Stability solutions of a dumbbell-like system in an elliptical orbit

Similar documents
Searching for less perturbed elliptical orbits around Europa

Space Tether Systems Uniform Rotations of a Dumbbell-like System

EVALUATION OF A SPACECRAFT TRAJECTORY DEVIATION DUE TO THE LUNAR ALBEDO

Ionosphere influence on success rate of GPS ambiguity resolution in a satellite formation flying

Copyright 2014 American Institute of Aeronautics and Astronautics

Estimating the trajectory of a space vehicle passing by the Moon using Kalman Filter

Research Article Dynamics of Artificial Satellites around Europa

Fermionic matter under the effects of high magnetic fields and its consequences in white dwarfs

Study of the decay time of a CubeSat type satellite considering perturbations due to the Earth's oblateness and atmospheric drag

APPLICATION OF THE HÉNON S ORBIT TRANSFER PROBLEM TO MANEUVER A SATELLITE IN A CONSTELLATION

THIRD-BODY PERTURBATION USING A SINGLE AVERAGED MODEL

A Study of the Close Approach Between a Planet and a Cloud of Particles

Analysis of frozen orbits for solar sails

CHANGING INCLINATION OF EARTH SATELLITES USING THE GRAVITY OF THE MOON

SUN INFLUENCE ON TWO-IMPULSIVE EARTH-TO-MOON TRANSFERS. Sandro da Silva Fernandes. Cleverson Maranhão Porto Marinho

DYNAMIC ANALYSIS OF SPACE TETHER MISSIONS

Semi analytical study of lunar transferences using impulsive maneuvers and gravitational capture

Gravitational radiation from a particle in bound orbit around a black hole; relativistic correction

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as

Lightlike solitons with spin

Application of Hamilton Principle in the control of Tethered Satellite System Pendular Motion

Low-Thrust Trajectories to the Moon

Natural frequency analysis of fluid-conveying pipes in the ADINA system

Swing-By Maneuvers for a Cloud of Particles with Planets of the Solar System

OPTIMAL MANEUVERS IN THREE-DIMENSIONAL SWING-BY TRAJECTORIES

Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class

Dynamical properties of the Solar System. Second Kepler s Law. Dynamics of planetary orbits. ν: true anomaly

AUTONOMOUS AND ROBUST RENDEZVOUS GUIDANCE ON ELLIPTICAL ORBIT SUBJECT TO J 2 PERTURBATION.

Solution Set Two. 1 Problem #1: Projectile Motion Cartesian Coordinates Polar Coordinates... 3

Optimization of Orbital Transfer of Electrodynamic Tether Satellite by Nonlinear Programming

Research Article Variation of the Equator due to a Highly Inclined and Eccentric Disturber

Lecture Module 5: Introduction to Attitude Stabilization and Control

ORBITAL CHARACTERISTICS DUE TO THE THREE DIMENSIONAL SWING-BY IN THE SUN-JUPITER SYSTEM

Peculiarities of the thermal regime of the Russian plain depending on tidal oscillation Earth rotation speed

Orbital Motion in Schwarzschild Geometry

SWING-BY MANEUVERS COMBINED WITH AN IMPULSE

Linear and Nonlinear Oscillators (Lecture 2)

3D Pendulum Experimental Setup for Earth-based Testing of the Attitude Dynamics of an Orbiting Spacecraft

On Sun-Synchronous Orbits and Associated Constellations

Dynamics of multibody chains in circular orbit: non-integrability of equations of motion

Gravitational collapse and the vacuum energy

Coherence of Noisy Oscillators with Delayed Feedback Inducing Multistability

Singular solutions for vibration control problems

7 Pendulum. Part II: More complicated situations

Aerodynamic Lift and Drag Effects on the Orbital Lifetime Low Earth Orbit (LEO) Satellites

NUMERICAL SEARCH OF BOUNDED RELATIVE SATELLITE MOTION

HAMILTONIAN STABILITY OF SPIN ORBIT RESONANCES IN CELESTIAL MECHANICS. 1. Introduction

SWINGING UP A PENDULUM BY ENERGY CONTROL

Constrained motion and generalized coordinates

Study of Required Thrust Profile Determination of a Three Stages Small Launch Vehicle

ACCURACY ASSESSMENT OF GEOSTATIONARY-EARTH-ORBIT WITH SIMPLIFIED PERTURBATIONS MODELS

COMPLETE ALL ROUGH WORKINGS IN THE ANSWER BOOK AND CROSS THROUGH ANY WORK WHICH IS NOT TO BE ASSESSED.

