FXA 2008 Φ = BA. Candidates should be able to : Define magnetic flux. Define the weber (Wb). Select and use the equation for magnetic flux :

Similar documents
CURRENT-CARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law

PHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law

Revision Guide for Chapter 15

Revision Guide for Chapter 15

ElectroMagnetic Induction

Demo: Solenoid and Magnet. Topics. Chapter 22 Electromagnetic Induction. EMF Induced in a Moving Conductor

0.2 F 0.4 F 0.8 F 4.0 F

Chapter 12. Magnetism and Electromagnetism

DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION

FARADAY S AND LENZ LAW B O O K P G

Electromagnetic Induction

Magnetic flux. where θ is the angle between the magnetic field and the area vector. The unit of magnetic flux is the weber. 1 Wb = 1 T m 2.

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW

Chapter 22. Induction

C. Incorrect! Use the formula for magnetic flux. This is the product of magnetic field, times area, times the angle between them.

Section 11: Magnetic Fields and Induction (Faraday's Discovery)

General Physics II. Electromagnetic Induction and Electromagnetic Waves

MAGNETISM. Magnet. When a piece of material is brought close to or stroked by a magnet, the material itself becomes magnetic.

Section 11: Magnetic Fields and Induction (Faraday's Discovery)

Chapter 4: Magnetic Field

Version The diagram below represents lines of magnetic flux within a region of space.

224 g (Total 1 mark) A straight line in a direction opposite to that of the field.

Chapter 5: Electromagnetic Induction

Electrics. Electromagnetism

Electromagnetic Induction and Faraday s Law

AP Physics Electromagnetic Wrap Up

Answers to examination-style questions. Answers Marks Examiner s tips. any 3

Magnetism is associated with charges in motion (currents):

PHYS102 Previous Exam Problems. Induction

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

Electromagnetism IB 12

Chapter 23 Magnetic Flux and Faraday s Law of Induction

Faraday s Law of Electromagnetic Induction

Unit 8: Electromagnetism

a) head-on view b) side view c) side view Use the right hand rule for forces to confirm the direction of the force in each case.


COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES


Slide 1 / 50. Slide 2 / 50. Slide 3 / 50. Electromagnetic Induction and Faraday s Law. Electromagnetic Induction and Faraday s Law.

Slide 1 / 50. Electromagnetic Induction and Faraday s Law

Chapter 20: Electromagnetic Induction. PHY2054: Chapter 20 1

Electromagnetic Induction Practice Problems Homework PSI AP Physics B

ELECTROMAGNETIC INDUCTION

ELECTRICITY AND MAGNETISM, A. C. THEORY AND ELECTRONICS, ATOMIC AND NUCLEAR PHYSICS

Induction_P1. 1. [1 mark]

PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions

Note that a current-carrying solenoid produces a dipole field similar to that of a bar magnet. The field is uniform within the coil.

Magnetism. and its applications

AP Physics C - E & M

General Physics (PHY 2140)

Electricity & Optics

Physics Notes for Class 12 chapter 6 ELECTROMAGNETIC I NDUCTION

Electromagnetic Induction

ELECTROMAGNETIC INDUCTION

AP Physics C Unit 11: Electromagnetic Induction. Part 1 - Faraday s Law and Lenz s Law

Chapter 30. Induction and Inductance

1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields.

Chapter -12 Electromagnetism

PHY222 Lab 10 - Magnetic Fields: Magnetic Flux and. Lenz's Law Currents induced in coils by magnets and by other coils

1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. magnetic. flux linkage / Wb-turns 1.

Electromagnetism Notes 1 Magnetic Fields

Fig. 2.1 I =... A [2] Suggest why it would be impossible for overhead cables carrying an alternating current to float in the Earth s magnetic field.

PHYSICS - GIANCOLI CALC 4E CH 29: ELECTROMAGNETIC INDUCTION.

mag ( ) 1 ). Since I m interested in the magnitude of the flux, I ll avoid the minus sign by taking the normal to point upward.

