Journal of Inequalities in Pure and Applied Mathematics

Similar documents
Journal of Inequalities in Pure and Applied Mathematics

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL

Journal of Inequalities in Pure and Applied Mathematics

ON PERTURBED TRAPEZOIDAL AND MIDPOINT RULES. f (t) dt

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

Journal of Inequalities in Pure and Applied Mathematics

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS

S. S. Dragomir. 2, we have the inequality. b a

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

Journal of Inequalities in Pure and Applied Mathematics

0 N. S. BARNETT AND S. S. DRAGOMIR Using Gruss' integrl inequlity, the following pertured trpezoid inequlity in terms of the upper nd lower ounds of t

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b)

ON THE WEIGHTED OSTROWSKI INEQUALITY

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term

ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1)

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

WEIGHTED INTEGRAL INEQUALITIES OF OSTROWSKI, 1 (b a) 2. f(t)g(t)dt. provided that there exists the real numbers m; M; n; N such that

An optimal 3-point quadrature formula of closed type and error bounds

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

RGMIA Research Report Collection, Vol. 1, No. 1, SOME OSTROWSKI TYPE INEQUALITIES FOR N-TIME DIFFERENTIA

Improvement of Ostrowski Integral Type Inequalities with Application

Journal of Inequalities in Pure and Applied Mathematics

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications

New general integral inequalities for quasiconvex functions

A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1

Improvements of some Integral Inequalities of H. Gauchman involving Taylor s Remainder

The Hadamard s inequality for quasi-convex functions via fractional integrals

INEQUALITIES FOR BETA AND GAMMA FUNCTIONS VIA SOME CLASSICAL AND NEW INTEGRAL INEQUALITIES

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs

Revista Colombiana de Matemáticas Volumen 41 (2007), páginas 1 13

Bulletin of the. Iranian Mathematical Society

Research Article On New Inequalities via Riemann-Liouville Fractional Integration

Research Article On The Hadamard s Inequality for Log-Convex Functions on the Coordinates

WENJUN LIU AND QUÔ C ANH NGÔ

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Parametrized inequality of Hermite Hadamard type for functions whose third derivative absolute values are quasi convex

Communications inmathematicalanalysis Volume 6, Number 2, pp (2009) ISSN

arxiv: v1 [math.ca] 28 Jan 2013

An inequality related to η-convex functions (II)

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Integral inequalities for n times differentiable mappings

ON COMPANION OF OSTROWSKI INEQUALITY FOR MAPPINGS WHOSE FIRST DERIVATIVES ABSOLUTE VALUE ARE CONVEX WITH APPLICATIONS

Hadamard-Type Inequalities for s Convex Functions I

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

1 The Lagrange interpolation formula

Improvement of Grüss and Ostrowski Type Inequalities

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

QUADRATURE is an old-fashioned word that refers to

INNER PRODUCT INEQUALITIES FOR TWO EQUIVALENT NORMS AND APPLICATIONS

A basic logarithmic inequality, and the logarithmic mean

Bounds for the Riemann Stieltjes integral via s-convex integrand or integrator

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

A Note on Feng Qi Type Integral Inequalities

Review of Calculus, cont d

LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS VIA TAYLOR S EXPANSION WITH INTEGRAL REMAINDER

The Regulated and Riemann Integrals

On some refinements of companions of Fejér s inequality via superquadratic functions

Hermite-Hadamard type inequalities for harmonically convex functions

RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR S f DIVERGENCE

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX

New Expansion and Infinite Series

Chapter 5 : Continuous Random Variables

APPROXIMATING THE RIEMANN-STIELTJES INTEGRAL BY A TRAPEZOIDAL QUADRATURE RULE WITH APPLICATIONS

1.9 C 2 inner variations

Some new integral inequalities for n-times differentiable convex and concave functions

8 Laplace s Method and Local Limit Theorems

Approximation of functions belonging to the class L p (ω) β by linear operators

arxiv: v1 [math.ca] 11 Jul 2011

GENERALIZED ABSTRACTED MEAN VALUES

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions

ODE: Existence and Uniqueness of a Solution

SPECIAL FUNCTIONS: APPROXIMATIONS AND BOUNDS

Definite integral. Mathematics FRDIS MENDELU

ON THE C-INTEGRAL BENEDETTO BONGIORNO

NEW HERMITE HADAMARD INEQUALITIES VIA FRACTIONAL INTEGRALS, WHOSE ABSOLUTE VALUES OF SECOND DERIVATIVES IS P CONVEX

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Lecture 1. Functional series. Pointwise and uniform convergence.

