Faraday s Law of Induction I

Similar documents
Electromagnetic Induction

Magnetism. and its applications

Outside the solenoid, the field lines are spread apart, and at any given distance from the axis, the field is weak.

Lecture 10 Induction and Inductance Ch. 30

Magnetism & Electromagnetism

Sources of Magnetic Field II

PHYS 1442 Section 004 Lecture #14

Magnetostatics III. P.Ravindran, PHY041: Electricity & Magnetism 1 January 2013: Magntostatics

Ch. 28: Sources of Magnetic Fields

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law

PHYS 1444 Section 003 Lecture #18

Displacement Current. Ampere s law in the original form is valid only if any electric fields present are constant in time

Introduction. First Experiment

FARADAY S AND LENZ LAW B O O K P G

Physics 1402: Lecture 18 Today s Agenda

Concept Questions with Answers. Concept Questions with Answers W11D2. Concept Questions Review

Magnetism. a) Ferromagnetic materials are strongly attracted to magnets. b) Paramagnetic materials are weakly attracted to magnets

ELECTROMAGNETISM The study of the relationship between electricity and magnetism is called

Elements of Physics II. Agenda for Today. Induced EMF. Force on moving charges Induced Current Magnetic Flux Area Vector. Physics 201: Lecture 1, Pg 1

Magnetic inductance & Solenoids. P.Ravindran, PHY041: Electricity & Magnetism 22 February 2013: Magnetic inductance, and Solenoid

Lecture 24. April 5 th, Magnetic Circuits & Inductance

General Physics II. Electromagnetic Induction and Electromagnetic Waves

Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields

Slide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger

> What happens when the poles of two magnets are brought close together? > Two like poles repel each other. Two unlike poles attract each other.

DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION

Section 11: Magnetic Fields and Induction (Faraday's Discovery)

CHAPTER 20 Magnetism

Section 11: Magnetic Fields and Induction (Faraday's Discovery)

Chapter 21 Magnetic Induction Lecture 12

PHY122 Physics for the Life Sciences II

Induction. Chapter 29. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

11/13/2018. The Hall Effect. The Hall Effect. The Hall Effect. Consider a magnetic field perpendicular to a flat, currentcarrying

Consider a magnetic field perpendicular to a flat, currentcarrying

Elements of Physics II. Agenda for Today. Induced EMF. Force on moving charges Induced Current Magnetic Flux Area Vector. Physics 201: Lecture 1, Pg 1

Induction and Inductance

Electromagnetic Induction (Chapters 31-32)

PHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law

Electromagnetic Induction. Bo Zhou Faculty of Science, Hokudai

Vocabulary. Magnet. a material that can create magnetic effects by itself. Electromagnet

Magnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned

Name: Class: Date: AP Physics Spring 2012 Q6 Practice. Multiple Choice Identify the choice that best completes the statement or answers the question.

Magnetic Induction. VIII. Magnetic Induction. 1. Dynamo Rule. A. Dynamos & Generators. B. Faraday s Law. C. Inductance. A. Dynamos & Generators

Torque on a Current Loop

Chapter 22, Magnetism. Magnets

Ferromagnetism. In free space, the flux density and magnetizing field strength are related by the expression

Electricity & Optics

Magnetic Fields

Chapter 18 Study Questions Name: Class:

Gravity Electromagnetism Weak Strong

Chapter 30. Induction and Inductance

Electrics. Electromagnetism

Magnetic Force on a Moving Charge

Types of Magnetism and Magnetic Domains

Induction and Inductance

Physics 12. Unit 8 Magnetic Field and Electromagnetism Part I

MAGNETISM. Magnetism. Magnetism is a result of electrons spinning on their own axis around the nucleus (Figure 18). Basic Electrical Theory

Physics 202, Lecture 14

Last time. Gauss' Law: Examples (Ampere's Law)

Chapter 12. Magnetism and Electromagnetism

Faraday's Law ds B B G G ΦB B ds Φ ε = d B dt

Electromagnetic Induction & Inductors

Agenda for Today. Elements of Physics II. Lenz Law. Emf opposes change in flux Faraday s Law Induced EMF in a conducting loop

Magnetism & EM Induction

Physics 212 Question Bank III 2006

Physics 212 Question Bank III 2010

III.Sources of Magnetic Fields - Ampere s Law - solenoids

Can a Magnetic Field Produce a Current?

