Chirality and energy dependence of first and second order resonance Raman intensity

Similar documents
Exciton Photophysics of Carbon Nanotubes

A.Jorio, M. A. Pimenta and P. T. Araujo. S. K. Doorn. S. Maruyama

The Kataura plot over broad energy and diameter ranges

2.2 Important Spectral and Polarized Properties of Semiconducting SWNT Photoluminescence

Physics of Nanotubes, Graphite and Graphene Mildred Dresselhaus

Environmental effects on photoluminescence of single-walled carbon nanotubes

Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy

status solidi Raman spectroscopy of ( n, m )-identified individual single-walled carbon nanotubes

Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique

Theory of Rayleigh scattering from metallic carbon nanotubes

Interaction between Single-walled Carbon Nanotubes and Water Molecules

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele

EXCITONS, PLASMONS, AND EXCITONIC COMPLEXES UNDER STRONG CONFINEMENT IN QUASI-1D SEMICONDUCTORS. Theory and Perspectives

Fig. 1: Raman spectra of graphite and graphene. N indicates the number of layers of graphene. Ref. [1]

Tube tube interaction in double-wall carbon nanotubes

Exciton environmental effect of single wall carbon nanotubes

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

ACCVD Growth, Raman and Photoluminescence Spectroscopy of Isotopically Modified Single-Walled Carbon Nanotubes

Direct Observation of Inner and Outer G Band Double-resonance Raman Scattering in Free Standing Graphene

Optical properties of nanotube bundles by photoluminescence excitation and absorption spectroscopy

Curvature-induced optical phonon frequency shift in metallic carbon nanotubes

Optical Spectroscopy of Single-Walled Carbon Nanotubes

Observation of exciton-phonon sideband in individual metallic single-walled carbon nanotubes

The Photophysics of Nano Carbons. Kavli Institute, UC Santa Barbara January 9, 2012 M. S. Dresselhaus, MIT

Second-order harmonic and combination modes in graphite, single wall carbon nanotube bundles, and isolated single wall carbon nanotubes

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap

The calculation of energy gaps in small single-walled carbon nanotubes within a symmetry-adapted tight-binding model

Determining Carbon Nanotube Properties from Raman. Scattering Measurements

Graphene and Carbon Nanotubes


GeSi Quantum Dot Superlattices

Exciton dephasing and multiexciton recombinations in a single carbon nanotube

Carbon Nanomaterials

CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES

Chirality-dependent G-band Raman intensity of carbon nanotubes

Strong light matter coupling in two-dimensional atomic crystals

Physics of Nanotubes, Graphite and Graphene Mildred Dresselhaus

Effects of environmental dielectric screening on optical absorption in carbon nanotubes

Optical Band Gap Modification of Single-Walled Carbon Nanotubes by Encapsulated Fullerenes

Optical Properties of Lattice Vibrations

2 Symmetry. 2.1 Structure of carbon nanotubes

Why are we so excited about carbon nanostructures? Mildred Dresselhaus Massachusetts Institute of Technology Cambridge, MA

Entangled Photon Generation via Biexciton in a Thin Film

Supplementary Materials

Calculation of Cutting Lines of Single-Walled Carbon Nanotubes

2 Laboratoire National des Champs Magnétiques Pulsés, 4 IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598, USA.

chiral m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Three major categories of nanotube structures can be identified based on the values of m and n

Anomalous Photoluminescence Stokes Shift in CdSe Nanoparticle/Carbon Nanotube. Hybrids. Columbia University. New York, NY

RAMAN-SPEKTROSZKÓPIA SZÉN NANOSZERKEZETEKBEN

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston

Raman study on single-walled carbon nanotubes with different laser excitation energies

Hydrogen Storage in Single- and Multi-walled Carbon Nanotubes and Nanotube Bundles

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Optical & Transport Properties of Carbon Nanotubes II

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample.