THIELE CENTRE. Linear stochastic differential equations with anticipating initial conditions

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

Math& 152 Section Integration by Parts

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

Numerical Analysis: Trapezoidal and Simpson s Rule

Euler-Maclaurin Summation Formula 1

On Hermite-Hadamard type integral inequalities for functions whose second derivative are nonconvex

3.4 Numerical integration

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

A NOTE ON ESTIMATION OF THE GLOBAL INTENSITY OF A CYCLIC POISSON PROCESS IN THE PRESENCE OF LINEAR TREND

The Riemann Integral

Transcription:

Journl of Inequlities in Pure nd Applied Mthemtics http://jipmvueduu/ Volume, Issue, Article, 00 SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL NS BARNETT, P CERONE, SS DRAGOMIR, AND J ROUMELIOTIS SCHOOL OF COMMUNICATIONS AND INFORMATICS, PO BOX 448, MELBOURNE CITY MC 800, VICTORIA, AUSTRALIA neil@mtildvueduu pc@mtildvueduu sever@mtildvueduu johnr@mtildvueduu Received 7 Jnury, 000; ccepted 6 June, 000 Communicted by CEM Perce ABSTRACT Some inequlities for the dispersion of rndom vrible whose pdf is defined on finite intervl nd pplictions re given Key words nd phrses: Rndom vrible, Expecttion, Vrince, Dispersion, Grüss Inequlity, Chebychev s Inequlity, Lupş Inequlity 000 Mthemtics Subject Clssifiction 60E5, 6D5 INTRODUCTION In this note we obtin some inequlities for the dispersion of continuous rndom vrible X hving the probbility density function pdf) f defined on finite intervl, b Tools used include: Korkine s identity, which plys centrl role in the proof of Chebychev s integrl inequlity for synchronous mppings 4, Hölder s weighted inequlity for double integrls nd n integrl identity connecting the vrince σ X) nd the expecttion E X) Perturbed results re lso obtined by using Grüss, Chebyshev nd Lupş inequlities In Section 4, results from n identity involving double integrl re obtined for vriety of norms SOME INEQUALITIES FOR DISPERSION Let f :, b R R + be the pdf of the rndom vrible X nd E X) : ISSN electronic): 44-5756 c 00 Victori University All rights reserved 00-99 tf t) dt

NS BARNETT, P CERONE, SS DRAGOMIR, AND J ROUMELIOTIS its expecttion nd σ X) t E X)) f t) dt t f t) dt E X) its dispersion or stndrd devition The following theorem holds Theorem With the bove ssumptions, we hve b ) f 6, provided f L,, b ; + b ) q ) 0 σ X) f p, provided f L p, b Proof Korkine s identity 4, is ) p t) dt q+)q+) q b ) p t) g t) h t) dt nd p >, p + q ; p t) g t) dt p t) h t) dt p t) p s) g t) g s)) h t) h s)) dtds, which holds for the mesurble mppings p, g, h :, b R for which the integrls involved in ) exist nd re finite Choose in ) p t) f t), g t) h t) t E X), t, b to get ) σ X) It is obvious tht 4) f t) f s) t s) dtds f t) f s) t s) dtds sup t,s),b f t) f s) t s) dtds b )4 f 6 nd then, by ), we obtin the first prt of ) For the second prt, we pply Hölder s integrl inequlity for double integrls to obtin ) f t) f s) t s) dtds f p t) f p p b s) dtds t s) q dtds f p b ) q+ q, q + ) q + ) where p > nd +, nd the second inequlity in ) is proved p q For the lst prt, observe tht s f t) f s) t s) dtds f t) f s) dtds sup t s) t,s),b f t) dt f t) f s) dtds b ) f s) ds ) q J Inequl Pure nd Appl Mth, ) Art, 00 http://jipmvueduu/

