Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?"

Similar documents
Cold Quantum Gas Group Hamburg

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

A Mixture of Bose and Fermi Superfluids. C. Salomon

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Cold fermions, Feshbach resonance, and molecular condensates (II)

A Mixture of Bose and Fermi Superfluids. C. Salomon

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Reference for most of this talk:

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

A study of the BEC-BCS crossover region with Lithium 6

From laser cooling to BEC First experiments of superfluid hydrodynamics

Confining ultracold atoms on a ring in reduced dimensions

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

Ultracold molecules - a new frontier for quantum & chemical physics

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

Lecture 4. Feshbach resonances Ultracold molecules

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

Fluids with dipolar coupling

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

Lecture 3. Bose-Einstein condensation Ultracold molecules

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases

Superfluidity in interacting Fermi gases

NanoKelvin Quantum Engineering

BEC and superfluidity in ultracold Fermi gases

Ultracold Fermi Gases with unbalanced spin populations

Workshop on Topics in Quantum Turbulence March Experiments on Bose Condensates

Introduction to cold atoms and Bose-Einstein condensation (II)

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

Few-Body physics with ultracold K and Rb: Efimov physics and the Bose polaron

Condensation of pairs of fermionic lithium atoms

Fermi-Bose and Bose-Bose K-Rb Quantum Degenerate Mixtures

Fermi Condensates ULTRACOLD QUANTUM GASES

Dipolar Fermi gases. Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam. Outline

What are we going to talk about: BEC and Nonlinear Atom Optics

Search. Search and Discovery Ultracold Fermionic Atoms Team up as Molecules: Can They Form Cooper Pairs as Well? 1 of 10 11/12/2003 4:57 PM

Design and realization of exotic quantum phases in atomic gases

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014

Super Efimov effect. Sergej Moroz University of Washington. together with Yusuke Nishida and Dam Thanh Son. Tuesday, April 1, 14

Experiments with an Ultracold Three-Component Fermi Gas

Atom Quantum Sensors on ground and in space

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate

High-Temperature Superfluidity

Bose-Bose mixtures in confined dimensions

Superfluidity and Superconductivity Macroscopic Quantum Phenomena

F. Chevy Seattle May 2011

Vortices and other topological defects in ultracold atomic gases

Informal Workshop on Cold atoms and Quantum Simulations. Monday 3 and Tuesday 4 December Program. Monday, December 3

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

arxiv:cond-mat/ v1 28 Jan 2003

Superfluidity of a 2D Bose gas (arxiv: v1)

Ytterbium quantum gases in Florence

Fermi gases in an optical lattice. Michael Köhl

Mixtures of ultracold gases: Fermi sea and Bose-Einstein condensate of Lithium isotopes

Dipolar chromium BECs, and magnetism

Cold Molecules and Controlled Ultracold Chemistry. Jeremy Hutson, Durham University

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5

Quantum Transport in Ultracold Atoms. Chih-Chun Chien ( 簡志鈞 ) University of California, Merced

Evidence for Efimov Quantum states

Fundamentals and New Frontiers of Bose Einstein Condensation

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University

Disordered Ultracold Gases

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang

COPYRIGHTED MATERIAL. Index

Strongly correlated Cooper pair insulators and superfluids

Adiabatic trap deformation for preparing Quantum Hall states

1. Cold Collision Basics

Quantum superpositions and correlations in coupled atomic-molecular BECs

Simulation of Quantum Transport in Periodic and Disordered Systems with Ultracold Atoms

A Chromium BEC in strong RF fields

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Quantum dynamics in ultracold atoms

Bose-Einstein condensation; Quantum weirdness at the lowest temperature in the universe

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin

Program. 17:15 18:00 Vanderlei Bagnato (São Carlos Brazil) New experiments in the investigation of quantum turbulence in a trapped superfluid

