The Uniform Electron Gas at Warm Dense Matter Conditions

Similar documents
Supplementary Material: Path Integral Monte Carlo Simulation of the Warm-Dense Homogeneous Electron Gas

Finite-Temperature Hartree-Fock Exchange and Exchange- Correlation Free Energy Functionals. Travis Sjostrom. IPAM 2012 Workshop IV

Density Functional Theory Methods for Transport and Optical Properties: Application to Warm Dense Silicon

M. W. C. Dharma-wardana* National Research Council, Ottawa, Canada K1A 0R6 Received 31 March 2000

All-Electron Path Integral Monte Carlo (PIMC) Simulations of Warm Dense Matter: Application to Water and Carbon Plasmas

Density Functional Theory for the Electron Gas and for Jellium. Abstract

arxiv:cond-mat/ v1 [cond-mat.str-el] 3 Sep 1999

Correlations in Hot Dense Helium

Generalized Gradient Approximation for Exchange-Correlation Free Energy

CLASSICAL REPRESENTATION OF QUANTUM SYSTEMS AT EQUILIBRIUM

An Overview of Quantum Monte Carlo Methods. David M. Ceperley

Path Integral Monte Carlo Calculation of the Momentum Distribution of the Homogeneous Electron Gas at Finite Temperature

Computational methods: Coupled Electron Ion Monte Carlo Path Integral Monte Carlo Examples: Electron gas Hydrogen

Ab Initio EOS for Planetary Matter and Implications for Giant Planets

Quantum Monte Carlo Simulations of Exciton Condensates

Wigner crystallization in mesoscopic semiconductor structures

Hexatic and microemulsion phases in a 2D quantum Coulomb gas

Path Integral Monte Carlo Simulations on the Blue Waters System. Burkhard Militzer University of California, Berkeley

Improved Kelbg potential for correlated Coulomb systems

Current Issues in Finite-T Density-Functional Theory and Warm-Correlated Matter

First-principle results for the radial pair distribution function in strongly coupled one-component plasmas

CPP. ContributionstoPlasmaPhysics REPRINT. Editors W. Ebeling G. Fußmann T. Klinger K.-H. Spatschek

Quantum Monte Carlo. QMC methods in the continuum

Hydrogen-Helium Mixtures in the Interiors of Giant Planets

Independent electrons in an effective potential

Spin-resolved correlation kinetic energy of the spin-polarized electron gas

Effect of the dynamical collision frequency on quantum wakefields

Density Functional Theory for Electrons in Materials

Preface Introduction to the electron liquid

LOCAL AND SEMI-LOCAL DENSITY FUNCTIONAL APPROXIMATIONS FOR EXCHANGE AND CORRELATION: WHY DO THEY WORK, AND DO THEY WORK BEST AT ZERO TEMPERATURE?

Van der Waals Interactions Between Thin Metallic Wires and Layers

Classical-Map Hypernetted Chain Calculations for Dense Plasmas

Simulations of Dense Atomic Hydrogen in the Wigner Crystal Phase

Thermodynamics, pairing properties of a unitary Fermi gas

arxiv: v1 [cond-mat.str-el] 10 Sep 2014

The Gutzwiller Density Functional Theory

Exchange-Correlation Functional

Path Integral Monte Carlo and Density Functional Molecular Dynamics Simulations of Hot, Dense Helium

arxiv:astro-ph/ v1 9 Sep 1999

The Interior of Giant Planets

Clas s ical and path integral Monte Carlo s imulation of charged particles in traps

Part III: Impurities in Luttinger liquids

Frustrated diamond lattice antiferromagnets

Kinetic Theory for Matter Under Extreme Conditions. Abstract

Alex Gezerlis. New Ideas in Constraining Nuclear Forces ECT*, Trento, Italy June 5, 2018

From real materials to model Hamiltonians with density matrix downfolding

Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid

The importance of finite-temperature exchange-correlation for warm dense matter calculations

Dense Matter and Neutrinos. J. Carlson - LANL

Multi-Scale Modeling from First Principles

arxiv: v2 [cond-mat.str-el] 27 Jun 2016

Complementary approaches to high T- high p crystal structure stability and melting!

