Catalytic and biological hydrogen production

Similar documents
Surface reactivity and heterogeneous catalysis a theoretical perspective

Photo-catalysis. energy production

Computational Studies on Catalytic Light Alkane Dehydrogenation. Martin Hangaard Hansen Paul Jennings Thomas Bligaard Jens Nørskov

Catalysis for sustainable energy: The challenge of harvesting and converting energy

Trends in the exchange current for hydrogen evolution

Frank Abild-Pedersen - DTU Orbit (29/08/13) Abild-Pedersen, Frank Business Developer, Former employee

Supporting information for Activity descriptors for CO 2 electroreduction to methane on transition-metal catalysts

Biomimetic Hydrogen Evolution: MoS 2 nanoparticles on graphite as catalyst for hydrogen evolution

Theoretical Calculations of Electrochemical Ammonia Synthesis at Ambient Pressure and Temperature

Supporting information for:

Applied Catalysis A: General

2008 Chemistry at Surfaces issue

Universal transition state scaling relations for hydrogenation and dehydrogenation reactions over transition metals Shengguang Wang, a

Including lateral interactions into microkinetic models of catalytic reactions

Molecular Scaffolding Strategy with Synergistic Active Centers to Facilitate Electrocatalytic CO2 Reduction to Hydrocarbon/Alcohol

Universal Brønsted-Evans-Polanyi Relations for C-C, C-O, C-N, N-O, N-N, and O-O Dissociation Reactions

Catalysis. Catalytic nanoparticles have been used for centuries to facilitate desirable chemical reactions and to suppress unwanted byproducts.

Conversion of Methane and Light Alkanes to Chemicals over Heterogeneous Catalysts Lessons Learned from Experiment and Theory

Supporting Information: Surface Polarons Reducing Overpotentials in. the Oxygen Evolution Reaction

Heterogeneous catalysis: the fundamentals Kinetics

Supporting Online Material (1)

Supporting Information: Selective Electrochemical Generation of. Hydrogen Peroxide from Water Oxidation

Steam reforming on transition-metal carbides from density-functional theory. Abstract

Correlations in coverage-dependent atomic adsorption energies on Pd(111)

Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations

Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals

Computational Screening of Core-Shell Nanoparticles for the Hydrogen Evolution and Oxygen Reduction Reactions. Abstract

Final Report for Catalysis Meeting Catalysis from First Principles

Atomic-Scale Modeling of Particle Size Effects for the Oxygen Reduction Reaction on Pt

Supporting Information

Electrochemical chlorine evolution at rutile oxide (110) surfacesw

Trends in CO Oxidation Rates for Metal Nanoparticles and Close-Packed, Stepped, and Kinked Surfaces

Fundamental Concepts in Heterogeneous Catalysis

Descriptor-based Analysis applied to HCN synthesis from NH 3 and CH 4 **

Adsorption-Driven Surface Segregation of the Less Reactive Alloy Component

Ammonia synthesis at low temperatures

Design of High-Performance Pd-based Alloy Nanocatalysts for Direct Synthesis of H 2 O 2

Supporting Online Material for

Heterogeneous catalysis: the fundamentals

Electrochemistry with DFT

Thickness-tunable Core-shell Nanoparticles Encapsulated in Sandwich-like Carbon

Supplementary Figure 1 Nano-beam electron diffraction Nano-beam electron diffraction

Efficient Synthesis of Ethanol from CH 4 and Syngas on

Oxygen Reduction Reaction

Supporting Information. Heterostructures of MXene and N-doped graphene as highly. active bifunctional electrocatalysts

Density functional theory calculations, reaction mechanism, methanol synthesis, Copper, van der

Theoretical Study of CH 4 Adsorption and C-H Bond Activation of CH 4 on Metal Ad-atom of (111) (M=Ni, Pd, Pt, Cu, Ag, Au)

Os/Pt Core-Shell Catalysts Validated by

Journal of Catalysis. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts

Structure sensitivity of the methanation reaction: H 2 -induced CO dissociation on nickel surfaces

Supplementary Information for:

Activity volcanoes for the electrocatalysis of homolytic and heterolytic hydrogen evolution

Tuning the Oxygen Reduction Activity of Pd Shell Nanoparticles with Random Alloy Cores

Electrochemistry gains ever more attention as the need for. Electrochemical Hydrogen Evolution: Sabatier s Principle and the Volcano Plot

Supplementary information for How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels

Calculated Phase Diagrams for the Electrochemical Oxidation and Reduction of Water over Pt(111)

Cyclic Voltammetry from First-Principles. of Denmark, DK-2800 Kgs. Lyngby, Denmark. University of Denmark, DK-2800 Kgs.