Get Discount Coupons for your Coaching institute and FREE Study Material at ELECTROMAGNETIC INDUCTION

> What happens when the poles of two magnets are brought close together? > Two like poles repel each other. Two unlike poles attract each other.

Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance?

Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields

Magnetism. a) Ferromagnetic materials are strongly attracted to magnets. b) Paramagnetic materials are weakly attracted to magnets

Magnetism & Electromagnetism

AP Physics 2 Electromagnetic Induction Multiple Choice

Physics 30 Lesson 22 The Generator Effect

Chapter 21 Magnetic Induction Lecture 12

Magnetic Fields

CHAPTER 20 Magnetism

AP Physics 2 - Ch 20 Practice

Name: Class: Date: AP Physics Spring 2012 Q6 Practice. Multiple Choice Identify the choice that best completes the statement or answers the question.

Electromagnetic Induction (Chapters 31-32)

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

(a) zero. B 2 l 2. (c) (b)

1 (a) Define magnetic flux [1]

Faraday's Law ds B B G G ΦB B ds Φ ε = d B dt

Chapter 23 Magnetic Flux and Faraday s Law of Induction

PHY101: Major Concepts in Physics I

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Magnetism &Electromagnetism)

Induced Emf. Book pg

SECTION B Induction. 1. The rate of change of flux has which of the following units A) farads B) joules C) volts D) m/s E) webers

PHY 1214 General Physics II

Can a Magnetic Field Produce a Current?

2. Thus, if the current is doubled while the inductance is constant, the stored energy increases by a factor of 4 and the correct choice is (d).

Electromagnetic Induction

Electromagnetic Induction

Physics 2B: Review for Celebration #2. Chapter 22: Current and Resistance

r where the electric constant

Chapter 9 FARADAY'S LAW Recommended Problems:

Electromagnetics in Medical Physics

Magnetic inductance & Solenoids. P.Ravindran, PHY041: Electricity & Magnetism 22 February 2013: Magnetic inductance, and Solenoid

Physics 115. Induction Induced currents. General Physics II. Session 30

MOTORS AND GENERATORS

Transcription:

1 Candidates should be able to : Define magnetic flux. Define the weber (Wb). Select and use the equation for magnetic flux : Φ = BAcosθ MAGNETIC FLUX (Φ) As we have already stated, a magnetic field is a region around a magnet in which magnetic forces are exerted. It was once thought that there must be something flowing from N-pole to S-pole through this magnetic field region. The flowing quantity was given the name, MAGNETIC FLUX and although it does not exist, the concept is very useful when describing magnetic fields. The strength of a magnetic field can be visualised as the amount of flux passing through unit cross-sectional area (i.e. a measure of the concentration of flux). State and use Faraday s law of electromagnetic induction. State and use Lenz s law. If a uniform magnetic field of strength (B) acts perpendicular to an area (A), the MAGNETIC FLUX (Φ) passing through the area is given by : Flux density (B) Select and use the equation : Induced e.m.f. = -rate of change of magnetic flux linkage Φ = BA (Wb) (T) (m 2 ) Area (A) Describe the function of a simple ac generator. Describe the function of a simple transformer. 1 WEBER (Wb) is the amount of magnetic flux flowing perpendicularly through an area of 1 m 2 in a magnetic field of flux density 1 T. B = 1 T Select and use the turns-ratio equation for a transformer. Describe the function of step-up and step-down transformers. A = 1 m 2 Since B = Φ/A, magnetic field strength can be re-defined as MAGNETIC FLUX DENSITY. MAGNETIC FLUX DENSITY (B) at a point in a magnetic field is the magnetic flux (Φ) perpendicular to unit area (A). Φ = 1 Wb

