Crystal Bases for Quantum Generalized Kac-Moody Algebras

Similar documents
CRYSTAL GRAPHS FOR BASIC REPRESENTATIONS OF QUANTUM AFFINE ALGEBRAS

Borcherds proof of the moonshine conjecture

Monstrous moonshine and monstrous Lie superalgebras.

Moonshine: Lecture 3. Moonshine: Lecture 3. Ken Ono (Emory University)

Conformal field theory, vertex operator algebras and operator algebras

The dark side of the moon - new connections in geometry, number theory and physics -

Binary codes related to the moonshine vertex operator algebra

(1 e r ) p24(1 r 2 /2) = det(w)τ(n)e w(nρ) e ρ

Representations of semisimple Lie algebras

Quantum supergroups and canonical bases

arxiv:math/ v1 [math.nt] 6 Nov 2004

Modular Moonshine II. 24 July 1994, corrected 19 Sept 1995

e j = Ad(f i ) 1 2a ij/a ii

A CHARACTERIZATION OF THE MOONSHINE VERTEX OPERATOR ALGEBRA BY MEANS OF VIRASORO FRAMES. 1. Introduction

Vertex Operator Algebra Structure of Standard Affine Lie Algebra Modules

ON THE COMBINATORICS OF CRYSTAL GRAPHS, II. THE CRYSTAL COMMUTOR. 1. Introduction

Yasu Kawahigashi ( ) the University of Tokyo/Kavli IPMU (WPI) Kyoto, July 2013

Generalised Moonshine in the elliptic genus of K3

Periods and generating functions in Algebraic Geometry

ON QUANTUM GROUPS AND CRYSTAL BASES. A Directed Research by ETHAN A. SMITH

arxiv:q-alg/ v1 24 Aug 1995

On vertex operator algebras as sl 2 -modules

The Leech Lattice. Balázs Elek. November 8, Cornell University, Department of Mathematics

arxiv: v2 [math.ag] 14 Mar 2019

(τ) = q (1 q n ) 24. E 4 (τ) = q q q 3 + = (1 q) 240 (1 q 2 ) (1 q 3 ) (1.1)

Local conformal nets arising from framed vertex operator algebras

On the representation theory of affine vertex algebras and W-algebras

1. Introduction and statement of results This paper concerns the deep properties of the modular forms and mock modular forms.

Umbral Moonshine and String Theory

arxiv: v1 [math.qa] 17 Oct 2016

SOME RESULTS IN THE REPRESENTATION THEORY OF STRONGLY GRADED VERTEX ALGEBRAS

INTEGRAL FORMS FOR CERTAIN CLASSES OF VERTEX OPERATOR ALGEBRAS AND THEIR MODULES

Coloured Kac-Moody algebras, Part I

Constructing Majorana representations

LECTURE 20: KAC-MOODY ALGEBRA ACTIONS ON CATEGORIES, II

Constructing Majorana representations

Specialized Macdonald polynomials, quantum K-theory, and Kirillov-Reshetikhin crystals

MONOMIAL CRYSTALS AND PARTITION CRYSTALS

Conformal embeddings and realizations of certain simple W -algebras

Lie Algebras of Finite and Affine Type

LECTURE 3: TENSORING WITH FINITE DIMENSIONAL MODULES IN CATEGORY O

Moonshine. John FR Duncan 1, Michael J Griffin 2 and Ken Ono 2*

On root categories of finite-dimensional algebras

Mathieu Moonshine. Matthias Gaberdiel ETH Zürich. String-Math 2012 Bonn, 19 July 2012

From Schur-Weyl duality to quantum symmetric pairs

Critical level representations of affine Kac Moody algebras

Symmetry, Integrability and Geometry: Methods and Applications

Monstrous Moonshine. A lecture at Albert Ludwigs Universität Freiburg. A Lecture by Katrin Wendland. Winter Term 2017/2018

Thus we get. ρj. Nρj i = δ D(i),j.

