Lie s Symmetries of (2+1)dim PDE

Similar documents
Symmetry Reductions of (2+1) dimensional Equal Width. Wave Equation

arxiv: v1 [math.ap] 25 Aug 2009

SYMMETRY REDUCTION AND NUMERICAL SOLUTION OF A THIRD-ORDER ODE FROM THIN FILM FLOW

Symmetries and reduction techniques for dissipative models

ANALYSIS OF A NONLINEAR SURFACE WIND WAVES MODEL VIA LIE GROUP METHOD

Classification of cubics up to affine transformations

Symmetry Reduction of Chazy Equation

Symmetry Classification of KdV-Type Nonlinear Evolution Equations

On the classification of certain curves up to projective tranformations

Symmetry and Exact Solutions of (2+1)-Dimensional Generalized Sasa Satsuma Equation via a Modified Direct Method

New methods of reduction for ordinary differential equations

Applications of Symmetries and Conservation Laws to the Study of Nonlinear Elasticity Equations

Symmetry Methods for Differential Equations and Conservation Laws. Peter J. Olver University of Minnesota

A Note on Nonclassical Symmetries of a Class of Nonlinear Partial Differential Equations and Compatibility

Journal of Mathematical Analysis and Applications. Complete symmetry group and nonlocal symmetries for some two-dimensional evolution equations

Invariant Sets and Exact Solutions to Higher-Dimensional Wave Equations

Applications of Lie Group Analysis to the Equations of Motion of Inclined Unsagged Cables

Computers and Mathematics with Applications

On the Linearization of Second-Order Dif ferential and Dif ference Equations

Lie and Non-Lie Symmetries of Nonlinear Diffusion Equations with Convection Term

Noether Symmetries and Conservation Laws For Non-Critical Kohn-Laplace Equations on Three-Dimensional Heisenberg Group

Lie Symmetries Analysis for SIR Model of Epidemiology

Alexei F. Cheviakov. University of Saskatchewan, Saskatoon, Canada. INPL seminar June 09, 2011

Group analysis, nonlinear self-adjointness, conservation laws, and soliton solutions for the mkdv systems

Exact solutions through symmetry reductions for a new integrable equation

Lie Symmetry of Ito Stochastic Differential Equation Driven by Poisson Process

Travelling wave solutions for a CBS equation in dimensions

Potential symmetry and invariant solutions of Fokker-Planck equation in. cylindrical coordinates related to magnetic field diffusion

Symmetry reductions and travelling wave solutions for a new integrable equation

Conservation laws for the geodesic equations of the canonical connection on Lie groups in dimensions two and three

Symbolic Computation and New Soliton-Like Solutions of the 1+2D Calogero-Bogoyavlenskii-Schif Equation

MATH 220: Problem Set 3 Solutions

A Discussion on the Different Notions of Symmetry of Differential Equations

A Recursion Formula for the Construction of Local Conservation Laws of Differential Equations

(1) F(x,y, yl, ", y.) 0,

Symmetries And Differential Equations By G.W.; Kumei, S. Bluman

First Integrals/Invariants & Symmetries for Autonomous Difference Equations

1 Systems of Differential Equations

Group analysis of differential equations: A new type of Lie symmetries

Fuzzy compact linear operator 1

Conservation Laws: Systematic Construction, Noether s Theorem, Applications, and Symbolic Computations.

Research Article Exact Solutions of φ 4 Equation Using Lie Symmetry Approach along with the Simplest Equation and Exp-Function Methods

Symmetry reductions for the Tzitzeica curve equation

A symmetry-based method for constructing nonlocally related partial differential equation systems

B.7 Lie Groups and Differential Equations

Approximate Similarity Reduction for Perturbed Kaup Kupershmidt Equation via Lie Symmetry Method and Direct Method

+ h4. + h5. 6! f (5) i. (C.3) Since., it yields

New solutions for a generalized Benjamin-Bona-Mahony-Burgers equation

The symmetry structures of ASD manifolds

Chapter 1: Introduction

Chapter 3 Second Order Linear Equations

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

Travelling Wave Solutions and Conservation Laws of Fisher-Kolmogorov Equation

ON FLATNESS OF NONLINEAR IMPLICIT SYSTEMS

The similarity solutions of concentration dependent diffusion equation

Symmetry reductions and exact solutions for the Vakhnenko equation

Symmetry Reduction of Two-Dimensional Damped Kuramoto Sivashinsky Equation

New explicit solitary wave solutions for (2 + 1)-dimensional Boussinesq equation and (3 + 1)-dimensional KP equation