Quantum Monte Carlo Benchmarks Density Functionals: Si Defects

Quantum Transport: electron-electron and electron-phonon effects. Rex Godby

arxiv: v1 [cond-mat.str-el] 15 May 2011

Equation-of-State Challenges. Werner Däppen University of Southern California Los Angeles

Is the homogeneous electron gas homogeneous?

Momentum Distribution and Effective Mass of Jellium and Simple Metals. Markus Holzmann. LPTMC, CNRS, Universite Pierre et Marie Curie, Paris

High pressure core structures of Si nanoparticles for solar energy conversion

MOMENTUM DISTRIBUTION FUNCTIONS OF WEAKLY-DEGENERATE HYDROGEN PLASMA

Quantum Monte Carlo Simulations in the Valence Bond Basis

arxiv: v1 [cond-mat.stat-mech] 1 Oct 2009

Ab-initio molecular dynamics for High pressure Hydrogen

Density Functional Theory. Martin Lüders Daresbury Laboratory

Dept of Mechanical Engineering MIT Nanoengineering group

Solar Fusion Cross Sections for the pp chain and CNO cycles

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them

GW-like approaches to quantum transport. Rex Godby

Fixed-Node quantum Monte Carlo for Chemistry

Cumulant Green s function approach for excited state and thermodynamic properties of cool to warm dense matter

Shock waves in the unitary Fermi gas

Density-Functional Theory and Chemistry in One Dimension

1 Back to the ground-state: electron gas

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005

EXCHANGE IN QUANTUM CRYSTALS: MAGNETISM AND MELTING OF THE LOW DENSITY 2D WIGNER CRYSTAL. David M. CEPERLEY

Exploring deep Earth minerals with accurate theory

Graphene: massless electrons in flatland.

Temperature-Dependent Behavior of Confined Many-electron Systems in the Hartree-Fock Approximation

Molecular Structures in Slow Nuclear Collisions

Cluster Extensions to the Dynamical Mean-Field Theory

Coupled-cluster theory for medium-mass nuclei

Quantum Monte Carlo calculations with chiral Effective Field Theory Interactions

Low mass dileptons from Pb + Au collisions at 158 A GeV

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ.

Circumventing the pathological behavior of path-integral Monte Carlo for systems with Coulomb potentials

Neutron Matter: EOS, Spin and Density Response

The spin susceptibility enhancement in wide AlAs quantum wells

Ryo Maezono. Japan Advanced Institute of Science and Technology, Ishikawa, Japan. treated by CHAMP. School of Information Science,

The nature of superfluidity in the cold atomic unitary Fermi gas

1 Density functional theory (DFT)

Computation of the High Temperature Coulomb Density Matrix in Periodic Boundary Conditions

Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state

Path-integral Monte Carlo simulation of helium at negative pressures

This is a repository copy of Self-consistent calculation of total energies of the electron gas using many-body perturbation theory.

arxiv: v1 [cond-mat.mes-hall] 10 Feb 2010

arxiv: v1 [cond-mat.str-el] 18 Jul 2007

Strong Correlation Effects in Fullerene Molecules and Solids

Quantum Monte Carlo methods

The Nature of the Interlayer Interaction in Bulk. and Few-Layer Phosphorus

Many-body electronic structure theory: Is Quantum Monte-Carlo affordable for molecular crystals?

Transcription:

The Uniform Electron Gas at Warm Dense Matter Conditions Tobias Dornheim, Simon Groth, and Michael Bonitz, Physics Reports 744, 1-86 (2018) Institute of Theoretical Physics and Astrophysics Kiel University