A NOTE ON TENSOR CATEGORIES OF LIE TYPE E 9

Mock Modular Mathieu Moonshine

arxiv:math/ v1 [math.qa] 4 Dec 2003

Characters of the Negative Level Highest-Weight Modules for Affine Lie Algebras

Riemann surfaces with extra automorphisms and endomorphism rings of their Jacobians

Fock space representations of U q (ŝl n)

Proof of the Umbral Moonshine Conjecture

7+(),(/'6,167,787( ABSTRACTS 1.2 )255(6($5&+,10$7+(0$7,&$/6&,(1&(6

Vertex operator algebras, the Verlinde conjecture and modular tensor categories

arxiv: v1 [math.rt] 11 Sep 2009

(Kac Moody) Chevalley groups and Lie algebras with built in structure constants Lecture 1. Lisa Carbone Rutgers University

Part 2. Quantum affine algebras

Kac Moody superalgebras and integrability

arxiv:math/ v2 [math.qa] 12 Jun 2004

Kac-Moody Algebras. Ana Ros Camacho June 28, 2010

Supported by a Royal Society professorship and by NSF grant DMS

EXERCISES IN MODULAR FORMS I (MATH 726) (2) Prove that a lattice L is integral if and only if its Gram matrix has integer coefficients.

Crystal structure on rigged configurations and the filling map

CONFORMAL FIELD THEORIES

arxiv:q-alg/ v1 24 Apr 1995

arxiv: v1 [math.rt] 16 Jan 2018

Generators of affine W-algebras

FINITE GROUPS OF LIE TYPE AND THEIR

Weyl orbits of π-systems in Kac-Moody algebras

Holomorphic symplectic fermions

arxiv: v2 [math.co] 12 Mar 2015

Root Systems Lie Algebras. Their Representations.

Tensor categories and the mathematics of rational and logarithmic conformal field theory

Umbral Moonshine and the Niemeier Lattices

Dependence of logarithms on commutative algebraic groups

arxiv:math/ v2 [math.qa] 11 Feb 2003

6. Dynkin quivers, Euclidean quivers, wild quivers.

Algebraic combinatorics, representation theory, and Sage

MAT 5330 Algebraic Geometry: Quiver Varieties

A REMARK ON SIMPLICITY OF VERTEX ALGEBRAS AND LIE CONFORMAL ALGEBRAS

Hopf Algebras and Related Topics Conference

Counting problems in Number Theory and Physics

Crystals For Dummies

CATEGORICAL sl 2 ACTIONS

IRREDUCIBLE REPRESENTATIONS FOR THE AFFINE-VIRASORO LIE ALGEBRA OF TYPE B

A Geometric Construction of Crystal Graphs Using Quiver Varieties: Extension to the Non-Simply Laced Case

Three-dimensional imprimitive representations of PSL 2 (Z) and their associated vector-valued modular forms

THREE COMBINATORIAL MODELS FOR ŝl n CRYSTALS, WITH APPLICATIONS TO CYLINDRIC PLANE PARTITIONS

In insight into QAC2 (1) : Dynkin diagrams and properties of roots

Frames of the Leech lattice and their applications

Simple vertex operator algebras are nondegenerate

How many units can a commutative ring have?

24 Artin reciprocity in the unramified case

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III

An Introduction to Supersingular Elliptic Curves and Supersingular Primes

TESTING MODULES OF GROUPS OF EVEN ORDER FOR SIMPLICITY

Transcription:

Crystal Bases for Quantum Generalized Kac-Moody Algebras Seok-Jin Kang Department of Mathematical Sciences Seoul National University 20 June 2006

Monstrous Moonshine 1.Monstrous Moonshine M: Monster simple group = largest sporadic simple group

Monstrous Moonshine 1.Monstrous Moonshine M: Monster simple group = largest sporadic simple group M = 2 46 3 20 5 9 7 6 11 2 13 3 17 19 23 29 31 41 47 59 71 8.08 10 53

Monstrous Moonshine 1.Monstrous Moonshine M: Monster simple group = largest sporadic simple group M = 2 46 3 20 5 9 7 6 11 2 13 3 17 19 23 29 31 41 47 59 71 8.08 10 53 = 10 52 M 10 56 =