Conditional Symmetry Reduction and Invariant Solutions of Nonlinear Wave Equations

Nonclassical analysis of the nonlinear Kompaneets equation

Research Article Equivalent Lagrangians: Generalization, Transformation Maps, and Applications

SYMMETRY ANALYSIS AND SOME SOLUTIONS OF GOWDY EQUATIONS

Galilean invariance and the conservative difference schemes for scalar laws

Lie point symmetries and invariant solutions of (2+1)- dimensional Calogero Degasperis equation

Direct construction method for conservation laws of partial differential equations Part I: Examples of conservation law classifications

ON LIE GROUP CLASSIFICATION OF A SCALAR STOCHASTIC DIFFERENTIAL EQUATION

ASYMPTOTIC THEORY FOR WEAKLY NON-LINEAR WAVE EQUATIONS IN SEMI-INFINITE DOMAINS

Research Article Some Results on Equivalence Groups

Summer 2017 MATH Solution to Exercise 5

QUANTITATIVE FINANCE RESEARCH CENTRE. Lie Symmetry Methods for Local Volatility Models QUANTITATIVE FINANCE RESEARCH CENTRE QUANTITATIVE F

Initial Boundary Value Problems for Scalar and Vector Burgers Equations

On Temporal Instability of Electrically Forced Axisymmetric Jets with Variable Applied Field and Nonzero Basic State Velocity

Total Differentiation Under Jet Composition

New Formal Solutions of Davey Stewartson Equation via Combined tanh Function Method with Symmetry Method

A symmetry analysis of Richard s equation describing flow in porous media. Ron Wiltshire

Lecture Notes for Math 251: ODE and PDE. Lecture 13: 3.4 Repeated Roots and Reduction Of Order

Group Invariant Solutions of Complex Modified Korteweg-de Vries Equation

Department of Mathematics Luleå University of Technology, S Luleå, Sweden. Abstract

CCFEA Technical Report WP Symmetries and the Merton portfolio selection model

Similarity Reductions of (2+1)-Dimensional Multi-component Broer Kaup System

An Efficient Method for Solving Multipoint Equation Boundary Value Problems

Chapter 4: First-order differential equations. Similarity and Transport Phenomena in Fluid Dynamics Christophe Ancey

SU(N) representations

arxiv:math-ph/ v1 15 Jul 2000

Symmetry analysis of the cylindrical Laplace equation

Generalized evolutionary equations and their invariant solutions

Exact implicit Solution of Nonlinear Heat Transfer in Rectangular Straight Fin Using Symmetry Reduction Methods

Complete Description of Turbulence in Terms of Hopf Functional and LMN Hierarchy: New Symmetries and Invariant Solutions

On Symmetry Group Properties of the Benney Equations

SYMMETRIES OF SECOND-ORDER DIFFERENTIAL EQUATIONS AND DECOUPLING

Differential equations uniquely determined by algebras of point symmetries 1

DEDUCTIVE group transformation analysis, also called

Construction of Conservation Laws: How the Direct Method Generalizes Noether s Theorem

AMS 147 Computational Methods and Applications Lecture 13 Copyright by Hongyun Wang, UCSC

Symbolic Computation of Nonlocal Symmetries and Nonlocal Conservation Laws of Partial Differential Equations Using the GeM Package for Maple

Graphs and polynomials

New Symmetries and Particular Solutions for 2D Black-Scholes Model

Nonlocal Symmetry and Generating Solutions for the Inhomogeneous Burgers Equation

MATH20411 PDEs and Vector Calculus B

Lie Theory of Differential Equations and Computer Algebra

Transcription:

International Journal of Mathematics Trends and Technology (IJMTT) - Volume 5 Numer 6 Novemer 7 Lie s Symmetries of (+)dim PDE S. Padmasekaran and S. Rajeswari Department of Mathematics Periyar University Salem - 66 Tamil Nadu India. e mail: padmasekarans@yahoo. co.in e mail: rajeswarisa@gmail. com Astract: In this paper we apply Lie s Classical Method to a (+) dimensional PDE equation to identify all possile solution for which this equation admits an exact solution and we otain Lie algera of infinitesimal symmetries is spanned y the six vector fields. We conclude that there is an infinite group of point transformations are invariant using invariant form method.we otained local symmetry classifications. MSC : 5AC and 5R. Key Words : Lie Group Transformation Transform Methods Lie Classical Method Symmetries and Invariant.. Introduction In recent years there have een so many research to find symmetries for system of nonlinear (+) dimensional PDEs. In this paper we consider the (+) dimensional PDE wy v wx u wt + u + vy. () wt + wx + wyy. () The aove system () is equivalent to In the present work we first apply Lie classical method (Bluman and Cole Bluman and Kumei George M.Murphy Olver Bluman and Anco5 Olver P.J68 Iragimov7 Daniel Zwillinger9 Sachdev.P. L. and Tesdall M. and Hunter.K ) to the second order PDE() and show that this system is invariant under a group containing six parameters using invariant form method. ISSN: -57 Page 8