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE Using finer rgument, the lst inequlity in ) cn be improved s follows Theorem Under the bove ssumptions, we hve 5) 0 σ X) b ) Proof We use the following Grüss type inequlity: 6) 0 p t) g t) dt p t) dt ) p t) g t) dt p t) dt 4 M m), provided tht p, g re mesurble on, b nd ll the integrls in 6) exist nd re finite, p t) dt > 0 nd m g M e on, b For proof of this inequlity see 9 Choose in 6), p t) f t), g t) t E X), t, b Observe tht in this cse m E X), M b E X) nd then, by 6) we deduce 5) Remrk The sme conclusion cn be obtined for the choice p t) f t) nd g t) t, t, b The following result holds Theorem 4 Let X be rndom vrible hving the pdf given by f :, b R R + Then for ny x, b we hve the inequlity: 7) σ X) + x E X)) b ) b ) + x +b b x) q+ +x ) q+ b Proof We observe tht q+ + x +b ) ) f, provided f L, b ; q f p, provided f L p, b, p >, nd p + q ; 8) nd s x t) f t) dt x xt + t ) f t) dt x xe X) + t f t) dt 9) σ X) we get, by 8) nd 9), 0) x E X) + σ X) which is of interest in itself too t f t) dt E X), x t) f t) dt, J Inequl Pure nd Appl Mth, ) Art, 00 http://jipmvueduu/

4 NS BARNETT, P CERONE, SS DRAGOMIR, AND J ROUMELIOTIS We observe tht x t) f t) dt ess sup f t) t,b x t) dt b x) + x ) f b ) b ) f + x + b ) nd the first inequlity in 7) is proved For the second inequlity, observe tht by Hölder s integrl inequlity, ) x t) f t) dt f p p b t) dt x t) q dt nd the second inequlity in 7) is estblished Finlly, observe tht, nd the theorem is proved ) q b x) q+ + x ) q+ q f p, q + x t) f t) dt sup x t) f t) dt t,b mx { x ), b x) } The following corollries re esily deduced Corollry 5 With the bove ssumptions, we hve ) 0 σ X) b ) b ) + E X) +b b EX)) q+ +EX) ) q+ q+ mx {x, b x}) b + x + b ), ) f, provided f L, b ; q f p, if f L p, b, p > nd p + q ; b + E X) +b Remrk 6 The lst inequlity in ) is worse thn the inequlity 5), obtined by technique bsed on Grüss inequlity The best inequlity we cn get from 7) is tht one for which x +b, nd this pplies for ll the bounds since b ) min x,b + x + b ) b x) q+ + x ) q+ min x,b q + b ) b )q+ q q + ),, J Inequl Pure nd Appl Mth, ) Art, 00 http://jipmvueduu/

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE 5 nd b min + x,b x + b Consequently, we cn stte the following corollry s well b Corollry 7 With the bove ssumptions, we hve the inequlity: 0 σ X) + E X) + b ) b ) f, provided f L, b ; b ) q+ f p, if f L p, b, p >, 4q+) q b ) 4 nd p + q ; Remrk 8 From the lst inequlity in ), we obtin ) 0 σ X) b E X)) E X) ) 4 b ), which is n improvement on 5) PERTURBED RESULTS USING GRÜSS TYPE INEQUALITIES In 95, G Grüss see for exmple 6) proved the following integrl inequlity which gives n pproximtion for the integrl of product in terms of the product of the integrls Theorem Let h, g :, b R be two integrble mppings such tht φ h x) Φ nd γ g x) Γ for ll x, b, where φ, Φ, γ, Γ re rel numbers Then, ) T h, g) Φ φ) Γ γ), 4 where ) T h, g) b h x) g x) dx b h x) dx b g x) dx nd the inequlity is shrp, in the sense tht the constnt cnnot be replced by smller 4 one For simple proof of this s well s for extensions, generlistions, discrete vrints nd other ssocited mteril, see 5, nd - where further references re given A premture Grüss inequlity is embodied in the following theorem which ws proved in It provides shrper bound thn the bove Grüss inequlity Theorem Let h, g be integrble functions defined on, b nd let d g t) D Then ) T h, g) D d where T h, g) is s defined in ) T h, h), Theorem will now be used to provide perturbed rule involving the vrince nd men of pdf J Inequl Pure nd Appl Mth, ) Art, 00 http://jipmvueduu/