Monstrous Moonshine Moonshine Conjecture (Conway-Norton 1979)

Monstrous Moonshine Moonshine Conjecture (Conway-Norton 1979) 1 a Z-graded representation V = n= 1 V n of M s.t. dimv n = c(n), where j(τ) 744 = n= 1 c(n)qn, q = e 2πiτ, Imτ > 0

Monstrous Moonshine Moonshine Conjecture (Conway-Norton 1979) 1 a Z-graded representation V = n= 1 V n of M s.t. dimv n = c(n), where j(τ) 744 = n= 1 c(n)qn, q = e 2πiτ, Imτ > 0 2 T g (τ) = n= 1 tr(g V n)q n : Mckay-Thompson series = T g (τ) is the Hauptmodul for some discrete genus 0 subgroup Γ g of PSL 2 (R) That is, i) Ĥ/Γ g S 2 ii) Every modular function of weight 0 w.r.t Γ g is a rational function in T g (τ)

Monstrous Moonshine Proof of Moonshine Conjecture

Monstrous Moonshine Proof of Moonshine Conjecture 1 Borcherds, Frenkel-Lepowsky-Meurman (1985) : introduced vertex(operator) algebras

Monstrous Moonshine Proof of Moonshine Conjecture 1 Borcherds, Frenkel-Lepowsky-Meurman (1985) : introduced vertex(operator) algebras 2 Frenkel-Lepowsky-Meurman(1988) : constructed the Moonshine module V

Monstrous Moonshine Proof of Moonshine Conjecture 1 Borcherds, Frenkel-Lepowsky-Meurman (1985) : introduced vertex(operator) algebras 2 Frenkel-Lepowsky-Meurman(1988) : constructed the Moonshine module V 3 Borcherds(1992) : completed the proof key ingredient : Monster Lie algebra = an example of generalized Kac-Moody algebra

Quantum GKM Algebra 2.Quantum GKM Algebra Definition Borcherds-Cartan matrix Let I be a finite or countably infinite index set. A real matrix A = (a ij ) i,j I is called a Borcherds-Cartan matrix if it satisfies the following conditions: i) a ii = 2 or a ii 0 for all i I, ii) a ij 0 if i j, iii) a ij Z if a ii = 2, iv) a ij = 0 if and only if a ji = 0. Assume that A is even, integral and symmetrizable. That is, i) a ii is even, i I ii) a ij Z, i, j I iii) diagonal matrix D = diag(s i Z >0 i I ) s.t. DA :symmetric

Quantum GKM Algebra Borcherds-Cartan datum (A, P, P, Π, Π ) consists of i) A = (a ij ) i,j I, a Borcherds-Cartan matrix, ii) a free abelian group P, the weight lattice, iii) P = Hom(P, Z), the dual weight lattice, iv) Π = {α i P i I }, the set of simple roots, v) Π = {h i i I } P, the set of simple coroots, satisfying the properties: a) h i, α j = a ij for all i, j I, b) i I, there exists Λ i P s.t. h j, Λ i = δ ij j I, c) Π is linearly independent.

Quantum GKM Algebra Definition Quantum GKM Algebra Quantum GKM Algebra U q (g) associated with (A, P, P, Π, Π ) = the associative algebra over Q(g) with 1 generated by the elements e i, f i (i I ), q h (h P ) with i) q 0 = 1, q h q h = q h+h for h, h P ii) q h e i q h = q α i (h) e i, q h f i q h = q α i (h) f i, for h P i I K i K 1 i iii) e i f j f j e i = δ ij q i q 1 i for i, j I, where K i = q s i h i

Quantum GKM Algebra Definition Quantum GKM Algebra iv) 1 a ij k=0 ( 1)k v) 1 a ij k=0 ( 1)k [ [ 1 a ij k 1 a ij k vi) e i e j e j e i = f i f j f j f i = 0 if a ij = 0 ] ] i i e 1 a ij k i e j e k i = 0 if i I re and i j f 1 a ij k i f j fi k = 0 if i I re and i j