Induction and inductance

Electricity & Optics

Magnetic Fields and Forces

Chapter 30. Induction and Inductance

General Physics (PHYS )

Electromagnetic Induction

Unit 12: Magnetism. Background Reading

Faraday s Law. Underpinning of Much Technology

Physics 180B Fall 2008 Test Points

Magnetism is associated with charges in motion (currents):

ElectroMagnetic Induction

Agenda for Today. Elements of Physics II. Forces on currents

Electromagnetism. Topics Covered in Chapter 14:

Class 11 : Magnetic materials

General Physics (PHY 2140)

Magnetic materials, & inductance & Torque. P.Ravindran, PHY041: Electricity & Magnetism 8 February 2013: Magnetic materials, inductance, and torque

Motional Electromotive Force

K2-04: FARADAY'S EXPERIMENT - EME K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS

Physics for Scientists & Engineers 2

Chapter 28 Magnetic Fields Sources

MAGNETIC CIRCUITS. Magnetic Circuits

Coaxial cable. Coaxial cable. Magnetic field inside a solenoid

Physics 132: Lecture 15 Elements of Physics II Agenda for Today

LECTURE 22 MAGNETIC TORQUE & MAGNETIC FIELDS. Instructor: Kazumi Tolich

Lecture 30: WED 04 NOV

Electromagnetism. Kevin Gaughan for. Bristol Myers Squibb

Good Luck! Exam 2 Review Phys 222 Supplemental Instruction SUNDAY SESSION AS NORMAL, INFORMAL Q/A

MODULE 4.2 MAGNETISM ELECTRIC CURRENTS AND MAGNETISIM VISUAL PHYSICS ONLINE

Physics 182. Assignment 4

Chapter 9 FARADAY'S LAW Recommended Problems:

Physics 115. Magnetic forces, Coils, Induction. General Physics II. Session 29

Elements of Physics II. Agenda for Today. Physics 201: Lecture 1, Pg 1

Transcription:

Faraday s Law of Induction I Physics 2415 Lecture 19 Michael Fowler, UVa

Today s Topics Magnetic Permeability Faraday s Law of Induction Lenz s Law Paramagnets and Diamagnets

Electromagnets Electromagnets are solenoids with iron inside to magnify the magnetic field. In the electromagnetic doorbell, pressing the button closes the circuit, the magnet pulls the bar and small hammer forward to ring the bell and also to break the circuit, which passes along the bar to a contact at the top. The cycle repeats as long as the button is pressed.

Magnetic Permeability Putting iron inside the solenoid increases the magnetic field strength because the magnetic domains in the iron line up with the field (to some extent) and so add their magnetism to that of the solenoid. The field inside a long hollow solenoid is: B 0 = 0 ni For a solenoid filled with magnetic material: B = ni This defines the permeability. For the ferrous materials used in magnets, it can be 10 3 10 4.

Soft Iron Strengthens and Directs the Field All the field here is generated by the current in the red solenoid, which is wrapped around the - shaped piece of iron. Another bar of soft iron is held a small distance below. Notice how little field there is outside the iron, except in the gap the lines must cross. Typical electromagnet configuration

Faraday s Idea Faraday theorized that since an electric current could generate a powerful magnetic field, maybe a magnetic field could generate a current? He tested this theory by winding two solenoids around the same doughnut shape of soft iron. He ran a large current in one, looked for a current in the other and didn t find it.

Faraday s Discovery He ran a large current in one, looked for a current in the other and didn t find it. But he did find something! He found a transient current appeared in the second coil at the moment the current in the first coil was turned on, then a transient opposite current when it was turned off.

Induced EMF Faraday discovered that what he called an induced current appeared in a coil whenever the external magnetic field through the coil was changing. We say there is an induced emf driving this current. One of Faraday s experiments as portrayed in an 1892 physics textbook for advanced students. On the right is a battery, on the left a fancy galvanometer.

Induced emf: the Facts For a coil of N loops close together, the induced emf is N times that for one loop (meaning the current will be the same if there s negligible external resistance in the circuit). For a uniform magnetic field, the emf is proportional to the area of the loop. It s proportional to the component of magnetic field perpendicular to the area. It s proportional to the rate of change of field.