Two-dimensional atomic Fermi gases. Michael Köhl Universität Bonn

Cooperative Phenomena

Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases

Bose-Einstein Condensation Lesson

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length

Bose-Einstein condensates & tests of quantum mechanics

Fundamentals and New Frontiers of Bose Einstein Condensation

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

Spontaneous Symmetry Breaking in Bose-Einstein Condensates

FERMI-HUBBARD PHYSICS WITH ATOMS IN AN OPTICAL LATTICE 1

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014

Bose-Einstein condensates in optical lattices

Universal Aspects of Dipolar Scattering Christopher Ticknor. May 15 at INT UNCLASSIFIED

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe)

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Transcription:

Krynica, June 2005 Quantum Optics VI Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?" Mixtures of ultracold Bose- and Fermi-gases Bright Fermi-Bose solitons Dynamics of the system: e.g.: mean field driven collapse Klaus Sengstock Universität Hamburg Institut für Laserphysik

Cold Quantum Gas Group Hamburg Fermi-Bose-Mixture Spinor-BEC BEC in Space Atom-Guiding in PBF

Cold Quantum Gas Group Hamburg Fermi-Bose-Mixture Spinor-BEC Poster by Silke Ospelkaus on Tuesday Poster by Jochen Kronjäger on Monday

Bose-Einstein Condensation Bose-Einstein distribution 1 f ( ε ) = ( ε µ )/ kt 1 e critical temperature for BEC S. N. Bose A. Einstein kt c 0.94 hω N 1 3 T>T c T<T c N 0 /N 1 1-(T/T c ) 3 T c T

Bose-Einstein Condensation High-temperature effect!!! Bose-Einstein distribution 1 f ( ε ) = ( ε µ )/ kt 1 e critical temperature for BEC kt c 0.94 hω N 1 3 T>T c T<T c N 0 /N 1 1-(T/T c ) 3 T c T

Fermions in a Harmonic Trap Fermi-Dirac distribution 1 f ( ε) = ( ε µ ) / kt e + 1 Fermi temperature E. Fermi P.A.M. Dirac kt F 1,81 hω N 1 3 T>T F T=0 f(ε) ε F 1 T=0 T~T F T>TF ε F ε

Fermions in a Harmonic Trap Fermi-Dirac distribution Quantum statistical effects also for T~T F, but more difficult to see... 1 f ( ε) = ( ε µ ) / kt e + 1 Fermi temperature kt F 1,81 hω N 1 3 T>T F T<T F f(ε) 1 T=0 T~T F T>T F ε F ε

Fermionic Quantum Gases difficulty to reach low temperatures for Fermi gases: no s-wave scattering of identical fermions! no thermalization in evaporative cooling a) use different spin components (D. Jin et al. 98) b) use e.g. a BEC to cool a Fermi sea (and look to the details...) condensate fraction thermal Bosons Fermions

e.g.: Momentum Distributions of Fermions and Bosons P(p) P(p) T>>T c,t F 0 p -p F 0 p p F P(p) P(p) 0 p T<T c,t F -p F p F 0 p P(p) P(p) 0 p T<<T c,t F -p F p F 0 p

e.g.: Momentum Distributions of Fermions and Bosons P(p) P(p) T>>T c,t F 0 p -p F 0 p p F P(p) P(p) 0 p T<T c,t F -p F p F 0 p

e.g.: Superfluidity in Quantum Gases: a) Bosons drag free motion MIT C. Raman et al., PRL. 83, 2502-2505 (1999). scissors modes Oxford O.M. Maragò et al., PRL 84, 2056 (2000) vortices, vortex lattice JILA, ENS, MIT Image from: P. Engels and E. A. Cornell

Superfluidity in Quantum Gases: b) Fermions Cooper pairs - BCS superfluidity T60 exponentially difficult to reach k r T BCS 0. 28T F e π 2k F a (valid for k F a <<1) k r e.g.: k F a=-0.2 -> T BCS ~ 10-4 T F (very very small) (very) low-temperature effect

Superfluidity in Quantum Gases: b) Fermions ways out of it: manipulate T BCS using a Feshbach resonance BEC of molecules BEC/BCS crossover Duke ENS Innsbruck JILA MIT Rice use additional particles to mediate interactions - Bosons?...