Adsorption, desorption, and diffusion on surfaces. Joachim Schnadt Divsion of Synchrotron Radiation Research Department of Physics

Supporting materials Bond-Energy-Integrated Descriptor for Oxygen Electrocatalysis of Transition-Metal Oxides

RSC Advances PAPER. The effect of cobalt promoter on the CO methanation reaction over MoS 2 catalyst: a density functional study. 1.

Inmaculada Rodríguez Ramos Nanostructured catalysts for sustainable chemical processes

SUPPLEMENTARY INFORMATION

Molybdenum compound MoP as an efficient. electrocatalyst for hydrogen evolution reaction

Supporting Information Fe-containing magnesium aluminate support for stability and carbon control during methane reforming

Oxide Formation of Transition Metal Surfaces and Effect on Catalysis

High CO tolerance of Pt/Ru nano-catalyst: insight from first principles calculation.

Supporting Information

In Situ Detection of Active Edge Sites in Single-Layer MoS 2 Catalysts

Electrode kinetics, finally!

Universality in Oxygen Reduction Electrocatalysis on Metal Surfaces

Identifying the rate-limiting processes at the Li-air cathode

Calculations of Product Selectivity in Electrochemical CO 2 Reduction

Supporting Information. Plating Precious Metals on Nonprecious Metal Nanoparticles for Sustainable. Electrocatalysts

Arghya Bhowmik, Dr. Heine Anton Hansen and Prof. Dr. Tejs Vegge*

CO oxidation on gold nanoparticles: Theoretical studies

Structural Effect on the Oxygen Evolution Reaction in the Electrochemical Catalyst FePt

The Curious Case of Au Nanoparticles

ph in atomic scale simulations of electrochemical interfaces

CO Hydrogenation to methanol on Cu- Ni Catalysts: Theory and Experiment

Bifunctional alloys for the electroreduction of CO 2 and CO

Core-Shell Nanostructured Cobalt-Platinum Electrocatalysts

Adsorption of hydrogen on clean and modified magnesium films

Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol

Direct Synthesis of H 2 O 2 on AgPt Octahedra: The Importance of Ag-Pt Coordination for High H 2 O 2 Selectivity

Computer Simulations and Nanotechnology

A Surface Science Approach to Catalysis

Towards rational design of catalysts supported on a topological insulator substrate

Supporting Information

Density functional theory and ab initio molecular dynamics study of NO adsorption on Pd(111) and Pt(111) surfaces

Supporting Information. DFT Study of Methane Synthesis from Syngas on Ce Doped Ni(111) Surface

Pd-Fe bimetallic catalysts have been widely studied in

M.Sc. Project Introduction Nitrogen-fixing Enzymes

Supplementary Information

Design of a new family of catalytic support based on thiol containing plasma polymer films

Sustainable Energy Technologies

Electricity to fuels

Electronic Supplementary Information (ESI) Atomic Interpretation of High Activity on Transition Metal and

Adsorbate Diffusion on Transition Metal Nanoparticles

Catalyst structure and C-O activation during FTS: new ideas from computational catalysis. Mark Saeys

Curriculum Vitae. Egill Skúlason. (Last modified: 9. Des 2012)

Transcription:

Catalytic and biological hydrogen production J. K. Nørskov Center for Atomic-scale Materials Physics Technical University of Denmark norskov@fysik.dtu.dk

Why make hydrogen? Ammonia synthesis (N 2 +3H 2 2NH 3 ) Sulfur emissions DK Methanol synthesis (CO+2H 2 CH 3 OH) polymers Hydrogenation Year.. Energy carrier???

Catalytic and biological hydrogen production Heterogeneous gas phase processes - Steam reforming Electrolysis - An atomistic view - Problems overpotentials and Pt Biological hydrogen evolution - Hydrogenases - Nitrogenases Biomimetic hydrogen evolution?

CH 4 +H 2 O 3H 2 +CO Supported Ni catalyst Steam reforming Rostrup-Nielsen, Sehested, Nørskov Adv. Catal. 47, 65 (2002)

The atomic-scale picture Ni(111) Ni(211) Bengaard, Nørskov, Sehested, Clausen, Nielsen, Molenbroek, Rostrup-Nielsen: J. Catal. 209, 365 (2002)

What determines the reactivity? Ni(111) Barrier for CH 4 dissociation: b Ni(100) Ni(211) Bengaard, Nørskov Ni Adatom (111)