1. Transition dipole moment

Carbon Nanotubes and Bismuth Nanowires

MOLECULAR DYNAMICS SIMULATIONS OF HEAT TRANSFER ISSUES IN CARBON NANOTUBES

Supplementary Information

Carbon Nanotubes (CNTs)

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES

Supplementary documents

Nano-Materials and Electronic Devices

Near-field imaging and spectroscopy of electronic states in single-walled carbon nanotubes

Stokes and anti-stokes Raman spectra of small-diameter isolated carbon nanotubes

Processing and Properties of Highly Enriched Double-Walled. Carbon Nanotubes: Supplementary Information

Theory of coherent phonons in carbon nanotubes and graphene nanoribbons

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

CHARACTERISATION OF CARBON NANOTUBE MATERIALS BY RAMAN SPECTROSCOPY AND MICROSCOPY A CASE STUDY OF MULTIWALLED AND SINGLEWALLED SAMPLES

Double resonance Raman study of disorder in CVD-grown single-walled carbon nanotubes. Talapatra, 3 Benji Maruyama 1

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour

VIBRATION CHARACTERISTICS OF EMBEDDED DOUBLE WALLED CARBON NANOTUBES SUBJECTED TO AN AXIAL PRESSURE

Resonance Raman scattering from phonon overtones in double-wall carbon nanotubes

Excitonic luminescence upconversion in a two-dimensional semiconductor

Chirality Changes in Carbon Nanotubes Studied with Near-Field Raman Spectroscopy

Spectroscopy and the structure of matter 3. Raman spectroscopy

Scanning Tunneling Microscopy

Effect of dimensionality in polymeric fullerenes and single-wall nanotubes

Near field enhancement of optical transition in carbon nanotubes

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

From Graphene to Nanotubes

Two-photon photoluminescence and exciton binding energies in single-walled carbon nanotubes

Carbon nanotubes in a nutshell

Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes

arxiv: v1 [cond-mat.mtrl-sci] 30 Aug 2007

Metallic Nanotubes as a Perfect Conductor

Photoluminescence: science and applications. Jacques Lefebvre, 1 Shigeo Maruyama 2 and Paul Finnie 1. Montreal Road, Ottawa, Ontario K1A 0R6, Canada

Coherent phonon spectroscopy of carbon nanotubes and graphene

Optics and Quantum Optics with Semiconductor Nanostructures. Overview

Laser heating control with polarized light in isolated multi-walled carbon nanotubes

status solidi Department of Biological Physics, Eötvös University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary 2

Physics of Semiconductors (Problems for report)

Spectroscopy at nanometer scale

Fluorescence Spectroscopy

status solidi Polarization-dependent optical reflectivity in magnetically oriented carbon nanotube networks

Limitations of Tight Binding Model in Describing Electronic Properties of Single Wall Carbon Nanotubes

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT

University of Chinese Academy of Sciences, Beijing , People s Republic of China,

Carbon nanotubes in a nutshell. Graphite band structure. What is a carbon nanotube? Start by considering graphite.

Transcription:

NT06: 7 th International Conference on the Science and Application of Nanotubes, June 18-23, 2006 Nagano, JAPAN Chirality and energy dependence of first and second order resonance Raman intensity R. Saito Tohoku Univ. CREST JST J. Jiang, K. Sato, Y. Oyama, J.S. Park, G. S. Chou, G. Samsonidze, A. Jorio M. A. Pimenta, A. G. Souza-Filho, G. Dresselhaus, M.S. Dresselhaus Dept. Physics, Tohoku Universityand CREST JST http://flex.phys.tohoku.ac.jp/~rsaito/ e-mail: rsaito@flex.phys.tohoku.ac.jp TOHOKU UNIVERSITY

Intensity calculation of PL and Raman spectra -- Not all SWNTs are bright. -- Relative Raman intensity (n,m) dependence RBM,G, D, G -band Photoluminescence Intensity (n,m) population analysis Photoluminescence Weisman et al.2002 phonon associated relaxation process Exciton based phenomena Pressure dependent Raman A. Souza-Filho et al.2006 Type dependent PL Maruyama et al.2004 Resonance Raman Fantini et al.2003 E 33 S E 11 M (e V) aser ω RBM (cm -1 ) Phonon associated PL S. G. Chou et al.2005 EL E 22 S