Introduction: warm dense matter Warm dense matter (WDM): Nearly classical ions Degenerate non-ideal electrons Coupling parameter: r s = Degeneracy parameter: r a B 0.1... 10 θ = k B T /E F 0.1... 10 Temperature, degeneracy and coupling effects equally important No small parameters Perturbation theory and ground-state approaches (DFT etc.) fail log 10 T / K 10 9 8 7 6 5 Classical plasma White dwarf HE envolope WDM Jupiter core 4 Earth core 3 XFEL Diamond anvils Ideal Fermi gas 2 Metals 18 20 22 24 26 28 30 θ=10 Γ=1 θ=1 r s =10 θ=0.1 r s =1 log 10 n / cm -3 ICF r s =0.1 Solar core Shock waves Exoplanets Red giants White dwarfs Figure: T. Dornheim, S. Groth, and M. Bonitz, Phys. Rep. 744, 1 (2018) (https://doi.org/10.1016/j.physrep.2018.04.001) Improved ab initio simulations needed to capture all effects in WDM

The uniform electron gas - Coulomb interacting electrons in a uniform positive background Ground state: Model description of metals Input for density functional theory (DFT) Accurate parametrization of XC-energy 1 for all r s from ground state Monte Carlo data 2 DFT simulations of real materials Warm dense matter: Ground state DFT not sufficient 3 Thermal DFT 4 Requires finite-t XC-functional 3 (XC free energy f xc) Finite-T XC-functional directly incorporated into EOS models of astrophysical objects 5 approximations in QHD 6 [ ] fxc(rs, T ) e xc(r s) log 10 f s(r s, T ) + e xc(r s) Reliability of these approaches crucially depends on accurate parametrization of f xc(r s, θ) Figure: Relative importance of finite-t XC-functional 3 (diagonal corresponds to θ 0.5) 1 J.P. Perdew and A. Zunger, PRB 23, 5048 (1981) 2 D.M. Ceperley and B. Alder, PRL 45, 566 (1980) 3 V. Karasiev et al., PRE 93, 063207 (2016) 4 N.D. Mermin, Phys. Rev 137, A1441 (1965) 5 A.Y. Potekhin and G. Chabrier, A&A 550, A43 (2013) 6 D. Michta et al., Contrib. Plasma Phys. 55 (2015)

Many parametrizations for f xc based on different approximate approaches: Semi-analytical approaches by Ebeling 1 Dielectric methods, e.g. Singwi-Tosi-Land-Sjölander 2 (STLS) and Vashista-Singwi 3 (VS) Quantum-classical mappings, e.g. Perrot and Dharma-wardana 4 (PDW) Most recent: Fit by Karasiev 5 et al. (KSDT) to Restricted Path Integral Monte Carlo (RPIMC) data 6 But: RPIMC invokes fixed node approximation induces uncontrolled systematic errors 7 Accuracy of existing parametrizations for f xc (r s, θ) unclear Ab initio description of the warm dense UEG highly needed 1 W. Ebeling and H. Lehmann, Ann. Phys. 45, (1988) 2 S. Ichimaru, H. Iyetomi, and S. Tanaka, Phys. Rep. 149, (1987) 3 T. Sjostrom and J. Dufty, PRB 88, (2013) 4 F. Perrot and MWC Dharma-wardana, PRB 62, (2000) 5 V.V. Karasiev et al., PRL 112, (2014) 6 E.W. Brown et al., PRL 110, (2013) 7 T. Schoof et al., PRL 115, (2015)

Path integral Monte Carlo (PIMC) simulation of the warm dense UEG Standard PIMC in warm dense regime severely hampered by fermion sign problem: First results 1 by E. Brown, D. Ceperley et al. (2013) based on fixed node approximation (RPIMC) Induces systematic errors of unknown magnitude RPIMC limited to r s 1 Our approach: Avoid fermion sign problem by combining two novel exact and complementary QMC methods: 1. Configuration PIMC (CPIMC) 2,3 Excels at high density r s 1 and strong degeneracy 2. Permutation blocking PIMC (PB-PIMC) 4,5 Extends standard PIMC towards stronger degeneracy Exact ab initio simulations over broad range of parameters 1 E.W. Brown et al., PRL 110, 146405 (2013) 2 S. Groth et al., Phys. Rev. B 93, 085102 (2016) 3 T. Schoof et al., Contrib. Plasma Phys. 55, 136 (2015) 4 T. Dornheim et al., New J. Phys. 17, 073017 (2015) 5 T. Dornheim et al., J. Chem. Phys. 143, 204101 (2015)