Nano-scale effects in catalysis Experimental data: Au as catalyst for CO oxidation: Schubert et al. J. Catal. 197, 113 (2001). Okamura et al. Catal. Lett. 51, 53 (1998). Lin et al. Catal. Lett. 17, 245 (1993). Haruta et al. J. Catal. 115, 301 (1989). Lee et al. J. Catal. 206, 305 (2002). Schimpf et al. Catal. Today 72, 63 (2002). Yuan et al. Catal. Lett. 42, 15 (1996). Haruta Stud. Surf. Sci. Catal. 110, 123 (1997) Haruta Catal. Today 36, 153 (1997). Lopez, Janssens, Clausen, Xu, Mavrikakis, Bligaard, Nørskov, J. Catal. 223, 232 (2004)

Making gold reactive: Lopez, Janssens, Clausen, Xu, Mavrikakis, Bligaard, Nørskov J. Catal. 223, 232 (2004)

The main nano-effect: many low coordinates sites # lowest coordinated atoms: ~ 1 per particle # atoms total: ~ d 3 => Activity ~ 1/d 3

Steam reforming the main problem: Formation of Carbon Nano-fibers In situ (high temperature and pressure) Transmission Electron Microscopy (TEM) Helveg, Cartes, Sehested, Hansen, Clausen, Rostrup-Nielsen, Abild-Pedersen, Nørskov Nature 327, 426 (2004)

Carbon nucleation at steps Ni(111) Ni(211) Extra bonding at step Bengaard, Nørskov, Sehested, Clausen, Nielsen, Molenbroek, Rostrup-Nielsen: J. Catal. 209, 365 (2002)

Direct observation Helveg, Cartes, Sehested, Hansen, Clausen, Rostrup-Nielsen, Abild-Pedersen, Nørskov Nature 327, 426 (2004)

C 2 H 4 dissociation Ni(111) DFT: STM: Ni(111) Ni(211) Vang, Vestergaard, Besenbacher, Dahl, Clausen, Honkala, Nørskov Nature Mat. (2004)

STM Ag/Ni(111) Step blocking I Vang, Vestergaard, Besenbacher, Dahl, Clausen, Honkala, Nørskov Nature Mat. (2004)

Step blocking II Step blocking changes rate constant for ethane hydrogenolysis: 1000 k (mmol/(g s bar 0.5 ) 100 10 Ag/Ni 0.1wt%/0.9wt% Ni 1wt% Cu/Ni 0.1wt%/1wt% Sinfelt 1 1.5 1.6 1.7 1.8 1.9 1000/T (K -1 ) Vang, Vestergaard, Besenbacher, Dahl, Clausen, Honkala, Nørskov Nature Mat. (2004)

Step blocking III Besenbacher, Chorkendorff, Clausen, Hammer, Molenbroek, Nørskov, Stensgaard, Science 279, 1913 (1998)

Electrolysis Cathode: 2(H + +e - ) H 2 Anode: H 2 O ½O 2 +2 H + Total: H 2 O ½O 2 +H 2 G 0 =2.46 ev (1.23 ev/electron)

Electrolysis Cathode: 2(H + +e - ) H 2 Anode: H 2 O ½O 2 +2 H + Total: H 2 O ½O 2 +H 2 G 0 =2.46 ev (1.23 ev/electron)

The hydrogen evolution process Nørskov, Bligaard, Logadottir, Kitchin, Chen, Pandelov, Stimming, JES (2004)

The (new) volcano i (1 0 = e k0 θ ) i ( 0 = ek0 1 θ)exp( GH * / kt) θ = exp( GH 1+ exp( G * / kt ) / kt ) H*

Biological Hydrogen Production Purple bacteria photofermentation using sunlight and oxidizing organic compounds Microalgae and cyanobacteria direct biophotolysis resulting in water splitting

Purple Bacteria hν C 2 H 4 O 2 + 2H 2 O 2CO 2 + 4H 2 Organic acids + - CO 2 + H + e hν e - e - C 2 H + nh + Antenna Energy Reaction Center e - QH 2 Q Cytochrome bc Complex 1 Proton Channel ATP H + H + Fd Nitrogenase e - e - H + ATP ADP + Pi ATP Synthase D. Gust, Arizona State U. H 2 nh + ATP Biological analog of steam reforming

Microalgae and cyanobacteria H 2 O H 2 + ½O 2 hν + H + HO 2 O 2 H + e - PC hν nh + Antenna Energy PS II Reaction Center e - QH 2 Q Cytochrome bf Complex 6 PS I Reaction Center Proton Channel H + H + Fd Hydrogenase e - H + ADP + Pi nh + ATP Synthase ATP D. Gust, Arizona State U. H 2 Biological analog of electrolysis