2 If the area (A) has turned through an angle (θ) from its original position, less magnetic flux now passes through it and the magnetic flux (Φ) is given by : When area (A) is perpendicular to the flux : θ = 0, and cos θ = cos 0 = 1 So : Φ = BAcosθ Φ = BA When area (A) is parallel to the flux : θ = 90, and cos θ = cos 90 = 0 B θ Area (A) ELECTROMAGNETIC INDUCTION - EXPERIMENTAL PHENOMENA STATIONARY FIELD MOVING CONDUCTOR A voltage is induced in a conductor when it is moved through a magnetic field. The same effect can also be produced by holding the wire stationary and moving the magnet. motion conductor Induced current direction The induced voltage will produce an induced current if the conductor is part of a complete circuit. Magnetic field So : Φ = 0 The size of the induced voltage or current is increased by increasing : MAGNETIC FLUX LINKAGE The magnetic field strength (B). The speed (v) of motion of the conductor. The length (L) of the conductor in the magnetic field. The coils used in motors and generators have many turns of wire, so we need to know the amount of flux which passes through and so links with all the turns. The direction of the induced voltage or current is reversed by reversing : Consider a coil of (N) turns and area (A) which is perpendicular to a uniform magnetic field of flux density (B). The direction of motion of the conductor. The direction of the magnetic field. The magnetic flux which links with the coil is called the MAGNETIC FLUX LINKAGE (NΦ) and is given by : NΦ = BAN No voltage or current is induced if the wire is held stationary within the magnetic field (i.e. no motion - no induced current). (Wb) (T) (m 2 )

3 STATIONARY CONDUCTOR MOVING FIELD FLEMING S RIGHT-HAND RULE thumb - Motion coil motion First finger - Field magnet Magnetic field second finger - Current motion Sensitive galvanometer The direction of the induced current can be predicted using FLEMING S RIGHT-HAND RULE as illustrated in the diagrams above. Moving a magnet into or out of a coil causes a current to be induced in the coil. The diagrams above show that when the magnet s S-pole is plunged into the coil, the galvanometer deflects one way and when the S-pole is pulled out of the coil, the deflection is reversed. The faster the magnet is moved, the greater is the deflection and there is no deflection when the magnet is held stationary inside the coil. The deflection is also increased by using a coil with a greater number of turns of wire. The thumb, first and second fingers of the right hand are held at right angles to each other. If the thumb indicates the direction of MOTION of the conductor and the First finger the magnetic FIELD direction, then the second finger gives the induced CURRENT direction. A voltage (and current) is induced in the coil whenever there is relative motion between the magnet and the coil. This is because the motion causes a change in the amount of magnetic flux linking with the coil. PRACTICE QUESTIONS (1) The direction of the induced voltage and current depends on the magnet pole being moved and its direction of motion. The size of the induced voltage and current is increased by increasing : The speed of motion of the magnet. The number of turns of the coil. 1 In the British Isles, the vertical component of the Earth s magnetic field has a flux density of 5.0 x 10-5 T. Calculate the magnetic Flux (Φ) which passes through the British Isles if its area is 2.9 x 10 11 m 2.

4 2 A bar magnet produces a magnetic flux density of 2.0 x 10-2 T at the surface of each of its poles. How much magnetic flux passes through each pole if their dimensions are 0.8 cm x 1.4 cm? 3 A cylindrical coil of 560 turns of wire has a diameter of 8.0 cm. Calculate the magnetic flux linkage when the coil is placed with its end at right angles to a uniform magnetic field of flux density 1.6 x 10-4 T. LAWS OF ELECTROMAGNETIC INDUCTION Electromagnetic induction occurs whenever there is relative motion between a conductor (or a set of conductors) and a magnetic field. The magnitude of the induced voltage (or current) depends on the rate at which magnetic flux is cut or linked. FARADAY S LAW OF ELECTROMAGNETIC INDUCTION 4 A coil of 170 turns and area 0.12 m 2 is placed at 90 to a uniform magnetic field whose flux density increases from 0.05 T to 1.30 T. Calculate the change in magnetic flux linkage of the coil. 5 A rectangular coil of 600 turns has dimensions of 10 cm x 7 cm. coil Flux density = 5.5 x 10-3 T The magnitude of the induced emf or voltage in a circuit is equal to the rate of change of magnetic flux linkage through the circuit. Induced emf, E = N ΔΦ Δt (Wb) (V) (s) It is initially positioned so as to be perpendicular, position (a), to a uniform magnetic Field of flux density 5.5 x 10-3 T, as shown in the diagram. It is then rotated, first to position (b) at 54 to its initial position and then to position (c) in which it is parallel to the field. Calculate the flux linkage of the coil in each of the three positions. (c) (b) (a) 54 Uniform magnetic field N = number of turns of wire linking the magnetic flux. N ΔΦ/Δt is the change of flux linkage per second. Michael Faraday INDUCED EMF = RATE OF CHANGE OF MAGNETIC FLUX LINKAGE