Fermi-Bose Mixtures boson mediated superfluidity L. Viverit, Phys. Rev. A 66, 023605 (2002) F. Matera, Phys. Rev. A 68, 043624 (2003) T. Swislocki, T. Karpiuk, M. Brewsczyk, Poster 1, Monday... boson mediated superfluidity in a lattice F. Illuminati and A. Albus, Phys. Rev. Lett. 93, 090406 (2004)... interplay between tunneling and various on-site-interactions

there is even more: Fermi-Bose Mixtures special interest: mixtures in optical lattices new phases, composite particles,... composite fermions M. Lewenstein et al., Phys. Rev. Lett. 92, 050401 (2004) M. Cramer et al., Phys. Rev. Lett. 93, 190405 (2004) 2 U 1 bf U bb 0 II FD II SF II FL IFL I DM II FL I DM II DM -1 II SF II FL. II -2 DM. 0 µ 1 b /U bb

effective interactions: ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (, F j B B BF F j F trap F j F j N i B F i BF B B B B B B trap B B N g V m t i g N g V m t i F ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ 2 2 2 1 2 2 2 2 2 2 + + = + + + = = h h h h bosons fermions Bose-Bose int. Bose-Fermi int. see also: G. Modugno et al., Science 297, 2240 (2002) S. Inouye et al., PRL 93, 183201 (2004) e.g.: 40 K - 87 Rb mixture: g B > 0 (a BB ~ 100 a 0 ) g BF < 0 (a BF ~ -280 a 0 ) Fermi-Bose Mixtures new degrees of freedom due to additional interactions tunable by Feshbach resonances!

Fermi-Bose Mixtures detailed understanding of interactions and also of loss processes is necessary Bose-Fermi interaction physics - system boundary conditions - coupled excitations (e.g. (e.g. exp. exp. in in Jin Jin group, group, JILA JILA and and Inguscio Inguscio group, group, LENS) LENS) - Bose-Fermi interactions - interspecies correlations - novel phases - heteronuclear molecules 6 Li/ 7 Li at Duke U., ENS Paris, Innsbruck U., Rice U. 6 Li/ 23 Na at MIT 40 K/ 87 Rb at LENS Florence, Jila Boulder, Hamburg U., ETH Zürich

soon: optical lattice Hamburg Setup two-species 2D-MOT flux: 87 Rb ~ 5 10 9 s -1 40 K ~ 5 10 6 s -1 two-species 3D-MOT Rb ~ 10 10 K ~ 3 10 7 within 10..20 s magnetic trap ν ax ~ 11 Hz (Rb) ν rad ~ 260 Hz (Rb) in addition: dipole trap

Mai 2003 Hamburg Setup laser systems experimental setup first BEC 7/2004 first degenerate Fermi gas 8/2004

Sympathetic Cooling state of the art (temperature): 5x10 7 6 Li at T~0.05T F 1x10 6 40 K at T~0.15T F (for K-Rb cooling) state of the art (particle numbers): number of K-atoms ν ax =11Hz, ν r =330Hz ν ax =11Hz, ν r =267Hz only BEC: >5*10 6 only Fermions: >1*10 6 number of Rb-atoms

Attractive Boson-Fermion Interaction a K-Rb ~ -279 a 0 effective potential for fermions: + = BEC experimental signatures: Fermion cloud without BEC Fermion cloud with BEC

Mean Field Instability of the System BEC Fermi-Sea BEC attraction of fermions BEC density increase runaway collapse

7 Li collapse Sackett et al., PRL 82, 876 (1999) J.M. Gerton et al., Nature 8, 692 (2000) Collapse Experiments 85 Rb "Bosenova" Donley et al., Nature 412, 295 (2001) Images from: http://spot.colorado.edu/~cwieman/bosenova.html 40 K / 87 Rb Fermi-Bose collapse G. Modugno et al., Science 297, 2240 (2002)

Fermi-Bose Mixtures in the Large Particle Limit: Local Collapse Dynamics

Fermi-Bose Mixtures in the Large Particle Limit: Collapse but...: is it just losses?? locally high density: enhanced two- and three-body losses??