Crystal Bases 3.Crystal Bases Definition Category O int the abelian category O int of U g (g)-module M satisfying the following properties: i) M = λ P M λ, where M λ := {u } M ; q h u = q λ(h) u for any h P ii) dim U + q (g)u < for any u M iii) wt(m) := {λ P ; M λ 0 } { λ P ; h i, λ 0, i I im } iv) f i M λ = 0, i I im and λ P s.t. h i, λ = 0 v) e i M λ = 0, i I im and λ P s.t. h i, λ a ii

Crystal Bases Proposition (Jeong-Kashiwara-K 2005)

Crystal Bases Proposition (Jeong-Kashiwara-K 2005) 1 The abelian category O int is semisimple

Crystal Bases Proposition (Jeong-Kashiwara-K 2005) 1 The abelian category O int is semisimple 2 { irreducible objects in O int } = {V (λ) λ P + }, where P + = {λ P h i, λ 0 for all i I }

Crystal Bases Proposition (Jeong-Kashiwara-K 2005) 1 The abelian category O int is semisimple 2 { irreducible objects in O int } = {V (λ) λ P + }, where P + = {λ P h i, λ 0 for all i I } 3 V (λ) = U q (g)u λ, where i) u λ has weight λ ii) e i u λ = 0 for all i I iii) f h i,λ +1 i u λ = 0 for any i I re vi) f i u λ = 0 if i I im and h i, λ = 0

Crystal Bases Kashiwara operators Let M be a U q (g)-module in O int. The Kashiwara operators ẽ i, f i (i I ) are defined by ẽ i u = k 1 f (k 1) i u k f i u = f (k+1) i u k k 0 where u = k 0 f (k) i u k with u k M µ+nαi s.t. e i u k = 0, u M µ and f (k) i = fi k /[k] i! fi k if i I re if i I im

Crystal Bases Definition Crystal Bases Let A 0 = {f /g Q(q) ; f, g Q[q], g(0) 0 } and M O int. A Crystal Basis of M is a pair (L, B), where i) L is a free A 0 -submodule L of M s.t. M Q(q) A 0 L ii) B is a Q-basis of L/gL iii) f i L L and ẽ i L L i I iv) f i B B {0} and ẽ i B B {0} i I v) f i b = b b = ẽ i b, for b, b B and i I

Crystal Bases Theorem (Jeong-Kashiwara-K 2005) For λ P +, let L(λ) = A 0 -submodule of V (λ) generated by { f i1 f ir u λ ; r 0, i k I } B(λ) = { f i1 f ir u λ + ql(λ) ; r 0, i k I } \ {0}

Crystal Bases Theorem (Jeong-Kashiwara-K 2005) For λ P +, let L(λ) = A 0 -submodule of V (λ) generated by { f i1 f ir u λ ; r 0, i k I } B(λ) = { f i1 f ir u λ + ql(λ) ; r 0, i k I } \ {0} = (L(λ), B(λ)) is a unique crystal basis of V (λ)

Crystal Bases Crystal basis for U q (g) Fix i I. For any u U q (g), unique v, w U q (g) s.t. e i u ue i = K iv K 1 i w q i q 1 i We define the endomorphism e i : U q (g) Uq (g) by e i (u) = w. Then every u Uq (g) has a unique i-string decomposition u = k 0 f (k) i u k, where e i u k = 0 for all k 0, and the Kashiwara operators ẽ i, f i (i I ) are defined by ẽ i u = k 1 f (k 1) i u k, f i u = f (k+1) i u k. k 0

Crystal Bases Definition A Crystal Basis of U q (g) is a pair (L, B), where i) L is a free A 0 -submodule L of U q (g) s.t. U q (g) Q(q) A 0 L ii) B is a Q-basis of L/gL iii) f i L L and ẽ i L L i I iv) f i B B and ẽ i B B {0} i I v) f i b = b b = ẽ i b, for b, b B and i I

Crystal Bases Theorem (Jeong-Kashiwara-K 2005) L( ) = A 0 -submodule of U q (g) generated by { fi1 f ir 1 ; r 0, i k I } B( ) = { f i1 f ir 1 + ql( ) ; r 0, i k I } \ {0}