Results I: CPIMC for N = 33 spin-polarized electrons Exchange-correlation energy E xc = E E 0 (E 0 : ideal energy) T. Schoof, S. Groth, J. Vorberger, and M. Bonitz, PRL 115, 130402 (2015) 1.2 1.25 Exc rs 1.3 1.35 1.4 1.45 CPIMC RPIMC θ = 0.0625 θ = 0.125 θ = 0.25 θ = 0.5 DuBois P l 1.5 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 RPIMC carries systematic errors exceeding 10% r s RPIMC: E.W. Brown et al., PRL 110, 146405 (2013) DuBois: (θ = 0.0625) J.L. DuBois et al., arxiv:1409.3262 (2014)

Results II: Combination of CPIMC and PB-PIMC RPIMC limited to r s 1 CPIMC excels at high density PB-PIMC applicable at θ 0.5 Combination 1 yields exact results over entire density range down to θ 0.5 Also applies to the unpolarized UEG 2 Our results confirmed by recent DMQMC simulations 3 UEG well understood 4 for finite N How to extend the simulations to the thermodynamic limit (N )??? Exc rs 0.45 0.50 0.55 0.60 0.65 θ = 2 θ = 0.5 CPIMC PB-PIMC DMQMC RPIMC i DMQMC 0.1 1 10 r s 1 S. Groth et al., Phys. Rev. B 93, 085102 (2016) 2 T. Dornheim et al., Phys. Rev. B 93, 205134 (2016) 3 F.D. Malone et al., Phys. Rev. Lett. 117, 115701 (2016) 4 T. Dornheim et al., Phys. Plasmas 24, 056303 (2017)

Results III: Extension to thermodynamic limit 1 QMC results are afflicted with finite-size error V (N) (exceeding 20%) Extrapolation and previous finite-size 2 corrections are unreliable Solution: Combine QMC data for S(k) with long-range behavior from RPA, STLS [exact for S(k 0)] Improved finite-size correction for all WDM parameters! V/N -0.58-0.6-0.62-0.64-0.66-0.68-0.7-0.72-0.74-0.76-0.78 ν = V N N + V (N) -0.8 0 0.005 0.01 0.015 0.02 0.025 0.03 1/N QMC ΔBCDC ΔSpline TDL 1 Spline: T. Dornheim et al., PRL 117, 156403 (2016) 2 BCDC: E.W. Brown et al., PRL 110, (2013)

Results IV: Extension to ground state With our two novel quantum Monte-Carlo (QMC) methods 1-4 and improved FSC 5 we Obtained the first unbiased QMC data 5 for the potential energy of the UEG over the entire r s-θ-plane for θ 0.5 (restriction due to fermion sign problem) For θ = 0 use exact ground state QMC data 6 v 0 For 0 < θ < 0.25 add (small) STLS 7 temperature-correction to v 0 [ v(θ) = v 0 + v STLS (θ) v STLS ] (0) Highly accurate ( 0.3%) data set for v(θ, r s) over entire WDM regime Exchange-correlation free energy f xc linked to potential energy via f xc(r s, θ) 2f xc(r s, θ) + r s r = v(r s, θ) s θ Use suitable parametrization for f xc and fit l.h.s. to r.h.s. 1 T. Schoof et al., Contrib. Plasma Phys. 51, 687 (2011) 2 T. Schoof et al., Contrib. Plasma Phys. 55, 136 (2015) 3 T. Dornheim et al., New J. Phys. 17, 073017 (2015) 4 T. Dornheim et al., J. Chem. Phys. 143, 204101 (2015), 5 T. Dornheim et al., PRL 117, 156403 (2016) 6 G.G. Spink et al., Phys. Rev. B 88, 085121 (2013) 7 S. Tanaka, S. Ichimaru, J. Phys. Soc. Jpn. 55, 2278 (1986)