NONLINEAR ANALYTICAL EQUATIONS OF RELATIVE MOTION ON J 2 -PERTURBED ECCENTRIC ORBITS

Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations

THE ORBITAL MOTION IN LEO REGION: CBERS SATELLITES AND SPACE DEBRIS. Keywords: CBERS Satellites, Space Debris, Orbital Motion, Resonance.

Space Travel on a Shoestring: CubeSat Beyond LEO

High-velocity collision of particles around a rapidly rotating black hole

NUMERICAL INTEGRATION OF A SATELLITE ORBIT WITH KS TRANSFORMATION

Analytical Mechanics. of Space Systems. tfa AA. Hanspeter Schaub. College Station, Texas. University of Colorado Boulder, Colorado.

arxiv:physics/ v2 [physics.gen-ph] 2 Dec 2003

Tectonics of the terrestrial litosphere in spherical harmonics

IMPROVED DESIGN OF ON-ORBIT SEPARATION SCHEMES FOR FORMATION INITIALIZATION BASED ON J 2 PERTURBATION

Geometric Mechanics and Global Nonlinear Control for Multi-Body Dynamics

Mutual information-energy inequality for thermal states of a bipartite quantum system

Journal of Physics: Conference Series. Related content. Recent citations PAPER OPEN ACCESS

An analytical method for the inverse Cauchy problem of Lame equation in a rectangle

EVALUATING ORBITS WITH POTENTIAL TO USE SOLAR SAIL FOR STATION-KEEPING MANEUVERS

Lecture 41: Highlights

A SEMI-ANALYTICAL ORBIT PROPAGATOR PROGRAM FOR HIGHLY ELLIPTICAL ORBITS

ON THE THRUST CAPABILITY OF ELECTRODYNAMIC TETHERS WORKING IN GENERATOR MODE

Free-surface potential flow of an ideal fluid due to a singular sink

MINIMUM FUEL MULTI-IMPULSIVE ORBITAL MANEUVERS USING GENETIC ALGORITHMS

Journal of Applied Mathematics and Computation (JAMC), 2018, 2(7),

Hydrodynamic instability measurements in DTlayered ICF capsules using the layered-hgr platform

Non-Linear Response of Test Mass to External Forces and Arbitrary Motion of Suspension Point

HOW TO FIND SPATIAL PERIODIC ORBITS AROUND THE MOON IN THE TBP *

How beaming of gravitational waves compares to the beaming of electromagnetic waves: impacts to gravitational wave detection

PDFlib PLOP: PDF Linearization, Optimization, Protection. Page inserted by evaluation version

Passive Vertical Stabilization of Two Tethered Nanosatellites with Engineered Damping

Self-weight loading of horizontal hydraulic cylinders with axial load

Mean-Motion Resonance and Formation of Kirkwood Gaps

Third Body Perturbation

On the deformed Einstein equations and quantum black holes

A Rocket Experiment for Measurement Science Education

arxiv: v1 [math.ds] 18 Nov 2008

A SEARCH FOR INVARIANT RELATIVE SATELLITE MOTION

Lagrange s Equations of Motion and the Generalized Inertia

Modeling, Dynamics, and Control of Tethered Satellite Systems

O 3. : Er nanoparticles prospective system for energy convertors

Equations of linear stellar oscillations

Stellar Dynamics and Structure of Galaxies

COVARIANCE DETERMINATION, PROPAGATION AND INTERPOLATION TECHNIQUES FOR SPACE SURVEILLANCE. European Space Surveillance Conference 7-9 June 2011

Theorem of the Keplerian kinematics

Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody

Resonance and chaos ASTRONOMY AND ASTROPHYSICS. II. Exterior resonances and asymmetric libration

Long-Term Evolution of High Earth Orbits: Effects of Direct Solar Radiation Pressure and Comparison of Trajectory Propagators

Nonlinear Control of Electrodynamic Tether in Equatorial or Somewhat Inclined Orbits

Research Article Mapping Orbits regarding Perturbations due to the Gravitational Field of a Cube

Solar particle events contribution in the space radiation exposure on electronic equipment