6 NS BARNETT, P CERONE, SS DRAGOMIR, AND J ROUMELIOTIS Perturbed Results Using Premture Inequlities In this subsection we develop some perturbed results Theorem Let X be rndom vrible hving the pdf given by f :, b R R + Then for ny x, b nd m f x) M we hve the inequlity 4) P V x) : σ X) + x E X)) M m M m) 6) T h, h) b Now, b ) 45 b ) 45 b b ) x + b ) ) + 5 x + b ) Proof Applying the premture Grüss result ) by ssociting g t) with f t) nd h t) x t), gives, from )-) 5) x t) f t) dt x t) dt f t) dt b b ) M m T h, h), where from ) b x t) 4 dt x t) dt b 7) nd b x t) dt x ) + b x) b ) b b x t) 4 dt x )5 + b x) 5 5 b ) ) + x + b ) giving, for 6), x ) 5 + b x) 5 x ) + b x) 8) 45T h, h) 9 5 b b Let A x nd B b x in 8) to give ) A 5 + B 5 A + B 45T h, h) 9 5 A + B A + B 9 A 4 A B + A B AB + B 4 5 A AB + B ) 4A 7AB + 4B ) A + B) A ) ) + B A B + 5 A + B) Using the fcts tht A + B b nd A B x + b) gives b ) b ) 9) T h, h) + 5 x + b ) 45 J Inequl Pure nd Appl Mth, ) Art, 00 http://jipmvueduu/

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE 7 nd from 7) b giving 0) x t) dt A + B A + B) b x t) dt A A AB + B ) + B + b ) + x + b ) ) A B, Hence, from 5), 9) 0) nd 0), the first inequlity in 4) results The corsest uniform bound is obtined by tking x t either end point Thus the theorem is completely proved Remrk 4 The best inequlity obtinble from 4) is t x +b giving ) σ X) + E X) + b b ) M m b ) 5 The result ) is tighter bound thn tht obtined in the first inequlity of ) since 0 < M m < f For symmetric pdf E X) +b nd so the bove results would give bounds on the vrince The following results hold if the pdf f x) is differentible, tht is, for f x) bsolutely continuous Theorem 5 Let the conditions on Theorem be stisfied Further, suppose tht f is differentible nd is such tht f : sup f t) < t,b Then ) P V x) b f I x), where P V x) is given by the left hnd side of 4) nd, b ) b ) ) I x) + 5 x + b ) 45 Proof Let h, g :, b R be bsolutely continuous nd h, g be bounded Then Chebychev s inequlity holds see ) T h, g) b ) sup h t) sup g t) t,b t,b Mtić, Pečrić nd Ujević using premture Grüss type rgument proved tht 4) T h, g) b ) sup g t) T h, h) t,b Associting f ) with g ) nd x ) with h ) in ) gives, from 5) nd 9), I x) b ) T h, h), which simplifies to ) nd the theorem is proved J Inequl Pure nd Appl Mth, ) Art, 00 http://jipmvueduu/

8 NS BARNETT, P CERONE, SS DRAGOMIR, AND J ROUMELIOTIS Theorem 6 Let the conditions of Theorem be stisfied Further, suppose tht f is loclly bsolutely continuous on, b) nd let f L, b) Then 5) P V x) b π f I x), where P V x) is the left hnd side of 4) nd I x) is s given in ) Proof The following result ws obtined by Lupş see ) For h, g :, b) R loclly bsolutely continuous on, b) nd h, g L, b), then where T h, g) b ) π h g, ) k : k t) for k L, b) b Mtić, Pečrić nd Ujević further show tht 6) T h, g) b π g T h, h) Associting f ) with g ) nd x ) with h in 6) gives 5), where I x) is s found in ), since from 5) nd 9), I x) b ) T h, h) Alternte Grüss Type Results for Inequlities Involving the Vrince Let 7) S h x)) h x) M h) where 8) M h) b Then from ), h u) du 9) T h, g) M hg) M h) M g) Drgomir nd McAndrew 9 hve shown, tht 0) T h, g) T S h), S g)) nd proceeded to obtin bounds for trpezoidl rule Identity 0) is now pplied to obtin bounds for the vrince Theorem 7 Let X be rndom vrible hving the pdf f :, b R R + Then for ny x, b the following inequlity holds, nmely, ) P V x) 8 ν x) f ) if f L, b, b where P V x) is s defined by the left hnd side of 4), nd ν ν x) b Proof Using identity 0), ssocite with h ), x ) nd f ) with g ) Then ) + ) x +b ) x t) f t) dt M x ) ) x t) M x ) ) f t) dt, b J Inequl Pure nd Appl Mth, ) Art, 00 http://jipmvueduu/