Lifetime Regimes τ = 197ms τ = 21ms 3-body-loss time/frequency scales: - ν r (K) = 394 Hz - ν ax (K) = 17 Hz - thermalization 10..50 ms - collapse: ~ 20 ms - loss processes 100..200 ms -> collapse-time due to trap dynamics loss and collapse dynamics can be distinguished!

3-Body Losses measurement of the 3-body KRb decay rate model for 3-body inelastic decay in thermal mixture: integration over time: ln N K T ln N K 0 N K 1 K K Rb Rb N K N K T K K Rb Rb 0 d 3 2 r n B r,t n F r,t T dt d 3 rn B 2 r,t n F r,t N K t ln N K T ln N K 0 0-0.5 T Result: K K Rb Rb 3.5 10 28 cm 6 ( +/- 0.2) s -1-1.5-2 Measurement does not depend on K atom number calibration For 87 Rb 2,2> decay, we reproduce the value from Söding et al. [Appl. Phys. B69, 257 (1999)] -2.5 0 20 40 60 80 100 120 140 160 180 T dt d 3 rn B 2 r,t n F r,t 0 N K t 10 38 m 6 s

Fermi-Bose Mixtures in the Large Particle Limit: Stability Diagram N Boson stable mixture non stable mixture a KRb =-281 a 0 (S. Inouye et al., PRL 93, 183201 (2004) N Fermion

Does a Bose Einstein condensate float in a Fermi sea?... it depends...

Solitons in Matter Waves g>0 g<0 dark solitons filled solitons bright solitons quantum pressure interactions B. P. Anderson et al., PRL 86, 2926 (2001) gap solitons "negative mass" K.S. Strecker et al., Nature 417, 150 (2002) L. Khaykovich et al., Science 296, 1290 (2002) N Soliton < 10 4 S. Burger et al., PRL 83, 5198 (1999) quasi-1d regime J. Denschlag et al., Science 287, 97 (2000) B. Eiermann et al. PRL 92, 230401(2004) collapse for E int >E radial

T. Karpiuk, M. Brewczyk, S. Ospelkaus-Schwarzer, K. Bongs, M. Gajda, and K. Rzążewski, PRL 93, 100401 (2004) 1D: Bright Mixed Solitons Bose-Bose repulsion versus Fermi-Bose attraction behaviour in the trap: our data theory after switching off the trap: g n = B B g cr BF n F cr g BF < g BF cr g BF > g BF theory by T. Karpiuk, M. Brewczyk, M. Gaida, K. Rzazewski dynamics: constant envelope simulation from M. Brewczyk et al.

simulation shows complex dynamics: Collision - repulsive - shape oscillations - particle exchange Simulation from M. Brewczyk et al. fermionic character due to the Pauli-principle?

Bose-Fermi Mixtures with Attractive Interactions Physics in the High Density Limit effective interaction ("density") attractive collapse bright mixed soliton repulsive boson-induced BCS? trap aspect ratio Influence of ofloss processes?

Kai Bongs - Atom optics Spinor BEC: Jochen Kronjäger Christoph Becker Thomas Garl Martin Brinkmann Fermi-Bose mixtures K-Rb: Silke Ospelkaus-Schwarzer Christian Ospelkaus Philipp Ernst Oliver Wille Manuel Succo BEC in Space: Anika Vogel Malte Schmidt Atom guiding in PCF: Stefan Vorath Peter Moraczewski Hamburg Team K. Se V. M. Baev - Fibre lasers Stefan Salewski Ortwin Hellmig Arnold Stark Sergej Wexler Oliver Back Gerald Rapior Q. Gu -Theory Staff Victoria Romano Dieter Barloesius Reinhard Mielck

Cold Quantum Gas Group Hamburg Hamburg is a nice city... (for physics ) (and for visits!)