Gravity Assisted Maneuvers for Asteroids using Solar Electric Propulsion

Transcription:

Journal of Physics: Conference Series PAPER OPEN ACCESS Stability solutions of a dumbbell-like system in an elliptical orbit To cite this article: Denilson Paulo Souza dos Santos et al 2015 J. Phys.: Conf. Ser. 641 012004 View the article online for updates and enhancements. Related content - Designing Hybrid Nanoparticles: Design of ternary magneto-plasmonic nanoparticles M Benelmekki - Shape-controlled assembly of luminescent dumbbell-like CdTe cystine nanocomposites Haifeng Bao, Xiaoqiang Cui, Chang Ming Li et al. - Anisotropic Magnetoresistivity in Semimetal TaSb2* Xia-Yin Liu, Jia-Lu Wang, Wei You et al. This content was downloaded from IP address 148.251.232.83 on 15/06/2018 at 06:01

Stability solutions of a dumbbell-like system in an elliptical orbit Denilson Paulo Souza dos Santos 1, Simão António da Rocha e Brito de Aguiã Morant 2, Anna D. Guerman 3, Alexander A. Burov 4 1 2 3 Centre for Mechanical and Aerospace Science and Technologies (C-MAST) UBI Portugal. 1 Division of Space Mechanics and Control INPE (National Institute for Space Research) São José dos Campos SP, Brasil. 4 Dorodnotsyn Computing Center of the Russian Academy of Sciencies, Russia. E-mail: denilson.paulo@gmail.com Abstract. A dumbbell-like system is analyzed, considering two mass points connected with a massless and rigid tether with length variations, and the center of mass described by Keplerian orbits. This kind of system, in a certain type of configuration, is a simple conceptualization of the space elevator. The system motion is obtained with the Lagrangian Formulation in a Central Gravitational Field, and the perturbations of motion are neglected. Laws of control are considered for the angle of systems rotation around the center of mass. Those include uniform rotations or no rotation at all. Stability conditions were obtained for the first case, analyzing its neighborhood and using Floquet Theory. The results shown there are regions of eccentricities were stability is found. Lastly, a dynamic numerical simulator was created, where the implementation of the results could be tested. The dynamic behavior of the system showed regular and chaotic properties. 1. Introduction Researchers have been studying, since 1960th, the possibilities to control attitude motion of space systems with variable mass distributions. Perturbations of motion can occur for several such atmospheric drag, solar pressure, system deployment, n-body perturbations else which will not be discussed here. It will be analyzed stability conditions inside solutions in Keplerian orbits for a model for two-body tether systems in a Central Gravitational Field (Newtonian). The motions equation will be written by Lagrangian formulation, explaining the Kinetic and Potential Energy, considering the possibility to control the tether length or the angle of rotation around the center of mass. Several authors studied attitude dynamics of TSS of different configurations. Two-body and three-body systems have been mostly studied, but even tethered satellite constellations were analyzed. In [1] the dynamics of three-body TSS were examined, with the cm (center of mass) following a circular orbit. A. Burov, I. Kosenko and A. Guerman, [2] [5], studied the dynamics of a moon-anchored tether with a material point at its end, for variable tether length. The bidimensional problem can be addressed as a simple model for the lunar elevator. In this problem, some particular solutions of the motion equation are derived, choosing a specific control law for the tether length and finding radial and oblique configurations for the system geometry, while defining regions of stability and instability for each case. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by Ltd 1

XVII Colóquio Brasileiro de Dinâmica Orbital CBDO 2. Mathematical model of a two point tethered satellite system (TSS) The main objective of this paper is to analyze equilibrium conditions for a two masses point TSS in an elliptical orbit, where the local vertical of the system must be align with an inert axis fixed on Earth. The model is a dumbbell-like system, with the two body connected with a rigid and massless tether. The systems center of mass is described by a Keplerian orbit fixed on an inert axis in primary bodys center [6]. Figure 1. Model of the satellite system connected with tethers. Figure 2. Dumbbell-like system composed by a massless tether and two mass points. The simplifying scheme can be seen in Figure 2. Although the simplification is rough, since the moment of inertia of a 3D system may not be aligned with the local vertical, it allows a fundamental mission conceptualization. In this model, the position of the two masses point will be described in order to the position of the center of mass (C), and the systems motion in an elliptic orbit. The angles ν and ϕ represent the true anomaly and the angle between the tether and ρ, respectively. ρ is the distance from E to C, l1 and l2 are the tether lengths from the mass points m1 and m2 to C, respectively. 2.1. Positions of the system This allows the model to be described by planar Keplerian motion: ρ= p 1 + e cos(ν) (1) where p is the focal parameter, e the eccentricity an ν the true anomaly. The system coordinates are: x0 = ρ cos(ν) y 0 = ρ sin(ν) x1 = x0 + l1 cos(ν + ϕ) y1 = y0 + l1 sin(ν + ϕ) x2 = x0 l2 cos(ν + ϕ) y2 = y0 l2 sin(ν + ϕ) 2 (2)