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE 9 where from 8), M x ) ) b x t) dt x ) + b x) b ) nd so ) M x ) ) ) b + x + b ) Further, from 7), nd so, on using ) 4) S x ) ) x t) S x ) ) x t) M x ) ) b ) x + b ) Now, from ) nd using 0), ) nd 4), the following identity is obtined b 5) σ X) + x E X) ) + x + b ) where S ) is s given by 4) Tking the modulus of 5) gives 6) P V x) S x t) ) f t) ) dt b S x t) ) f t) b ) dt, Observe tht under different ssumptions with regrd to the norms of the pdf f x) we my obtin vriety of bounds For f L, b then 7) P V x) f ) b S x t) ) dt Now, let 8) S x t) ) t x) ν t X ) t X + ), where 9) ν M x ) ) x ) + b x) b ) nd b ) + x + b ), 0) X x ν, X + x + ν Then, ) H t) S x t) ) t dt x) ν dt t x) ν t + k J Inequl Pure nd Appl Mth, ) Art, 00 http://jipmvueduu/

0 NS BARNETT, P CERONE, SS DRAGOMIR, AND J ROUMELIOTIS nd so from ) nd using 8) - 9) gives, ) S x t) ) dt H X ) H ) H X + ) H X ) + H b) H X + ) H X ) H X + ) + H b) H ) { ν } ν X ν + b x) ν X + + ν b + ν ν + b x) + x ) ν b ) x ) + ν 8 ν Thus, substituting into 7), 6) nd using 9) redily produces the result ) nd the theorem is proved Remrk 8 Other bounds my be obtined for f L p, b, p however obtining explicit expressions for these bounds is somewht intricte nd will not be considered further here They involve the clcultion of sup t,b for f L, b nd t x) ν mx { x ) ν, ν, b x) ν } t x) ν q dt for f L p, b, p + q, p >, where ν is given by 9) 4 SOME INEQUALITIES FOR ABSOLUTELY CONTINUOUS PDFS We strt with the following lemm which is interesting in itself Lemm 4 Let X be rndom vrible whose probbility density function f :, b R + is bsolutely continuous on, b Then we hve the identity 4) σ X) + E X) x b ) + x + b ) + b ) q where the kernel p :, b R is given by s, if s t b, p t, s) : s b, if t < s b, for ll x, b Proof We use the identity see 0)) 4) σ X) + E X) x for ll x, b x t) f t) dt t x) p t, s) f s) dsdt, J Inequl Pure nd Appl Mth, ) Art, 00 http://jipmvueduu/

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE On the other hnd, we know tht see for exmple for simple proof using integrtion by prts) 4) f t) b for ll t, b Substituting 4) in 4) we obtin 44) σ X) + E X) x t x) b b Tking into ccount the fct tht f s) ds + b f s) ds + b x ) + b x) + b x ) + b x) b ) + p t, s) f s) ds p t, s) f s) ds dt t x) p t, s) f s) dsdt x + b ), x, b, then, by 44) we deduce the desired result 4) The following inequlity for PDFs which re bsolutely continuous nd hve the derivtives essentilly bounded holds Theorem 4 If f :, b R + is bsolutely continuous on, b nd f L, b, ie, f : ess sup f t) <, then we hve the inequlity: t,b 45) σ X) + E X) x for ll x, b Proof Using Lemm 4, we hve σ X) + E X) x b ) b ) x + b b b f b b ) ) b ) 0 x + b ) + x + b ) f t x) p t, s) f s) dsdt t x) p t, s) f s) dsdt t x) p t, s) dsdt J Inequl Pure nd Appl Mth, ) Art, 00 http://jipmvueduu/