International Journal of Mathematics Trends and Technology (IJMTT) - Volume 5 Numer 6 Novemer 7 We consider a scalar second order PDE in three variales F (x x x u u u u u u u u u u ). Here u u u. x u x u u x u u x u u x u u x x u u x x () u u x u u x x The one-parameter Lie group of transformations x x x u x + ξ (x x x u ) + O( ) x + ξ (x x x u ) + O( ) x + ξ (x x x u ) + O( ) u + η(x x x u) + O( ) () leaves PDE () invariant if and only if its second extension also leaves () invariant. Let ξi (x x x u) i + η(x x x u) xi u (5) e the infinitesimal generator of (). Let () ξi (x x x u) i + + () ηi (x x x u u u u ) + + η(x x x u) xi u i ui () ηi i (x x x u u u u u u u u u u ) i () e the second extended infinitesimal generator of (5)where ηi ui i is given y () Ux + Uu ux ξx ux ξx ux ξx ux ξu ux ξu ux ux ξu ux ux () η ξu ux η () η Ux + Uu ux ξx ux ξx ux ξx ux ξu ux ux ξu ux ux Ux + Uu ux ξx ux ξx ux ξx ux ξu ux ux ξu ux ux ξu ux (j) () Ux x + Uux ux + Uuu ux + Uu ux x ξx x ux ξux ux ux ξx ux x ξuu ux ux ξu ux x ux ξu ux ux x ξx x uxx ξux ux ξx ux x ISSN: -57 (7) (8) and ηi i y η (6) Page 8 (9)

International Journal of Mathematics Trends and Technology (IJMTT) - Volume 5 Numer 6 Novemer 7 ξuu ux ξu ux x ux ξx x ux ξux ux ux ξx ux x ξuu ux ux ξu ux x ux ξu ux ux x () () η Ux x + Uux ux + Uux ux + Uuu ux ux + Uu ux x ξx x ux ξux ux ξx ux x ξuu ux ux ξ ux ux ux ξu ux x ux ξu ux ux x ξx x ux ξux ux ux ξx ux x ξuu ux ux ξux ux ξu ux x ux ξx x ux ξux ux ux ξx ux xt ξuu ux ux ux ξux ux ux ξu ux x ux ξu ux ux x ξx ux x ξx ux x ξx ux x ξu ux ux x ξu ux ux x ξu ux ux x () () Ux x + Uux ux + Uux ux + Uuu ux ux + Uu ux x ξx x ux ξux ux ux ξx ux x ξuu ux ux ξ ux ux ξu ux x ux ξx x ux ξux ux ux ξx ux x ξuu ux ux ux ξux ux ux ξu ux x ux ξu ux ux x ξx x ux ξux ux ux ξx ux xt ξuu ux ux ξux ux ξuu ux ux ξu ux ux x ξx ux x ξx ux x ξx ux x ξu ux ux x ξu ux ux x () () Ux x + Uux ux + Uuu ux + Uu ux x ξx x ux ξux ux ux ξx ux x η η ξuu ux ux ξu ux x ux ξu ux ux x ξx x ux ξux ux ξx ux x ξuu ux ξu ux x ux ξx x ux ξux ux ux ξx ux x ξuu ux ux ξu ux x ux ξu ux ux x () η () η () Ux x + Uux ux + Uux ux + Uuu ux ux + Uu ux x ξx x ux ξux ux ξx ux x ξux ux ux ξuu ux ux ux ξ ux ux ux ξu ux x ux ξu ux ux x ξx x ux ξux ux ux ξx ux x ξuu ux ux ξux ux ξu ux x ux ξu ux ux x ξx x ux ξux ux ξx ux x ξuu ux ux ξux ux ux ξu ux ux x ξu ux ux x ξx ux x ξx ux x ξx ux x ξu ux ux x () Ux x + Uux ux + Uuu ux + Uu ux x ξx x ux ξux ux ux ξx ux x ξuu ux ux ξu ux x ux ξu ux ux x ξx x ux ξux ux ux ξx ux x ξux ux x ξuu ux ux ξu ux x ux ξu ux ux x ξx x ux ξux ux ξx ux x ξuu ux ξu ux x ux (5) We then have () F (x x x u u u u u u u u u u ) If u (x x x ) is an invariant solution of () corresponding to (5) admitted y PDE () then ISSN: -57 Page 8