R. Saito et al., Phys. Rev. B, 72, 153413 (2005)

n - m = 2 R. Saito et al., Appl. Phys. Lett. 60, 2204 (1992) type I K type II K mod (2n + m,3) = 1 2 mod ( n m,3) = 2 1 30 27 24 23 21 22 20 1 2 2n+m=19 17 16 n - m= E 11 10 7 4 1 2 5 8

Photoluminescence Weisman et al.2002 Valley of metals Spectroscopic measurements on HiPco Nanotubes in Solution (SDS wrapped) E 33 S E 11 M E 22 S Raman measurement 76 different laser lines (ArKr, HeNe, 3 different dyes, Ti:Sapphire). Dilor XY triplemonochromator Calibration: CCl 4 Raman spectra - Sample from M.Strano ω RBM (cm -1 ) ELaser (ev) Fantini et al. Unpublished

k 1 β k 2 α γ Resonance Raman Intensity k 1 β k 2 k 3 γ α δ k 0 k 0 1st order Raman 1st order Raman 2nd order Raman Light AFM Images emission 2nd order Raman Electron phonon interaction Light absorption

RBM: Family pattern of el-phonon matrix element J. Jiang et al, Phys. Rev. B 72 235408 (2005) d t dependence q dependence Type I Type II Type I Type II node node n-m family pattern, node 1/d t dependence Type I > type II n - m = 2

Family pattern for G-band matrix element J. Jiang et al, Phys. Rev. B 72 235408 (2005) G+ (LO) G-(TO) Type I Type II Type I Type II G+: not sensitive on diameter and q Exp Z G-: sensitive both on diameter and q (G- near armchair) A Z. Yu, L. E. Brus, J. Phys. Chem. B 105, 6831 (2001)

(1) photo absorption (2) relaxation by phonon (3) photo emission

PL is strong around Armchair. type I > type II (for E22 absorption) Chirality dependence of Photo-Luminescence A. Gruneis et al, Chem. Phys. Lett. 387, 301 (2004) S. Maruyama et al, nano-carbon (2004) Z A A Z Theory A. Gruneis et al. Chiral angle (deg.) 30 20 10 0 Exp. S. Maruyama et al. 6,5 7,6 8,7 9,8 8,6 9,7 10,8 7,5 6,4 11,7 10,6 9,5 11,6 8,4 10,5 7,3 9,4 8,3 11,4 12,5 13,5 12,4 10,3 11,3 9,2 13,3 10,2 14,3 12,2 13,2 8,1 15,2 9,1 11,1 12,1 14,1 15,1 10,0 11,0 13,0 14,0 16,0 0.75 1 1.25 Tube diameter (nm) S. M. Bachilo et al., JACS, 125 (2003) 11186.

PL intensity at E11 quantum efficiency = 3% Evaluation of (n,m) abundance Induced absorption phonon emission at E22 Spontaneous emission

Fluorescence spectroscopy Y. Miyauchi et al. Chem. Phys. Lett. 387 198 (2004) Y. Oyama et al, Carbon, 44, 873 (2006) Theory (Oyama) small diameter, near armchair PL intensity large Exp (Miyauchi) Chiral angle (deg.) 30 20 10 0 6,5 7,6 8,7 9,8 8,6 9,7 10,8 7,5 6,4 11,7 10,6 9,5 11,6 8,4 10,5 7,3 9,4 8,3 11,4 12,5 13,5 12,4 10,3 11,3 9,2 13,3 10,2 14,3 12,2 13,2 8,1 15,2 9,1 11,1 12,1 14,1 15,1 10,0 11,0 13,0 14,0 16,0 0.75 1 1.25 Tube diameter (nm) polarization // tube axis HiPCO sample

Population of (n,m) by PL I exp /I cal Y. Oyama et al, Carbon, 44, 873 (2006) Population analysis: 1. PL I exp /I cal Y. Oyama et al, Carbon, 44, 873 (2006). 2. I(PL)/I(Raman) A. Jorio et al., APL, 88, 023109, (2006). 3. I exp /I cal and TEM T. Okazaki, CPL, 420 286 (2006)

population analysis Experiment Theory fitting with Gaussians CVD pulsed-laser vaporization A. Jorio, et al., Appl. Phys. Lett. 88, 023109 (2006). T. Okazaki, et al., Chem. Phys. Lett. 420, 286 (2006).