Crystal Bases Theorem (Jeong-Kashiwara-K 2005) L( ) = A 0 -submodule of U q (g) generated by { fi1 f ir 1 ; r 0, i k I } B( ) = { f i1 f ir 1 + ql( ) ; r 0, i k I } \ {0} = (L( ), B( )) is a unique crystal basis of U q (g)

Crystal Bases Theorem (Jeong-Kashiwara-K 2005) L( ) = A 0 -submodule of U q (g) generated by { fi1 f ir 1 ; r 0, i k I } B( ) = { f i1 f ir 1 + ql( ) ; r 0, i k I } \ {0} = (L( ), B( )) is a unique crystal basis of U q (g) Problem How to realize B(λ) and B( )?

Abstract Crystals 4.Abstract Crystals Definition Abstract Crystals A set B with the maps wt: B P, ẽ i, f i : B B {0} and ε i, ϕ i : B Z { } (i I ) where i) wt(ẽ i b) = wt b + α i if i I and ẽ i b 0, ii) wt( f i b) = wt b α i if i I and f i b 0, iii) i I and b B, ϕ i (b) = ε i (b) + h i, wt b, iv) i I and b, b B, f i b = b b = ẽ i b, Notation wt i (b) = h i, wt b for i I and b B

Abstract Crystals Definition Abstract Crystals v) i I and b B s.t. ẽ i b 0, we have ε i (ẽ i b) = ε i (b) 1, ϕ i (ẽ i b) = ϕ i (b) + 1 if i I re, ε i (ẽ i b) = ε i (b) and ϕ i (ẽ i b) = ϕ i (b) + a ii if i I im, vi) i I and b B s.t. f i b 0, we have ε i ( f i b) = ε i (b) + 1 and ϕ i ( f i b) = ϕ i (b) 1 if i I re, ε i ( f i b) = ε i (b) and ϕ i ( f i b) = ϕ i (b) a ii if i I im, vii) i I and b B s.t. ϕ i (b) =, we have ẽ i b = f i b = 0.

Abstract Crystals Definition Morphism of Crystals Let B 1 and B 2 be crystals. A morphism of crystals ψ : B 1 B 2 is a map ψ : B 1 B 2 s.t. i) for b B 1 we have wt(ψ(b)) = wt(b) and ε i (ψ(b)) = ε i (b), ϕ i (ψ(b)) = ϕ i (b) for all i I ii) if b B 1 and i I satisfy f i b B 1, then ψ( f i b) = f i ψ(b)

Abstract Crystals Definition Morphism of Crystals Let ψ : B 1 B 2 be a morphism of crystals i) ψ is called a strict morphism if ψ(ẽ i b) = ẽ i ψ(b), ψ( f i b) = f i ψ(b) for all i I and b B 1 where ψ(0) = 0 ii) ψ is called an embedding if the underlying map ψ : B 1 B 2 is injective. we say that B 1 is a subcrystal of B 2. If ψ is a strict embedding, we say that B 1 is a full subcrystal of B 2.

Abstract Crystals Example 1 B = B(λ), λ P +, b = f i1 f ir u λ + ql(λ) wt(b) def = λ (α i1 + α ir ) max { k 0 ; ẽi k ε i (b) = b 0 } for i I re, 0 for i I im, { max k 0 ; f } i k b 0 for i I re, ϕ i (b) = wt i (b) for i I im,

Abstract Crystals Example 2 B = B( ) and b = f i1 f ir 1 + ql( ) wt(b) = (α i1 + + α ir ) max { k 0 ; ẽi k ε i (b) = b 0 } for i I re, 0 for i I im, ϕ i (b) = ε i (b) + wt i (b) (i I ).