Magnetic Flux through a Loop Recall Gauss theorem related flux of electric field through an area enclosing a volume to the charge inside. B da Faraday introduced the concept of magnetic flux through a loop: the loop is roofed with a surface having the loop as boundary, the magnetic flux through the loop is B B da The integral is over the surface, adding contributions from tiny squares.

Faraday s Law of Induction Faraday s law of induction states that when the magnetic flux through a loop is changing, there is an induced emf in the loop given by: E d dt You get the sign of the emf from Lenz s law B I N S Magnet moving up

Lenz s Law The direction of the induced emf generated by a changing magnetic flux is always such as to oppose the motion. Example: as the N pole moves up towards the loop, the current induced generates an N pole underneath to repel and slow down the approaching magnet. I N S Magnet moving up

Another Way to State Lenz s Law The direction of the induced emf generated by a changing magnetic flux is always such as to oppose the change in flux through the loop. Example: as the solenoid switches on, creating upward magnetic flux through the loop, the current generated in the loop will add downward flux. I Solenoid just switching on

Pulling a Loop out of a Field A square loop of side d is moving at speed v out of a region of uniform field B. The induced emf is E d / dt Bvd B What about direction? The downward flux through the loop is decreasing, the loop will try to oppose this by making more downward flux (Lenz s law). B perpendicular down d speed v In time dt the loop will move distance vdt, so the area of lost magnetic flux will be vdtxd.

Pulling a Loop out of a Field II There s another way to see this induced emf! A charge q in the left hand side wire is moving at v along with the wire through the field B, so will feel a force qv B upwards. This is equivalent to an electric field, which acting the length of the side gives a potential difference vbd: this is the induced emf. B perpendicular down d speed v

Current Loops and Atomic Currents An approaching magnet generates an opposing current in a wire loop, but the current encounters resistance and soon dies away. An approaching magnet also causes electric current in atomic orbitals to oppose it this effect is small, but does not die away there is permanent repulsion. It s called diamagnetism, and is present in all materials.

Paramagnetism and Diamagnetism If the atoms of a substance are individually magnetic, they will tend to line up with an outside magnetic field this is paramagnetism, and it will dominate over the weaker diamagnetism. Examples include Al, Mg, Ca, O 2. For a few materials, nonmagnetic quantum forces align neighboring magnetic atoms, so the little magnets all work together: these are the ferromagnets, like iron.

Reminder: Magnetic Permeability The field inside a long hollow solenoid is: B 0 = 0 ni For a solenoid with magnetic material inside B = ni This defines the permeability. For ferrous materials used in magnets, it can be 10 3 10 4.

Paramagnetism and Diamagnetism The magnetic susceptibility m is defined in terms of the permeability by: m If m is positive, the material is termed 5 paramagnetic. Typically, 10 If m is negative, the material is diamagnetic, 5 examples include Cu, Au, Pb. 10. 0 0 m m So the vacuum has m = 0.

Clicker Question A small magnet hangs below a large magnet as shown, magnetic attraction balancing gravity. Is this equilibrium A. Stable? B. Unstable? C. Not enough information to know N S

Clicker Answer A small magnet hangs below a large magnet as shown, magnetic attraction balancing gravity. Is this equilibrium A. Stable B. Unstable Because a small motion downwards will weaken the upward force, a small motion upwards will strengthen the upward force. N S

Stabilizing the Equilibrium We place disks of bismuth above and below the small magnet. Bismuth is strongly diamagnetic: as the small magnet approaches, it will readjust bismuth atomic orbitals to generate significant repulsion. N S

A Strong Diamagnet: Bismuth Bismuth has m = -1.66x10-4, ten times stronger than most other materials. A magnet attracts iron, it aligns the domains so that poles form in the iron. For a diamagnetic material, the opposite happens poles form to repel the magnet! This repulsion can be used to hold a small magnet in place. Bi

Perfect Diamagnetism: Superconductivity If a superconductor is moved into a magnetic field, the magnetic force on the moving charges generates currents at the surface of the superconductor these currents produce a magnetic field exactly canceling the original field inside the superconductor. So m = -1. The superconductor repels the magnet. Note: this is quite different from bismuth, etc., where the atoms are diamagnetic, no macroscopic currents arise. Superconducting levitating train model Another one.

More Diamagnetic Levitation Diamagnetism is usually weak, but a strong enough field (in this case 16 Tesla) can levitate ordinary material, for example a frog, making an appearance here inside a solenoid (in Holland).