Summary of PL and Raman intensity RBM intensity zigzag G+ intensity no chirality dep. G- intensity armchair PL intensity armchair Type I > Type II (optical absorption) (E22-E11) vs phonon energy resonance width (relaxation time) Population analysis for Raman and PL is available.

Method: Our computational library for SWNTs -- What do we need for intensity calculation? -- Electron and phonon energy dispersion extended tight binding (ETB, up 20 n.n. sites) Porezag s interatomic potential Optical absorption and emission dipole approximation Electro-phonon interaction relaxation, ETB Raman intensity calculation PL intensity calculation Exciton calculation

Why? Exciton calculation Large binding energy (0.5eV) even room temperature, exciton exists. Exciton specific phenomena dark exciton, two photon, environment What can we know or imagine? Cancellation by self energy ETB + many body effects reproduce Eii Localized exciton wave function enhancement of optical process relatively short k dependence. Wang et al. Science 308, 838 (2005) 2+ A 1-11 (2p) A 11 (1s)

G028 Bethe-Salpeter Equation ETB extension for Exciton T. Ando J. Phys. Soc. Japan, 66, 1066 (1997), C. D. Spataru et al. PRL 92, 077402 (2004) quasi-particle (QP) energy Coulomb interaction (C) exchange C Self-energy (Coulomb repulsion) direct C Ohno s potential :a static dielectric constant to consider polarization of environment RPA approximation: Ε kv = q sus' u' V ε ( q) sus' u' iq e ( Rus Ru ' s ') C * kv ( s) C k+ q, v ( s) C * k+ q, v ( s) C kv ( s)

Symmetry consideration J. Jiang et al. unpublished Centre of mass motion :Good quantum number Relative motion A symmetry exciton Bright and dark exciton A - : bright exciton A +, E and E *: dark excitons K K Γ K e h K A ± e h C Γ 2 K Γ e hk K

Exciton energy dispersion E exciton J. Jiang et al. unpublished h K E * exciton K K e K K e K K Bright and dark exciton K h A - : bright exciton A +, E, E *: dark excitons Dispersion for (6,5) NT

Dark state is the lowest A - : bright exciton A +, E and E *: dark excitons 11 11 11 11

Exciton wavefunction for (8,0) NTs J. Jiang et al. unpublished Cutting line spacing A 11 1- (1s) A 11 2- (2p) A 11 3- (3s) Distribute only one cutting line for any diameter.

Bright exciton Kataura plot J. Jiang et al. unpublished E SP Σ E bd Σ E bd κ=2 is used for E22(S) and E11(M) Justification of ETB+MB The origin of the large family spread in Kataura plot - single particle part

Environment effect J. Jiang et al. unpublished Circle: =1.75 Square: :=3.5 Solution Bundle Experiment data C. Fanitini et al PRL 93, 147406 (2004)

Ratio problem With MB Without MB E33, E44 has similar E bd to E11 and E22.

J. Jiang et al. unpublished. No type dep, No family pattern but d t dep.

J. Jiang et al. unpublished. Matrix element, No difference! Intensity enhanced drastically (M(opt) appears 4 times) x10 2 RBM

Summary Solution of BS equation wavefunction on one cutting line Exciton Kataura plot (family pattern) similar E b E 22, E 33, E 44 exciton-phonon (no change) exciton-phonon (enhanced) Raman and PL intensity with exciton wavefunction (in progress)

Electron-photon and electron-phonon matrix elements -- Dipole approximation and Deformation potential -- A. Gruneis et al, Chem. Phys. Lett. 387, 301 (2004) J. Jiang et al, Chem. Phys. Lett. 392, 383 (2004) electron-photon (P vector dipole vector) P Ψ C ( k) Ψ V ( k' ) electron-phonon (A-vib V-deform) c c Tight binding expansion: anisotropic around K