The active sites of the enzymes Einsle, Teczan, Andrade, Schmid, Yoshida, Howard, Rees, Science 2002, 297, 1696. Hinnemann, Nørskov, JACS 126, 3920 (2004) Vollbeda, Fontecilla-Camps, Dalton Trans. 4030-3048 (2003). Siegbahn, Blomberg, Wirstam, Crabtree Biol. Inorg. Chem. 6, 460 (2001)

Biological hydrogen evolution Hinnemann, Moses, Bonde, Chorkendorff, Nørskov (2004)

Biological hydrogen evolution U=430 mv ph=7 ([4S-4Fe] 1+/2+ ) Hinnemann, Moses, Bonde, Chorkendorff, Nørskov

Biomimetics Nitrogenase: MoS 2 : Hinnemann, Moses, Nørskov Bonde, Chorkendorff (2004)

MoS2 nanoparticles are metallic 1-layer slab: Nanoparticles: Bollinger, Lauritsen, Jacobsen, Nørskov, Helveg, Besenbacher, Phys. Rev. Lett. 87, 196803 (2001).

Biomimetics II Hinnemann, Moses, Nørskov Bonde, Chorkendorff (2004)

Electrolysis Cathode: 2(H + +e - ) H 2 Anode: H 2 O ½O 2 +2 H + Total: H 2 O ½O 2 +H 2 G 0 =2.46 ev (1.23 ev/electron)

Electro-thermo chemistry I Example: H 2 O + * OH* +H + +e - 1. Get E for H 2 O + * OH* + 1/2H 2 from DFT 2. Include the effect of water surroundings: E w 3. Calculate G 0 = E + E w + E zpe -T S 0

The effect of water I Water layer Ogasawara, Brena, Nordlund, Nyberg, Pelmenschikov, Petterson and Nilsson. PRL, 89, 2002, 276102

The effect of water II Mixed O+H 2 O G w ~.0 ev

The effect of water III Mixed OH+H 2 O G w = -.33eV Similar to Clay, Haq and Hodgon. PRL, 92, 2004, 46102

The effect of water IV Mixed OOH+H 2 O G w = -.22 ev

Electro-thermo chemistry II 4. Use definition of U=0 (SHE): 1/2H 2 H + +e -, G(U=0,c H+ =1M ) = 0 5. Calculate effects of potential and ph: G(U,c H+ ) = eu - kt ln(c H+ ) 6. Include effects of local fields (small here)

Two conventions: Use H 2 O(g) at 0.035 bar as reference H 2 O(l) H 2 O(g) (p eq =0.035 bar at 300 K) Fix G tot (U=0, ph=0) = -2.46 ev for ½O 2 +2H + +2e - H 2 O (avoids calculation for gas phase O 2 )

Water splitting Direct route: Peroxy route: H 2 O+* *OH+H + +e - H 2 O+* *OH+H + +e - * OH *O+H + +e - * OH *O+H + +e - 2 *O *OO H 2 O+ *O *OOH+H + +e - *OOH *OO +H + +e - *OO O 2 +* *OO O 2 +*

Water splitting at three potentials U 2U 3U 4U Rossmeisl, Logadottir, Nørskov

O 2 associative desorption is not possible

Only one important energy in problem:

Only one important energy in problem:

The overpotential for water splitting U=1.23V, ph=0, T=300 K Rossmeisl, Logadottir, Nørskov

Hydrogen production Steam reforming detailed picture Electrolysis emerging understanding Enzymatic processes new inspiration

Thanks to B. Hinnemann, K. Honkala, T. Bligaard, J. Rossmeisl, H. Bengaard, A. Logadottir, I. Remediakis, A. Hellman, P. G. Moses I. Chorkendorff, O. Lytken, J. Bonde Center for Atomic scale Materials Physics, Technical University of Denmark F. Besenbacher, E. Vestergaard, R. Vang Center for Atomic scale Materials Physics, University of Aarhus S. Dahl, S. Helveg, B. S. Clausen, J. Rostrup-Nielsen, J. Sehested, J. Hyldtroft Haldor Topsøe A/S J. R. Kitchin, J. G. Chen University of Delaware U. Stimming, Pandelov Technical University Munich

The old volcanos Trasatti, J. Electroanal. Chem., 39, 163 (1972) O M Bockris, Reddy, Gamboa-Aldeco, Modern Electrochemistry 2A (2000).

Nudging the reactivity by alloying Calculated d band shifts: Overlayer Host Ruban, Hammer, Stoltze, Skriver, Nørskov, J.Mol.Catal. A 115, 421 (1997)

Initial sticking probability Methane activation on Ni/Ru 5e-7 Thermal dissociation of CH 4 at T = 530 K 4e-7 3e-7 2e-7 1e-7 0 0 1 2 Ni Coverage [ML] Egeberg, Chorkendorff, Catal. Lett. 77, 207 (2001)