NS BARNETT, P CERONE, SS DRAGOMIR, AND J ROUMELIOTIS We hve I : I + I b Let A x, B b x then nd Now, I + I b t x) p t, s) dsdt t t x) s ) ds + t b t x) t ) + b t) dt t x) t ) dt + I I b nd the theorem is proved 0 t x) t ) dt b ) 0 b ) b ) b ) u Au + A ) u du b s) ds dt t x) b t) dt A A b ) + 5 b ) t x) b t) dt b ) u Bu + B ) u du B B b ) + 5 b ) A + B 4 A + B) b ) + 5 b ) b ) + x + b ) b ) 0 b ) + x + b ) 0 The best inequlity we cn get from 45) is embodied in the following corollry Corollry 4 If f is s in Theorem 4, then we hve 46) σ X) + E X) + b b ) b )4 f 0 We now nlyze the cse where f is Lebesgue p integrble mpping with p, ) J Inequl Pure nd Appl Mth, ) Art, 00 http://jipmvueduu/

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE Remrk 44 The results of Theorem 4 my be compred with those of Theorem 5 It my be shown tht both bounds re convex nd symmetric bout x +b Further, the bound given by the premture Chebychev pproch, nmely from )-) is tighter thn tht obtined by the current pproch 45) which my be shown from the following Let these bounds be described by B p nd B c so tht, neglecting the common terms nd where B p b 5 B c Y b b ) 00 ) + 5Y + Y, x + b ) It my be shown through some strightforwrd lgebr tht B c B p > 0 for ll x, b so tht B c > B p The current development does however hve the dvntge tht the identity 4) is stisfied, thus llowing bounds for L p, b, p rther thn the infinity norm Theorem 45 If f :, b R + is bsolutely continuous on, b nd f L p, ie, then we hve the inequlity 47) f p : ) f t) p p dt σ X) + E X) x b ) f p b ) p q + ) q x + b x ) q+ B <, p, ) ) b, q +, q + x + b x) q+ B ) ) b, q +, q + b x for ll x, b, when p + q nd B,, ) is the qusi incomplete Euler s Bet mpping: B z; α, β) : z 0 u ) α u β du, α, β > 0, z Proof Using Lemm 4, we hve, s in Theorem 4, tht 48) σ X) + E X) x b ) x + b ) b t x) p t, s) f s) dsdt J Inequl Pure nd Appl Mth, ) Art, 00 http://jipmvueduu/

4 NS BARNETT, P CERONE, SS DRAGOMIR, AND J ROUMELIOTIS Using Hölder s integrl inequlity for double integrls, we hve 49) t x) p t, s) f s) dsdt where p >, + p q We hve to compute the integrl 40) Define D : q + 4) E : b ) p f p t x) q p t, s) q dsdt ) f s) p p b dsdt t t x) q s ) q ds + t t x) q t ) q+ + b t) q+ dt q + t x) q t ) q+ dt + ) t x) q p t, s) q q dsdt t x) q p t, s) q dsdt b s) q ds t x) q t ) q+ dt dt ) q t x) q b t) q+ dt If we consider the chnge of vrible t u) + ux, we hve t implies u 0 nd t b implies u b, dt x ) du nd then x 4) Define E x 0 u) + ux x q u) + ux x ) du x ) q+ x u ) q u q+ du 0 ) b x ) q+ B, q +, q + x 4) F : t x) q b t) q+ dt If we consider the chnge of vrible t v) b + vx, we hve t b implies v 0, nd t implies v b, dt x b) dv nd then 44) F b x 0 b b x v) b + vx x q b v) b vx q+ x b) dv b x) q+ b x v ) q v q+ dv 0 ) b b x) q+ B, q +, q + b x, J Inequl Pure nd Appl Mth, ) Art, 00 http://jipmvueduu/