K K K Γ K M Node v c K SWNT (J. Jiang, 2003) M Dz ( k) = 2w( k) = K i eh mω Optical absorption a in graphite I εc π sin θ cosk 6 A. Grueneis et al., PRB 67 165402 (2003) R. Saito et al., Appl.. Phys. A (2004) e i ( ω ω ω ) t f Polarization vector M i P v c P D, P// = (0,0,1 ), kya a cos cos 2 a + Dipole vector D δ k,k δµ, µ 3k 3k a kya x x y sin Ψ c 2 Ψ v M v c D π 3cos θ sin 6 z 2 2 k y k x K D z (k) k k = µ K1 + K K 2 2 anisotropic π π ( = 0, L, 1 < < ) µ N T k T

The Kataura plot for HiPco SWNTs - Result Exp. Theory 30 27 24 23 21 22 20 19 17 16 Tight Extended binding tight γbinding 0 =2.9eV amodel c-c =1.42Å Ge.G.Samsonidze et al. Appl. Phys. Lett. 85, 5703 (2004). Experimental results - From the Stokes and anti- Stokes Raman resonance windows The (n,m) assignment is based on the family patterns observed in the (ω RBM, E ii ) plot Good agreement with experimental results obtained by PL for semiconducting SWNTs Extended tight binding method, including curvature effect and many body interactions fit better the experimental results Only the lower E 11 M branch is observed Accuracy: E ii ~ 10meV, ω RBM ~ 0.5cm -1

Atomic Deformation potential vector Graphite Deformation vector is parallel to the plane No Raman for out-of-plane phonon modes three center integral SWNT Deformation vector has perpendicular components Strong Raman for RBM and out-of-plane phonon modes 0 6.7eV/A the largest (on site) 0 3.4eV/A the second largest (off site) 6.7eV/A: the largest m

Curvature effect in electron-phonon interaction J. Jiang et al, Phys. Rev. B 72 235408 (2005) terms Slater-Koster parameters for electron-phonon matrix element (1)-(5): along bond direction (6)-(9): perpendicular to bond direction

Electron-phonon interaction for G-band J. Jiang et al. Chem. Phys. Lett. 392, 383 (2004) q=0, D(k,k) 1 st order Raman chirality dependence of G-band 6 K θ Z. Yu, L. E. Brus, J. Phys. Chem. B 105, 6831 (2001) 0 [ev/a] 4 LO TO ν D (k, k) 2 0 0 0.5 1 1.5 2 θ/π R. Saito et al, Phys. Rev. B63, 085312 (2001)

Analysis of RBM Raman intensities A. Jorio et al,, Phys. Rev. B (2005) Experiment Calculations SI SII M Diameter, chirality and type I vs. type II dependence is observed in good agreement with calculations of Raman intensity

Quantum interference effect of RBM Raman intensity J. Jiang et al, Phys. Rev. 71, 205420 (2005) M M SI SII

Fluorescence from SDS-wrapped nanotubes Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes S. M. Bachilo et al., Science 298, 2361 (2002) Absorption and Emission Sample: SDS-wrapped nanotubes Each peak on the figure represents the observed E 22 & E 11 transitions for one SWNT.

Electronic transition hot electron emission resonance condition Raman line E PL = E 11 Electronic transition 2-phonon jump Raman line hot electron emission E ex = E 22 Eex = E11 2hω E PL = E 11 E PL = E11 E PL = E ex hω E = ex C

Phonon States of Nanotubes Observed in PL 1600 1200 800 400 0 LO LO ito oto LO oto LA ito oto ita LA ita ita ota LA ota ota Γ Μ Κ Γ A:LA,TW B:RBM C:oTA(near K) D:oTO(near K) E:oTO F:iTA(near K) G:iLA(near K) H:TO(near K) I: LO

Summary PL and Resonance Raman intensity Matrix element 1/d t type I > type II, chirality dependence RBM near zigzag G+: not d t chirality dependent G-: near armchair Population analisys of SWNT is established.