. Henderson, Inequalities for solutions of multipoint boundary value problems, preprint. [8] P. W. Eloe, J. Henderson and E. R. Kaufmann, Multiple positive solutions for difference equations, preprint. [9] P. W. Eloe, J. Henderson and P. J. Y. Wong, Positive solutions for twopoint boundary value problems, Dyn. Sys. Appl. 2 (996), 35-44. [] P. W. Eloe and J. McKelvey, Positive solutions of three point boundary value problems, Comm. Appl. Nonlin. Anal. 4 (997), in press. [] L. H. Erbe, S. Hu and H. Wang, Multiple positive solutions of some boundary value problems, J. Math. Anal. Appl. 84 (994), 64-648. [2] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc. 2 (994), 743-748. [3] D. G. de Figueiredo, P. L. Lions and R. O. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pura Appl. 6 (982), 4-63. [4] A. M. Fink and G. A. Gatica, Positive solutions of second order systems of boundary value problems, J. Math. Anal. Appl. 8 (993), 93-8. [5] J. Henderson and E. R. Kaufmann, Multiple positive solutions for focal boundary value problems, Comm. Appl. Anal. (997), 53-6. [6] J. Henderson and H. Wang, Positive solutions for a nonlinear eigenvalue problem, J. Math. Anal. Appl., in press. [7] E. R. Kaufmann, Multiple positive solutions for higher order boundary value problems, Rocky Mtn. J. Math., in press. [8] J.P.Keener,Principles of Applied Mathematics, Addison-Wesley, Redwood City, CA, 988. [9] M. A. Krasnosel skii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 964.

EJDE 997/3 Paul W. Eloe & Johnny Henderson [2] H. J. Kuiper, On positive solutions of nonlinear elliptic eigenvalue problems, Rend. Math. Circ. Palermo, Serie II, Tom. XX (979), 3-38. [2] W. C. Lian, F. H. Wong and C. C. Yeh, On the existence of positive solutions of nonlinear second order differential equations, Proc. Amer. Math. Soc. 24 (996), 7-26. [22] F. Merdivenci, Green s matrices and positive solutions of a discrete boundary value problem, Panamer. Math. J. 5 (995), 25-42. [23] F. Merdivenci, Two positive solutions of a boundary value problem for difference equations, J. Difference Eqns. Appl. (995), 263-27. [24] G. H. Meyer, Initial Value Methods for Boundary Value Problems, Academic Press, New York, 973. [25] Yu. V. Pokornyi, On estimates for the Green s function for a multipoint boundary problem, Mat. Zametki 4 (968), 533-54 (English translation). [26] Yu. V. Pokornyi, Second solutions of a nonlinear de la Vallée Poussin problem, Diff. Urav. 6 (97), 599-65 (English translation). [27] L. Sanchez, Positive solutions for a class of semilinear two-point boundary value problems, Bull. Austral. Math. Soc. 45 (992), 439-45. [28] P. C. Wayner, Y. K. Kao and L. V. LaCroix, The interline heat transfer coefficient of an evaporating wetting film, Int. J. Heat Mass Transfer 9 (976), 487-492. Paul W. Eloe Department of Mathematics University of Dayton Dayton, Ohio 45469-236 USA E-mail address: eloe@saber.udayton.edu Johnny Henderson Department of Mathematics Auburn University Auburn, AL 36849 USA E-mail address: hendej2@mail.auburn.edu