Abstract Crystals Definition Tensor Product of Crystals Let B 1 B2 = {b 1 b2 b 1 B 1, b 2 B 2 }, and define the maps wt, ε i, ϕ i as follows. wt(b b ) = wt(b) + wt(b ), ε i (b b ) = max(ε i (b), ε i (b ) wt i (b)), ϕ i (b b ) = max(ϕ i (b) + wt i (b ), ϕ i (b )). For i I, we define f i (b b ) = f i b b if ϕ i (b) > ε i (b ), b f i b if ϕ i (b) ε i (b ),

Abstract Crystals Definition Tensor Product of Crystals For i I re, we define ẽ i (b b ) = ẽ i b b if ϕ i (b) ε i (b ), b ẽ i b if ϕ i (b) < ε i (b ), and, for i I im, we define ẽ i b b if ϕ i (b) > ε i (b ) a ii, ẽ i (b b ) = 0 if ε i (b ) < ϕ i (b) ε i (b ) a ii, b ẽ i b if ϕ i (b) ε i (b ).

Abstract Crystals Proposition

Abstract Crystals Proposition 1 B 1 B2 is a crystal.

Abstract Crystals Proposition 1 B 1 B2 is a crystal. 2 (B 1 B2 ) B 3 B 1 (B2 B3 ) (b 1 b2 ) b 3 b 1 (b2 b3 )

Abstract Crystals Proposition 1 B 1 B2 is a crystal. 2 (B 1 B2 ) B 3 B 1 (B2 B3 ) (b 1 b2 ) b 3 b 1 (b2 b3 ) Remark Hence the category of crystals forms a tensor category.

Abstract Crystals Example

Abstract Crystals Example 1 For λ P, let T λ = {t λ } and define wt(t λ ) = λ, ẽ i t λ = f i t λ = 0 for all i I, ε i (t λ ) = ϕ i (t λ ) = for all i I. = T λ is a crystal.

Abstract Crystals Example 1 For λ P, let T λ = {t λ } and define wt(t λ ) = λ, ẽ i t λ = f i t λ = 0 for all i I, ε i (t λ ) = ϕ i (t λ ) = for all i I. = T λ is a crystal. 2 Let C = {c} with wt(c) = 0 and ε i (c) = ϕ i (c) = 0, f i c = ẽ i c = 0, i I = C is a crystal.

Abstract Crystals Example

Abstract Crystals Example 3 For each i I, let B i = {b i ( n) ; n 0 } with wt b i ( n) = nα i, ẽ i b i ( n) = b i ( n + 1), fi b i ( n) = b i ( n 1), ẽ j b i ( n) = f j b i ( n) = 0 if j i, ε i (b i ( n)) = n, ϕ i (b i ( n)) = n if i I re, ε i (b i ( n)) = 0, ϕ i (b i ( n)) = wt i (b i ( n)) = na ii if i I im, ε j (b i ( n)) = ϕ j (b i ( n)) = if j i. = B i is a crystal. The crystal B i is called an elementary crystal.

Abstract Crystals Example B 1, B 2 : crystals for U q (g)-modules in O int i) a ii = 2 ii) a ii 0

Abstract Crystals Example

Abstract Crystals Example 1 T λ Tµ T λ+µ

Abstract Crystals Example 1 T λ Tµ T λ+µ 2 B(λ) B( ) T λ

Abstract Crystals Example 1 T λ Tµ T λ+µ 2 B(λ) B( ) T λ 3 B(λ + µ) B(λ) B(µ)

Abstract Crystals Example 1 T λ Tµ T λ+µ 2 B(λ) B( ) T λ 3 B(λ + µ) B(λ) B(µ) 4 B C B

Abstract Crystals Example i = (i 1, i 2, ), i k I s.t. every i I appear infinitely many times in i B(i) def = { b ik ( x k ) b i1 ( x 1 ) B ik B i1 ; x k Z 0, and x k = 0 for k 0}.