International Journal of Mathematics Trends and Technology (IJMTT) - Volume 5 Numer 6 Novemer 7 u (x x x ) is an invariant surface of (5) if (u (x x x )) when u (x x x ) or ξi (x (x x x )) i η(x x x (x x x )) xi (6) And u (x x x ) solves () if F (x x x u u u u u u u u u u ). Equation (6) is known as the invariant surf ace condition for an invariant solutions corresponding to (5). We otain the invariant solutions using the invariant form method descried elow: Lie s Classical Method is applied to a single PDE () and we otain Lie algera of infinitesimal symmetries is spanned y the six vector fields.. Lie s Classical Method to single PDE We now seek the following group of infinitesimal transformations w t x y w + W (t x u) t + T (t x y u) x + (t x y u) y + Y (t x y u) (7) under which () is invariant. Then Wt + Ww wt Tt wt Tw wt t wx w wx wt Yt wy Yw wt wy h +wx Wx + Ww wx Tx wt Tw wt wx x wx w wx Yx wy Yw wx wy i +Wyy + Wwy wy + Www wy + Ww wyy Tyy wt Twy wt wy Ty wty Tww wy wt Tw wyy wt Tw wy wty yy wx wy wx wy y wxy wy wxy ww wy wx w wyy wx w wy wxy Yyy wy Ywy wy Yww wy Yw wy wyy Tw wy wty w wy wxy Yy wyy Yw wy wyy. (8) Now replacing the highest derivative term wyy using () equation (8) ecomes Wt + Ww wt Tt wt Tw wt t wx w wx wt Yt wy Yw wt wy h +wx Wx + Ww wx Tx wt Tw wt wx x wx w wx Yx wy Yw wx wy i +Wyy + Wwy wy + Www wy Tyy wt Twy wt wy Ty wty Tww wy wt ISSN: -57 Page 8

International Journal of Mathematics Trends and Technology (IJMTT) - Volume 5 Numer 6 Novemer 7 Tw wyy wt Tw wy wty yy wx wy wx wy y wxy wy wxy ww wy wx w wy wxy Yyy wy Ywy wy Yww wy Tw wy wty w wy wxy [Ww w wx Yw wy Yy Yw wy ] wt + wx. (9) Equating the coefficients of wt wx wt wt wy wty wxy to zero we otain Tw w Yw Tx Yx Ty y. Again equating the derivativess of wy wx wx wt wy to zero we otain the six linear partial differential equations Www Wx t W w x + Yy Wt + Wyy Yy Tt Wwy Yt Yyy () () (). () () (5) Integrating equation () we otain Ww k (x t y). (6) W k (x t y)w + k (x t y). (7) Again integrating equation (6) Integrating with respect to y equation () yields Y Tt y + h (t). (8) Putting equation (8) into equation(5) and integrating with respect to y we arrive at k y Ttt + h y + k (x t). (9) 5 ISSN: -57 Page 85

International Journal of Mathematics Trends and Technology (IJMTT) - Volume 5 Numer 6 Novemer 7 Sustituting (7) in (8) and integrating with respect to x we get Z Ttt y + Tt x + xyh + k (x t)dx + (t). 8 () Inserting equations () and (7) into equation () we otain wkx + kx t. But we find that (x t). Therefore kx t kx. () Using () and integrating with respect to x equation () ecomes xy Z x Tttt y + Ttt + h + k dt + x (t) + H (y t) k 8 () where H (y t) is a constant of integration. Sustituting (7) () and () in equation () we get wkt + kt + wkyy + kyy. () Now collecting the different powers of w we get two equations kt + kyy kt + kyy () (5) x y x x Ttttt y + Tttt + h + k (t) + x (tt) + Ht + Tttt + Hyy. 8 8 6 (6) Using () equation (5) reduces to Now equating the different powers of x to zero we get y 5 Ttttt y + h Tttt + 8 6 tt k + Ht + Hyy. (7) (8) (9) Solving equations (7) and (8) we otain that a t + t + c h t + t + h d t + d. T h () 6 ISSN: -57 Page 86