5 EXAMPLES OF THE USE OF FARADAY S LAW CONDUCTOR MOVING AT 90 TO A MAGNETIC FIELD Consider a conductor of length (l) moving at a constant speed (v) (such that it covers distance Δs in time Δt) at 90 to a magnetic field of flux density (B). Conductor of length L and speed v x x x x x x x x x x x x RECTANGULAR COIL MOVING INTO A UNIFORM MAGNETIC FIELD Consider a rectangular coil of (N) turns, length (L) and width (W) moving into a uniform magneticfield of flux density (B) at constant speed (v). L W v x x x x x x x x x x x x x x x x x x Time for coil to completely enter the field = W/v Coil of N turns E = ΔΦ/Δt = Δ(BA)/Δt E = BLΔs/Δt = BLv x x x x x x Δs in time Δt In this time, flux linkage NΦ increases from 0 to BNLW. magnetic field of flux density B directed into the paper. magnetic field of flux density B directed into the paper. Induced emf, E = change of flux linkage per sec E = NΔΦ/Δt INDUCED EMF, E = BLv (V) (T) (m) (m s -1 ) E = BNLW = BlvN W/v INDUCED EMF, E = BLvN (V) (T) (m) (m s -1 ) Once the coil is completely inside the field, there is no change in the flux linkage, so the induced emf = 0.

6 COIL ROTATING IN A UNIFORM MAGNETIC FIELD Another way in which a change in magnetic flux linkage can be produced is by rotating a coil in a magnetic field. The maximum flux linkage occurs when the plane of the coil is at right angles to the field and when the plane of the coil is parallel to the field, the flux linkage is reduced to zero. This is illustrated in the diagram shown below. N coil N S S N S LENZ S LAW Consider the N-pole of a magnet being pushed into a coil as shown in the diagram opposite. The direction of the induced current in the coil is such that the magnetic field which it produces gives end A of the coil a N-polarity. In this way the induced current direction is such that it opposes the change that produces it (The N-pole at end A of the coil repels the magnet s N-pole). N motion So work has to be done in order to push the magnet into the coil against the repulsive force. The energy resulting from the work done is transferred to the electrical energy of the current. A end-on view of the coil coil A circular coil of 20 turns and radius 10 cm is situated with its plane perpendicular to a magnetic field of flux density 0.50 T. Calculate the e.m.f. induced in the coil if it is rotated through 90 in a time of 50 ms. Coil area, A = πr 2 = π x 0.10 2 = 0.0314 m 2. WORKED EXAMPLE Magnetic flux linkage when coil is perpendicular to the field, NΦ = BAN = 0.50 x 0.0314 x 20 = 0.314 Wb. Magnetic flux linkage when coil is parallel to the field, NΦ = 0 Wb. So, change in magnetic flux linkage, NΔΦ = 0.314 Wb. Induced e.m.f., E = NΔΦ = 0.314 = Δt 50 x 10-3 6.28 V NOTE If the induced current were in the opposite direction, end A of the coil would have been a S-pole the magnet would then have been accelerated into the coil by the attraction force. This would mean an increase in the induced current, which would in turn mean a bigger attraction force and so on Therefore, even though no work was being done, the magnet would be continuously increasing its kinetic energy and the induced current would also carry on increasing. This contravenes the Principle of Conservation of Energy and it is therefore impossible. If the magnet N-pole were pulled out of the coil instead of being pushed into it, the induced current direction would be such as to give a S-polarity at end A. Once again, the induced current direction is such that it opposes the change or motion that produces it. Work has to be done against the attraction force in order to pull the magnet N-pole out of the coil.