Abstract Crystals Example i = (i 1, i 2, ), i k I s.t. every i I appear infinitely many times in i B(i) def = { b ik ( x k ) b i1 ( x 1 ) B ik B i1 ; x k Z 0, and x k = 0 for k 0}. = B(i) becomes a crystal; b = b ik ( x k ) b i1 ( x 1 ) B(i) wt(b) = k x kα ik for i I re, ε i (b) = max {x k + } l>k h i, α il x l ; 1 k, i = i k ϕ i (b) = max { x k } 1 l<k h i, α il x l ; 1 k, i = i k for i I im, ε i (b) = 0 and ϕ i (b) = wt i (b)

Abstract Crystals Example For i I re, we have b ine ( x ne + 1) b i1 ( x 1 ) if ε i (b) > 0, ẽ i b = 0 if ε i (b) 0, f i b = b inf ( x nf 1) b i1 ( x 1 ), where n e (resp. n f ) is the largest (resp. smallest) k 1 such that i k = i and x k + l>k h i, α il x l = ε i (b). Note such an n e exists if ε i (b) > 0.

Abstract Crystals Example When i I im, let n f = min{k i k = i and l>k h i, α il x l = 0} Then f i b = b inf ( x nf 1) b i1 ( x 1 ) and b inf ( x nf + 1) b i1 ( x 1 ) if x nf > 0 and k<l n ẽ i b = f h i, α il x l < a ii for any k such that 1 k < n f and i k = i, 0 otherwise.

Crystal Embedding Theorem 5.Crystal Embedding Theorem Theorem (Jeong-Kashiwara-K-Shin 2006) For all i I,! strict embedding Ψ i : B( ) B( ) B i 1 1 b i (0)

Crystal Embedding Theorem Let i = (i 1, i 2, ) I Observe : B( ) B( ) B i1 B( ) B i2 Bi1

Crystal Embedding Theorem Let i = (i 1, i 2, ) I Observe : B( ) B( ) B i1 B( ) B i2 Bi1 Proposition B( ) B(i) = { b ik ( x k ) b i1 ( x 1 )}

Crystal Embedding Theorem Let i = (i 1, i 2, ) I Observe : B( ) B( ) B i1 B( ) B i2 Bi1 Proposition B( ) B(i) = { b ik ( x k ) b i1 ( x 1 )} Corollary B( ) connected component of B(i) containing b ik (0) b i1 (0)

Crystal Embedding Theorem Theorem (Jeong-Kashiwara-K-Shin 2006)

Crystal Embedding Theorem Theorem (Jeong-Kashiwara-K-Shin 2006) 1 Let B be a crystal s.t. i) wt(b) Q +, ii) b 0 B s.t. wt(b 0 ) = 0, iii) for any b B s.t. b b 0, some i I s.t. ẽ i b 0, iv) for all i, a strict embedding Ψ i : B B B i. Then B B( )

Crystal Embedding Theorem Theorem (Jeong-Kashiwara-K-Shin 2006) 1 Let B be a crystal s.t. i) wt(b) Q +, ii) b 0 B s.t. wt(b 0 ) = 0, iii) for any b B s.t. b b 0, some i I s.t. ẽ i b 0, iv) for all i, a strict embedding Ψ i : B B B i. Then B B( ) 2 Let λ P +. Then B(λ) connected component of B( ) T λ C containing 1 t λ c

Crystal Embedding Theorem Example Let I ( = {1, 2} and ) i = (1, 2, 1, 2,... ) and 2 a A = for some a, b Z >0 and c 2Z 0. b c B def = { b 2 ( x 2k ) b 1 ( x 2k 1 ) b 2 ( x 2 ) b 1 ( x 1 ) i) ax 2k x 2k+1 0 for all k 1, ii) k 2 with x 2k > 0, we have x 2k 1 > 0 and ax 2k x 2k+1 > 0.}

Crystal Embedding Theorem Example Let I ( = {1, 2} and ) i = (1, 2, 1, 2,... ) and 2 a A = for some a, b Z >0 and c 2Z 0. b c B def = { b 2 ( x 2k ) b 1 ( x 2k 1 ) b 2 ( x 2 ) b 1 ( x 1 ) i) ax 2k x 2k+1 0 for all k 1, ii) k 2 with x 2k > 0, we have x 2k 1 > 0 and ax 2k x 2k+1 > 0.} = B B( )