International Journal of Mathematics Trends and Technology (IJMTT) - Volume 5 Numer 6 Novemer 7 Sustituting equations (9) and () in equation () we get a h y + kt +. () Clearly we conclude that h a k t + a. () Putting () () into equations () and () we find that a a y + at + x + xy + t + a x + d t + d + a 8 a a k x + t + a t + a + d x + H (y t). 8 () () Sustituting ()-() in equation () we conclude that a must e zero. Inserting a and equations () ()into equations () () (8) and (7) finally we get T t + c y + t + h Y a x + xy + d t + d + x + a a) W y+ w + (a t + a ) + d x + H (y t) with a (5) (6) (7) (8) + Ht + Hyy. Special Case : For H k from (5)-(8) we otain T t + c Y y + t + h x + xy + d t + d W yw + d x. (9) (5) (5) (5) 7 ISSN: -57 Page 87

International Journal of Mathematics Trends and Technology (IJMTT) - Volume 5 Numer 6 Novemer 7 Consequently +T +Y +W x t y w x + xy + d t + d + [t + c] x t + y + t + h + yw + d x y w y xy yw x +t + + +t + x t y x y w +d t +x + d + c + h. x w x t y (5) Thus the Lie algera of infinitesimal symmetries of () is spanned y the six vector fields. x y +t + x t y xy yw +t + x y w t + x x w x 5 t 6 y (5) The commutation relations etween these vector fields are given y the following tale. The entry in row i and column j representing [i j ]: Tale 5 6 5 6 5 5 6 6 The corresponding local one parameter groups are the following : G : (u x y t) (σs ) x y exp s t exp s exp s 8 ISSN: -57 Page 88

International Journal of Mathematics Trends and Technology (IJMTT) - Volume 5 Numer 6 Novemer 7 G : (u x y t) (σs ) G G G5 G6 (u x y t) (u x y t) (u x y t) (u x y t) : : : : xy yw exp s t exp s exp s (t exp s x exp s) (w x + s y t) (w x y t + s) (w x y + s t). (σs ) (σs ) (σs5 ) (σs6 ) (55) where σsj exp(sj ) j 6. Since each local Lie group Gj is a symmetry group exponentiation shows that if w w(x y t) is a solution of () then so are w (x y t) w (x y t) w (x y t) w (x y t) w5 (x y t) w6 (x y t) x y w exp( s) t exp( s) exp( s) xy yw w exp( s) t exp( s) exp( s) w (t exp( s) x exp( s)) w (x s y t) w (x y t s) w (x y s t). (56). CONCLUSION : In this paper we found new symmeries for the equation() and the infinite group of point transformations are invariant. And also we found the corresponding local one parameter groups (55). The Lie algera of infinitesimal symmetries of () is spanned y the six vector fields eqn (5). The corresponding local one parameter groups are otained eqn (55). And also each local Lie group Gj is a symmetry group exponentiation shows that if w w(x y t) is a solution of () then so are eqn(56). Acknowledgements: This research work was supported y the University Grants Commission - Special Assistance Programme (UGC-SAP) New Delhi India through the letter N o.f.5/7/drs /6 (SAP ) dated Sept. 6. References [] G. W. Bluman and J. D. Cole The general similarity solution of the heat equation J. Math. Mech. 8 (969) 5-7. [] G. W. Bluman and S. Kumei Symmetries and Differential Equations Springer-Verlag New York 989. 9 ISSN: -57 Page 89

International Journal of Mathematics Trends and Technology (IJMTT) - Volume 5 Numer 6 Novemer 7 [] George M. Murphy Ordinary Differential Equations and their Solutions D. Van Nostrand Company Inc New Jersey 96. [] P. J. Olver Equivalance Invariants and Symmetry (Berlin Springer-Verlag 986). [5] G. W. Bluman and S. C. Anco Symmetries and Integration methods for Differential Equations (New York Springer-Verlag ). [6] Olver P. J. Applications of Lie Groups to Differential Equations Springer-Verlag New York 986. [7] Iragimov N. H. CRC Hand Book of Analysis of Differential Equations Exact Solutions and Conservation Laws CRC Press New York 99. [8] Olver P. J. Equivalence Invariants and Symmetry Camridge University Press Camridge 996. [9] Daniel Zwillinger Handook of Differential Equations Academic Press New York 99. [] Sachdev P. L. A Compendium on Nonlinear Ordinary Differential Equations John-Wiley & Sons Inc New York 997. [] Sachdev P. L. and Mayil Vaganan B. Exact free surface flows for shallow water equations Stud. Appl. Math. 9: 57-76 (995). [] Tesdall M. and Hunter K. Self-similar solutions for weak shock reflection Siam J. Appl. Math. 6: (). ISSN: -57 Page 9