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE 5 Now, using the inequlities 48)-49) nd the reltions 40)-44), since D E + F ), q+ we deduce the desired estimte 47) The following corollry is nturl to be considered Corollry 46 Let f be s in Theorem 45 Then, we hve the inequlity: 45) σ X) + E X) + b b ) f p b ) + q q + ) q + q B q +, q + ) + Ψ q +, q + ) q, where p + q, p > nd B, ) is Euler s Bet mpping nd Ψ α, β) : 0 uα u + ) β du, α, β > 0 Proof In 47) put x +b The left side is cler Now B, q +, q + ) The right hnd side of 47) is thus: f b ) q+ q p b ) p q + ) q 0 0 u ) q u q+ du u ) q u q+ du + u ) q u q+ du B q +, q + ) + Ψ q +, q + ) B q +, q + ) + Ψ q +, q + ) q f p b ) + q q + ) q + q B q +, q + ) + Ψ q +, q + ) q nd the corollry is proved Finlly, if f is bsolutely continuous, f L, b nd f f t) dt, then we cn stte the following theorem Theorem 47 If the pdf, f :, b R + is bsolutely continuous on, b, then 46) σ X) + E X) x for ll x, b b ) x + b ) f b ) b ) + x + b J Inequl Pure nd Appl Mth, ) Art, 00 http://jipmvueduu/

6 NS BARNETT, P CERONE, SS DRAGOMIR, AND J ROUMELIOTIS Proof As bove, we cn stte tht σ X) + E X) x b ) where nd the theorem is proved b x + b ) t x) p t, s) f s) dsdt sup t x) p t, s) t,s),b b f G G : sup t,s),b t x) p t, s) b ) sup t x) t,b b ) mx x, b x) b ) b ) + x + b, f s) dsdt It is cler tht the best inequlity we cn get from 46) is the one when x +b, giving the following corollry Corollry 48 With the ssumptions of Theorem 47, we hve: 47) σ X) + E X) + b b ) b ) f 4 REFERENCES P CERONE AND SS DRAGOMIR, Three point qudrture rules involving, t most, first derivtive, submitted, RGMIA Res Rep Coll, 4) 999), Article 8 ONLINE http://rgmivueduu/vn4html P CERONE AND SS DRAGOMIR, Trpezoidl type rules from n inequlities point of view, Accepted for publiction in Anlytic-Computtionl Methods in Applied Mthemtics, GA Anstssiou Ed), CRC Press, New York 000), 65 4 P CERONE AND SS DRAGOMIR, Midpoint type rules from n inequlities point of view, Accepted for publiction in Anlytic-Computtionl Methods in Applied Mthemtics, GA Anstssiou Ed), CRC Press, New York 000), 5 00 4 P CERONE, SS DRAGOMIR AND J ROUMELIOTIS, An inequlity of Ostrowski type for mppings whose second derivtives re bounded nd pplictions, Est Asin Mth J, 5) 999), 9 Preprint RGMIA Res Rep Coll, ) 998), Article 4, 998 ONLINE http://rgmivueduu/vnhtml 5 P CERONE, SS DRAGOMIR AND J ROUMELIOTIS, An inequlity of Ostrowski- Grüss type for twice differentible mppings nd pplictions, Kyungpook Mth J, 9) 999), 4 Preprint RGMIA Res Rep Coll, ) 998), Article 8, 998 ONLINE http://rgmivueduu/vnhtml J Inequl Pure nd Appl Mth, ) Art, 00 http://jipmvueduu/