PRACTICE QUESTIONS (2) 7 Consider a wire AB moved upwards through a horizontal magnetic field as shown opposite. Fleming s right-hand rule shows that the direction of the induced current is B to A. A motion B induced current direction 1 A square coil of 100 turns of wire has sides of length 5 cm. It is placed in a magnetic field of flux density 20 mt, so that the flux is perpendicular to the plane of the coil. (a) Calculate the magnetic flux linkage with the coil. A force acts on a current-carrying wire in a magnetic field. Applying Fleming s left-hand rule in this case tells us that an Downward force acts on the wire. magnetic field Therefore, work has to be done to move the wire upwards and so generate electricity. (b) The coil is now pulled out of the field in a time of 0.10 s. Calculate the average e.m.f. induced in the coil. 2 A straight wire of length 0.20 m moves at right angles to a magnetic field of flux density 0.15 T, at a constant speed of 5.0 m s -1. Calculate the average e.m.f. induced across the ends of the wire. NOTE If the induced current direction were A to B, there would be a upward force on the wire and this would mean that we would be getting kinetic and electrical energy without doing any work. This contravenes the Principle of Conservation of energy and so cannot be correct. LENZ S LAW The direction of the induced current is always such as to oppose the change which causes the current. The mathematical statement of Faraday s Law incorporates Lenz s Law by the inclusion of a minus sign (which represents the fact that the induced emf acts in such a direction as to oppose the change that causes it). E = - N ΔΦ Δt 3 An aircraft having a wing span of 36 m flies horizontally at a constant speed of 300 m s -1, in an area where the vertical component of the Earth s magnetic field is 5.0 x 10-5 T. Calculate the magnitude of the e.m.f. generated across the aircraft s wing tips. 4 A small wire coil of area 1.5 cm 2 and having 2000 turns is placed between the poles of a powerful magnet. The ends of the coil are connected to a voltmeter. The coil is then pulled out of the magnetic field and the voltmeter records an average e.m.f. of 0.44 V over a time interval of 0.25 s. Calculate the flux density between the magnet poles.

5 (a) A straight metal rod XY of length 0.15 m moves through a uniform magnetic field with a velocity of 25 mm s -1. When the rod was moving at right angles to the field, the induced e.m.f. was found to be 0.85 mv. Calculate : (i) The flux Cut by the rod in 5.0 s. (ii) The magnetic flux density. x x x x (b) In (a), the field direction was vertically downwards and the rod was horizontal as shown in the diagram. (i) State the polarity of each end of the rod. (ii) If the rod was part of a complete circuit, state and explain the direction in which the induced current would pass through it. X x x x x Y v = 25 mm s -1 x x x x magnetic field directed into paper in this region (b) In (a) the flux density of the magnet was 25 mt and the area 8 Of the 30 turn coil was 4.0 x 10-4 m 2. The magnet was pushed into the coil in 0.20 s. Calculate : (i) The magnetic flux linkage through the coil. (ii) The average e.m.f. induced in the coil. 7 The diagram opposite shows how the flux linking one turn of a wire coil varies with time. (a) Use the graph to calculate the peak value of the e.m.f. induced across the single turn of the coil. Magnetic flux linkage/mwb (b) Sketch a graph with labelled axes to show how the e.m.f. induced across the single turn varies over the same time interval. 15 10 5 0-5 -10-15 Time/ms 1 2 3 4 5 6 7 8 6 (a) A bar magnet was positioned near a coil connected to a centre-zero reading meter. When the magnet was pushed into the coil, the meter s pointer deflected briefly to the right. (i) Explain why the pointer only defected briefly. (ii) State and explain what is observed when the magnet is withdrawn from the coil. (c) The coil consists of 200 turns of wire. Assuming that the flux links all the turns, calculate the peak e.m.f. across the whole coil. (d) Suggest a way of increasing the e.m.f. induced across the coil without altering the coil itself.