where, x 0 and y 0 being the coordinates of the position of the center of mass, ( r 0 ); x i and y i being the coordinates of the position of the point mass i, ( r i ). r 0 = (x 0, y 0 ) r 1 = (x 1, y 1 ) r 2 = (x 2, y 2 ) 2.2. Lagrange Equations of Motion Lagrange equations of motion are known as differential equations of system motion in generalized coordinates. In fact, these Lagrange equations provide a simple way to obtain the system positions in function of time. It was decided to choose the Lagrangian formulation because it allows us to define the global positions of the system through Potential and Kinetic Energy and in function of generalized coordinates, unlike the needs to define all the forces involved, as in Newtonian formulation. The general formula of the Lagrange Equation is: d dt (3) ( ) L dl = Q i (4) q i dq i where L = T V, q i is the generalized coordinate and Q i is the generalized force actuating in the system. For the following analysis, the generalized coordinates are ϕ and l and the system is only under the gravity-gradient. Defining ϕ or l allows to control the system, as can be seen in [2]. It has been chosen to define ϕ and consecutively obtain the l behavior. ( ) l 3µ 0 sin(2ϕ)(1 + ecos(ν)) 3 + 2p 3 ( ν + ϕ) + 4p 3 l ( ν + ϕ) = 0 (5) All these variables are time-related. For a more advantageous formulation, consider a timeless relation, based only on general positions and given by the new independent variable true anomaly ν [6]. Substituting all these variables it can be rearranged in: ( l (1 + e cos(ν))ϕ ) (ϕ + 2 l (1 + e cos(ν)) e sin(ν) + 1 ) + 3 cos(ϕ) sin(ϕ) = 0 (6) a well-known equation ([2] [6]). 3. ϕ Control laws At this stage, the Lagrange Equations of Motion were derived and control laws can now be considered for ϕ or l. Opting for one is sufficient and convenient to know the system motion. The chose to define over one or other parameter is arbitrary and, therefore, were chosen ϕ control laws. The tether length (l) is small compared to the orbit parameter (p). Two control laws for the behavior of ϕ are presented: fixed angle and uniform rotations. Each case will be analyzed independently. 3.1. Fixed Angle The fixed angle (ϕ = ϕ 0 ) for non-rotational motion about the center of mass, allows the satellite to point its face (or antenna) through Earth, not rotating locally. This has practical and real-life meaning, as GPS satellites, for instance, need to be pointing every time through Earth. This control law (Eq. 6)can assume the following expression: l (ν) l(ν) = e sin(ν) 1 + e cos(ν) 3 sin (2ϕ 0) 4(1 + e cos(ν)) Chosen different ϕ 0, the logarithmic behaviours of the tether are: (Figures 3-10). (7) 3