Crystal Embedding Theorem Example B λ def = { b 2 ( x 2k ) b 1 ( x 2k 1 ) b 2 ( x 2 ) b 1 ( x 1 ) t λ c i) ax 2k x 2k+1 0 for all k 1, ii) k 2 with x 2k > 0, we have x 2k 1 > 0 and ax 2k x 2k+1 > 0, iii) 0 x 1 h 1, λ, iv) if x 2 > 0 and h 2, λ = 0, then x 1 > 0. }

Crystal Embedding Theorem Example B λ def = { b 2 ( x 2k ) b 1 ( x 2k 1 ) b 2 ( x 2 ) b 1 ( x 1 ) t λ c i) ax 2k x 2k+1 0 for all k 1, ii) k 2 with x 2k > 0, we have x 2k 1 > 0 and ax 2k x 2k+1 > 0, iii) 0 x 1 h 1, λ, iv) if x 2 > 0 and h 2, λ = 0, then x 1 > 0. } = B λ B(λ)

Crystal Embedding Theorem Example Quantum Monster Algebra I = {(i, t) i = 1, 1, 2, 1 t c(i)} A = ( (i + j)) (i,t),(j,s) I =

Crystal Embedding Theorem Example i = (i(k)) k=1 = (( 1, 1), (1, 1),..., (1, c(1)); ( 1, 1), (1, 1),..., (1, c(1)), (2, 1),..., (2, c(2)); ( 1, 1), (1, 1),..., (1, c(1)), (2, 1),..., (2, c(2)), (3, 1),..., (3, c(3)); ( 1, 1),... ) Note i) every (i, t) I appears infinitely times in i ii) ( 1, 1) appears at the b(n)-th position for n 0, where b(n) = nc(1) + (n 1)c(2) + + c(n) + n + 1.

Crystal Embedding Theorem Example For k Z >0, k ( ) = the largest integer l < k s.t. i(l) = i(k). B def = { b i(k) ( x k ) b i(1) ( x 1 ) B(i) i) x b(1) = 0, ii) n 1, b(n)<l<b(n+1) h ( 1,1), α i(l) x l x b(n+1), iii) if i(k) ( 1, 1), x k > 0 and k ( ) > 0, then h i(k), α i(l) x l < 0. k ( ) <l<k If x l = 0 for all k ( ) < l < k s.t. i(l) ( 1, 1), then h ( 1,1), α i(l) x l > x b(n+1) s.t. k ( ) < b(n) < k.} b(n)<l<b(n+1)

Crystal Embedding Theorem Example For k Z >0, k ( ) = the largest integer l < k s.t. i(l) = i(k). B def = { b i(k) ( x k ) b i(1) ( x 1 ) B(i) i) x b(1) = 0, ii) n 1, b(n)<l<b(n+1) h ( 1,1), α i(l) x l x b(n+1), iii) if i(k) ( 1, 1), x k > 0 and k ( ) > 0, then h i(k), α i(l) x l < 0. k ( ) <l<k If x l = 0 for all k ( ) < l < k s.t. i(l) ( 1, 1), then h ( 1,1), α i(l) x l > x b(n+1) s.t. k ( ) < b(n) < k.} b(n)<l<b(n+1) = B B( )

Crystal Embedding Theorem Example B λ def = { b i(k) ( x k ) b i(1) ( x 1 ) t λ c (i) (iii) in the previous example, iv) 0 x 1 h ( 1,1), λ, v) if i(k) ( 1, 1), h i(k), λ = 0, x k > 0 and k ( ) = 0, then l s.t. 1 l < k, h i(k), α i(l) < 0 and x l > 0. }

Crystal Embedding Theorem Example B λ def = { b i(k) ( x k ) b i(1) ( x 1 ) t λ c (i) (iii) in the previous example, iv) 0 x 1 h ( 1,1), λ, v) if i(k) ( 1, 1), h i(k), λ = 0, x k > 0 and k ( ) = 0, then l s.t. 1 l < k, h i(k), α i(l) < 0 and x l > 0. } = B λ B(λ)

Crystal Embedding Theorem THANK YOU