9 THE SIMPLE A.C. GENERATOR coil of N turns rotation Coil positions over 1 complete rotation viewed from above. DIRECT CURRENT (d.c.) is the unidirectional flow of electric charge in a conductor. current θ E Φ B When d.c. (e.g. from a battery) passes along a wire the flowing electrons which constitute the current drift slowly along the wire in a constant direction. Graphical representation of a DIRECT CURRENT time Φ, E In ALTERNATING CURRENT (a.c.) the movement of the electric charge periodically changes direction. When a.c. (e.g. from the mains) passes along a wire, the electrons oscillate back and forth about their mean positions and do not drift along the wire as they do in the case of a direct current. Alternating current can be generated by rotating a coil in a magnetic field. current Graphical representation of an ALTERNATING CURRENT coil rotated The simple a.c. generator shown in the diagram opposite consists of a coil which is free to rotate on an axle and whose ends are connected to two conducting slip rings which turn with the coil. The current induced in the coil when it is rotated between the magnet poles passes to the N S Slip rings external circuit via stationary carbon brushes which press against the slip-rings. carbon brushes time When the coil rotates at a steady rate the flux linkage and hence the e.m.f. induced changes continuously. For a coil of area (A), having (N) turns and rotating through a uniform magnetic field of flux density (B), the flux (Φ) linking the coil at any instant is given by : Φ = BAN cosθ Where θ is the angle between the plane of the coil and the magnetic flux lines. When the plane of the coil is perpendicular to the field, θ = 0, cosθ = 1 and so the flux linkage is a maximum ( Φ = BAN ). When the plane of the coil is parallel to the field, θ = 90, cosθ = 0 and so the flux linkage is zero ( Φ = 0). The e.m.f. induced in the coil is the rate of change of flux linkage with the coil and this is a maximum when the flux linkage is zero and zero when the flux linkage has its maximum value. In the diagram above, the induced e.m.f. (E) is given by the gradient of the flux linkage (Φ) graph. So, when the sides of the coil are at right angles to the field, E is a maximum. because the rate at which the coil sides cut through the flux is a maximum. And when the sides of the coil are parallel to the field, E is zero because no flux is being cut by the coil sides. The direction of the induced e.m.f. and hence the induced current reverses every half-cycle of the rotation and that is why the generator produces ALTERNATING CURRENT (a.c.).

10 THE TRANSFORMER Transformers are very efficient devices which use the phenomenon of electromagnetic induction to change alternating p.ds (voltages) from one value to another. In its simplest form the transformer consists of two coils - the PRIMARY COIL and the SECONDARY COIL - wound onto a laminated, soft iron core. For an IDEAL TRANSFORMER (i.e. one which is 100% efficient), the relationship between the primary and secondary voltages (V p, V s ) and the number of turns on each coil (N p, N s ) can be shown to be : secondary voltage = turns ratio = number of turns on the secondary primary voltage number of turns on the primary V s = R = N s V p N p A STEP-UP transformer has more turns on the secondary coil than on the primary coil, so the secondary voltage is GREATER than the primary voltage. N s > N p so V s > V p A STEP-DOWN transformer has less turns on the secondary coil than on the primary coil, so the secondary voltage is LESS than the primary voltage. An alternating voltage applied to the primary coil produces an alternating current which gives rise to an alternating Magnetic field in the core. This varying magnetic flux then links up with the turns of the secondary coil and so induces an alternating e.m.f. (or voltage) across it. N s < N p so V s < V p Transformers are designed to minimise energy losses. The windings, for example, are made of very low resistance copper so as keep energy loss due to heat being produced in the coils to a minimum. The core shape and material also ensures that virtually all the magnetic flux produced by the primary coil will link with the turns of the secondary.