Figure 3. Tether logarithmic ratio for different eccentricities for ϕ 0 = 0. Figure 4. Tether logarithmic ratio for different eccentricities for ϕ 0 = 1. Figure 5. Tether logarithmic ratio approximation comparison. Figure 6. ϕ 0 = 3. There are uniform solutions to values ϕ 0 = kπ 2 (k is integer). For an analytical solution, an approximation of 4th order using Taylor Series was also done allowing the integration of Eq. 7 showed in Figure 5, analyzed for various cases with different eccentricities. 3.2. Uniform Rotation For uniform rotations, the control law can assume the following equation (ϕ = ων + ϕ 0 ). This relation means that the actual angle of rotation depends on the initial condition ϕ 0, the variation of ν and a constant ω. Equation 6 is rewritten l (ν) l(ν) = e sin(ν) 1 + e cos(ν) 3 sin (2 (ων + ϕ 0)) 4(ω + 1)(e cos(ν) + 1) The Eq. 8 allows to know the tether length for each ν. A numerical integration was done, where ω and ϕ 0 were substituted previously. Also, for ω = 1 nothing can be analyzed since the Eq. 8 has singularities around that point. The monodromy matrix is used to analyze stability conditions around small oscillations (δϕ) of ϕ. Replacing (ϕ = ων + δϕ) in Eq. (6) allows one obtain the nonlinear equation of perturbed motion, and linearized equation constricts this analysis to small variations of ϕ. (1 + e cos(ν))δϕ + 3 ) (2 cos(2ων)δϕ sin(2ων)δϕ = 0 (9) 2 ω + 1 The Eq. 9 is the equation for the variations. It is now possible to analyze the stability using the Floquet theory, the linearized equation constricts this analysis to small variations of ϕ. Applying the Floquet theory, find the monodromy matrix for this system. (8) 4

Figure 7. The control law for the tether length for ϕ 0 = 0 and ω = 1. Figure 8. The control law for the tether length for ϕ 0 = 0 and ω = 2. Figure 9. The control law for the tether Figure 10. The control law for the length for ϕ 0 = 0 and ω = 3 4. tether length for ϕ 0 = 0 and ω = 5 3. Figure 11. The control law for the tether length for ϕ 0 = 0 and ω = 3 4. 5

Figure 12. The control law for the tether length for ϕ 0 = 0 and ω = 5 4. Figure 13. The control law for the tether length for ϕ 0 = π 2 and ω = 1. 4. Conclusion Laws of control are considered for the angle of systems rotation around the center of mass. The necessary conditions of stability for uniform rotations were analyzed using the Floquet Theory analyzing the parameters ω and the eccentricity of the orbit, generating the control laws for the tether length. Stability conditions give the values of e and ω where the system is stable. As reported before, this means that small perturbations wont change the behavior of the system. Stability is found for several values of eccentricity, as shown in stability curves for the parameter ω. The uniform rotations of ϕ proved to have smooth tether variations, for every simulation done. For the fixed angle analysis, there was only one value where ϕ behave properly, which is ϕ 0 = 0. At last, the simulations should always be considered in an engineering study. They allow to fully understand the dynamics of the system, and serve as a guide to future work. The 6

results obtained in the simulator were always expected. Acknowledgments This work was accomplished with the support of CAPES Brazil, under Contract BEX 10689-13-3, INPE National Institute for Space Research Brazil and Centre for Mechanical and Aerospace Science and Technologies (C-MAST) UBI Portugal. References [1] Misra, A. K., Z. Amier, and V. J. Modi. Attitude dynamics of three-body tethered systems. Acta Astronautica (1988):1059-1068. [2] A.A. Burov and H. Troger, The relative equilibria of an orbital pendulum suspended on a tether, Journal of Applied Mathematics and Mechanics, Vol. 64, Issue 5, 2000b, pp. 723-728. [3] A. Burov, O. I. Kononov, and A. D. Guerman, Relative equilibria of a Moon - tethered spacecraft,advances in the Astronautical Sciences, v. 136, 2011a, pp. 2553-2562. [4] A. Burov and I.I. Kosenko, Plane oscillations of a body with variable mass distribution in an elliptic orbit, Proc. of ENOC 2011, July 24-29, 2011b, Rome, Italy. [5] A.A. Burov, I.I. Kosenko, and A. D. Guerman, Dynamics of a moon-anchored tether with variable length. Advances in the Astronautical Sciences, 2012, Vol. 142, pp.3495-3507. [6] Simão Antõnio da Rocha e Brito de Aguiã Morant. Space Tether Systems Stability Solutions of a Dumbbelllike System, Dissertation Master Engineering Aeronautical - UBI - Portugal 2013. [7] Belestsky, Vladimir V.; Levin, Evgenii M., 1993. Dynamics of Space Tethers Systems. San Diego - California: Advances in the Astronautical Sciences, Vol. 83 - American Astronautical Society ISSN 0-87703-370-6. [8] M.P. Cartmell, D.J. McKenzie, A review of space tether research, Progress in Aerospace Sciences, Volume 44, Issue 1, January 2008, Pages 1-21, ISSN 0376-0421, http://dx.doi.org/10.1016/j.paerosci.2007.08.002. 7