Results V: Parametrization of f xc (r s, θ) S. Groth, T. Dornheim, T. Sjostrom, F.D. Malone, W.M.C. Foulkes, and M. Bonitz, PRL 119, 135001 (2017) Construct finite-t XC-functional: Temperature-corrected ground state data smoothly connects to exact finite-t QMC data (over entire WDM regime) Smooth fit through all data points for v(r s, θ) Obtain highly accurate ( 0.3%) parametrization for f xc Energy [Ha] 0.2 0.3 0.4 0.5 QMC V0+ STLS θ This work 0.6 Comparison to other parametrizations reveals deviations of 5 12% (depending on r s and θ) 0.7 f xc r s v r s ξ = 0 r s = 10 6 4 2 2 0 4 6 10 2 10 1 10 0 10 1 Θ

Results VI: Ab initio description of spin-polarization effects S. Groth, T. Dornheim, T. Sjostrom, F.D. Malone, W.M.C. Foulkes, and M. Bonitz, PRL 119, 135001 (2017) 15 DFT in local spin-density approximation requires f xc (r s, θ) at arbitrary ξ = (N N )/(N + N ) Extend parametrization f xc (r s, θ) f xc (r s, θ, ξ) Extensive new QMC data for ξ = 0, 1/3, 0.6, and 1 First ab initio ξ-dependency No previous parametrization captures correct spin-dependency of f xc % fxc(ξ) fxc(ξ = 0) fxc(ξ = 0) 10 5 0 5 b) r s = 1 θ = 0 GDB KSDT IIT Tanaka 0.0 0.2 0.4 0.6 0.8 1.0 ξ θ = 8 θ = 2 θ = 0.5 KSDT: V.V. Karasiev et al., PRL 112 (2014) IIT: S. Ichimaru, H. Iyetomi, and S. Tanaka J. Phys. Reports 149, (1987) Tanaka: S. Tanaka, J. Chem. Phys. 145 (2016)

Summary: QMC at finite-t severely hampered by fermion sign problem (FSP) Common solution: fixed node approximation (RPIMC) 1 systematic errors exceed 10% 2 Our approach: circumvent FSP by combining two novel exact QMC methods 3,4 Presented improved finite-size correction 5 Extrapolate finite-n QMC data to TD limit First exact data of the warm dense UEG down to θ = 0.5 5 Combined ground state QMC data 6 + STLS temperature-correction for θ 0.25 Accurate ( 0.3%) and consistent parametrization 7 of f xc across entire r s-θ-ξ-space for the UEG at WDM conditions (r s 20, θ 8) First benchmarks of previous parametrizations 7 Systematic errors of 5 12% in WDM regime Unsatisfactory description of spin-dependency 1 E.W. Brown et al., PRL 110, 146405 (2013) 2 T. Schoof et al., PRL 115, 130402 (2015) 3 S. Groth et al., PRB 93, 085102 (2016) 4 T. Dornheim et al., Phys. Plasmas 24, 056303 (2017) 5 T. Dornheim et al., PRL 117, 156403 (2016) 6 G.G. Spink et al., PRB 88, 085121 (2013) 7 S. Groth et al., PRL 119, 135001 (2017)

S(q, ω) for θ = 1, r s = 10 Concluding remarks: Use our new f xc-functional as input for DFT calculations Quantum hydrodynamics Equation of state models of astrophysical objects Functional available online (C++, Fortran, Python) at https://github.com/agbonitz/xc_functional Implemented in libxc4.0.4: LDA_T_GDSMFB Outlook: inhomogeneous UEG Access to static local field correction ab initio results for imaginary-time correlation functions Reconstruction of dynamic structure factor S(q, ω) 1 q/q F 3.5 3 2.5 2 1.5 1 0.5 PIMC, N=34 ideal RPA ω=q 2 /2+ω p ω=q 2 /2 0 0 1 2 3 4 5 ω/ω p 1 T. Dornheim, PhD thesis, Kiel University 2018

Tobias Dornheim, Simon Groth, and Michael Bonitz (picture courtesy J. Siekmann) Bonitz group homepage: http://www.theo-physik.uni-kiel.de/bonitz/ Acknowledgements: We thank Matthew Foulkes, Fionne Malone, Tim Schoof, Travis Sjostrom and Jan Vorberger for fruitful collaboration on this project.