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE 7 6 P CERONE, SS DRAGOMIR AND J ROUMELIOTIS, An Ostrowski type inequlity for mppings whose second derivtives belong to L p, b) nd pplictions, Preprint RGMIA Res Rep Coll, ) 998), Article 5 ONLINE http://rgmivueduu/vnhtml 7 P CERONE, SS DRAGOMIR AND J ROUMELIOTIS, On Ostrowski type for mppings whose second derivtives belong to L, b) nd pplictions, Honm Mth J, ) 999), 7 7 Preprint RGMIA Res Rep Coll, ) 998), Article 7 ONLINE http://rgmivueduu/vnhtml 8 P CERONE, SS DRAGOMIR AND J ROUMELIOTIS, Some Ostrowski type inequlities for n-time differentible mppings nd pplictions, Demonstrtio Mth, ) 999), 697 7 Preprint RGMIA Res Rep Coll, ) 998), 5 66 ONLINE http://rgmivueduu/vnhtml 9 P CERONE, SS DRAGOMIR, J ROUMELIOTIS AND J SUNDE, A new generliztion of the trpezoid formul for n-time differentible mppings nd pplictions, Demonstrtio Mth, 4) 000), 79 76 RGMIA Res Rep Coll, 5) 999), Article 7 ONLINE http://rgmivueduu/vn5html 0 SS DRAGOMIR, Grüss type integrl inequlity for mppings of r-hölder s type nd pplictions for trpezoid formul, Tmkng J Mth, ) 000), 4 47 SS DRAGOMIR, A Tylor like formul nd ppliction in numericl integrtion, submitted SS DRAGOMIR, Grüss inequlity in inner product spces, Austrl Mth Soc Gz, 6) 999), 66 70 SS DRAGOMIR, New estimtion of the reminder in Tylor s formul using Grüss type inequlities nd pplictions, Mth Inequl Appl, ) 999), 8 94 4 SS DRAGOMIR, Some integrl inequlities of Grüss type, Indin J of Pure nd Appl Mth, 4) 000), 97 45 5 SS DRAGOMIR AND N S BARNETT, An Ostrowski type inequlity for mppings whose second derivtives re bounded nd pplictions, J Indin Mth Soc, 66-4) 999), 7 45 Preprint RGMIA Res Rep Coll, ) 998), Article 9 ONLINE http://rgmivueduu/vnhtml 6 SS DRAGOMIR, P CERONE AND A SOFO, Some remrks on the midpoint rule in numericl integrtion, Studi Mth Bbeş-Bolyi Univ, in press) 7 SS DRAGOMIR, P CERONE AND A SOFO, Some remrks on the trpezoid rule in numericl integrtion, Indin J Pure Appl Mth, 5) 000), 475 494 Preprint: RGMIA Res Rep Coll, 5) 999), Article ONLINE http://rgmivueduu/vn5html 8 SS DRAGOMIR, YJ CHO AND SS KIM, Some remrks on the Milovnović-Pečrić Inequlity nd in Applictions for specil mens nd numericl integrtion, Tmkng J Mth, 0) 999), 0 9 SS DRAGOMIR AND A McANDREW, On Trpezoid inequlity vi Grüss type result nd pplictions, Tmkng J Mth, ) 000), 9 0 RGMIA Res Rep Coll, ) 999), Article 6 ONLINE http://rgmivueduu/vnhtml 0 SS DRAGOMIR, JE PEČARIĆ AND S WANG, The unified tretment of trpezoid, Simpson nd Ostrowski type inequlity for monotonic mppings nd pplictions, Mth nd Comp Modelling, 000), 6 70 Preprint: RGMIA Res Rep Coll, 4) 999), Article ONLINE http://rgmivueduu/vn4html SS DRAGOMIR AND A SOFO, An integrl inequlity for twice differentible mppings nd pplictions, Preprint: RGMIA Res Rep Coll, ) 999), Article 9 ONLINE J Inequl Pure nd Appl Mth, ) Art, 00 http://jipmvueduu/

8 NS BARNETT, P CERONE, SS DRAGOMIR, AND J ROUMELIOTIS http://rgmivueduu/vnhtml SS DRAGOMIR AND S WANG, An inequlity of Ostrowski-Grüss type nd its pplictions to the estimtion of error bounds for some specil mens nd for some numericl qudrture rules, Comput Mth Appl, 997), 5 M MATIĆ, JE PEČARIĆ AND N UJEVIĆ, On New estimtion of the reminder in Generlised Tylor s Formul, Mth Inequl Appl, ) 999), 4 6 4 DS MITRINOVIĆ, JE PEČARIĆ AND AM FINK, Clssicl nd New Inequlities in Anlysis, Kluwer Acdemic Publishers, 99 5 DS MITRINOVIĆ, JE PEČARIĆ AND AM FINK, Inequlities for Functions nd Their Integrls nd Derivtives, Kluwer Acdemic Publishers, 994 6 JE PEČARIĆ, F PROSCHAN AND YL TONG, Convex Functions, Prtil Orderings, nd Sttisticl Applictions, Acdemic Press, 99 J Inequl Pure nd Appl Mth, ) Art, 00 http://jipmvueduu/