Congruences for sequences similar to Euler numbers

Similar documents
International Journal of Mathematics Trends and Technology (IJMTT) Volume 47 Number 1 July 2017

Structure and Some Geometric Properties of Nakano Difference Sequence Space

GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES

Strong Result for Level Crossings of Random Polynomials

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD

Sums of Involving the Harmonic Numbers and the Binomial Coefficients

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS

FRACTIONAL CALCULUS OF GENERALIZED K-MITTAG-LEFFLER FUNCTION

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA

Super congruences concerning Bernoulli polynomials. Zhi-Hong Sun

Bernoulli Numbers and a New Binomial Transform Identity

Generalization of Horadam s Sequence

International Journal of Mathematical Archive-5(3), 2014, Available online through ISSN

On almost statistical convergence of new type of generalized difference sequence of fuzzy numbers

EVALUATION OF SUMS INVOLVING GAUSSIAN q-binomial COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

Conditional Convergence of Infinite Products

p-adic Invariant Integral on Z p Associated with the Changhee s q-bernoulli Polynomials

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

The Pigeonhole Principle 3.4 Binomial Coefficients

Unified Mittag-Leffler Function and Extended Riemann-Liouville Fractional Derivative Operator

Generalized Fibonacci-Lucas Sequence

On the Circulant Matrices with. Arithmetic Sequence

SOME NEW SEQUENCE SPACES AND ALMOST CONVERGENCE

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia.

Some characterizations for Legendre curves in the 3-Dimensional Sasakian space

Range Symmetric Matrices in Minkowski Space

Advances in Mathematics and Statistical Sciences. On Positive Definite Solution of the Nonlinear Matrix Equation

CONGRUENCES CONCERNING LEGENDRE POLYNOMIALS III

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology

Some remarks on the paper Some elementary inequalities of G. Bennett

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY

Math 7409 Homework 2 Fall from which we can calculate the cycle index of the action of S 5 on pairs of vertices as

On Almost Increasing Sequences For Generalized Absolute Summability

Some Integral Mean Estimates for Polynomials

Conjunctive Normal Form & Horn Clauses

A New Result On A,p n,δ k -Summabilty

Proof of a conjecture of Amdeberhan and Moll on a divisibility property of binomial coefficients

SHIFTED HARMONIC SUMS OF ORDER TWO

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to

New proofs of the duplication and multiplication formulae for the gamma and the Barnes double gamma functions. Donal F. Connon

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles

Proof of Analytic Extension Theorem for Zeta Function Using Abel Transformation and Euler Product

On the k-lucas Numbers of Arithmetic Indexes

CERTAIN CONGRUENCES FOR HARMONIC NUMBERS Kotor, Montenegro

Several new identities involving Euler and Bernoulli polynomials

On Divisibility concerning Binomial Coefficients

International Journal of Mathematical Archive-3(5), 2012, Available online through ISSN

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties

Using Difference Equations to Generalize Results for Periodic Nested Radicals

Lecture 24: Observability and Constructibility

On a Problem of Littlewood

On ARMA(1,q) models with bounded and periodically correlated solutions

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION

NONDIFFERENTIABLE MATHEMATICAL PROGRAMS. OPTIMALITY AND HIGHER-ORDER DUALITY RESULTS

Generalized Fibonacci Like Sequence Associated with Fibonacci and Lucas Sequences

Combinatorial Interpretation of Raney Numbers and Tree Enumerations

THE ANALYTIC LARGE SIEVE

Bernoulli, poly-bernoulli, and Cauchy polynomials in terms of Stirling and r-stirling numbers

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues

Complementary Dual Subfield Linear Codes Over Finite Fields

ABSOLUTE INDEXED SUMMABILITY FACTOR OF AN INFINITE SERIES USING QUASI-F-POWER INCREASING SEQUENCES

Stability of Quadratic and Cubic Functional Equations in Paranormed Spaces

REVIEW ARTICLE ABSTRACT. Interpolation of generalized Biaxisymmetric potentials. D. Kumar* G.L. `Reddy**

MATH /19: problems for supervision in week 08 SOLUTIONS

Modular Spaces Topology

distinct distinct n k n k n! n n k k n 1 if k n, identical identical p j (k) p 0 if k > n n (k)

A Class of Delay Integral Inequalities on Time Scales

Multivector Functions

Bertrand s postulate Chapter 2

#A18 INTEGERS 11 (2011) THE (EXPONENTIAL) BIPARTITIONAL POLYNOMIALS AND POLYNOMIAL SEQUENCES OF TRINOMIAL TYPE: PART I

Generating Function for Partitions with Parts in A.P

Minimal order perfect functional observers for singular linear systems

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA.

Global asymptotic stability in a rational dynamic equation on discrete time scales

Ma/CS 6a Class 22: Power Series

A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS

Generalized k-normal Matrices

A 2nTH ORDER LINEAR DIFFERENCE EQUATION

On the maximum of r-stirling numbers

Fractional Integral Operator and Olsen Inequality in the Non-Homogeneous Classic Morrey Space

Counting Functions and Subsets

BINOMIAL COEFFICIENT HARMONIC SUM IDENTITIES ASSOCIATED TO SUPERCONGRUENCES

Bertrand s Postulate. Theorem (Bertrand s Postulate): For every positive integer n, there is a prime p satisfying n < p 2n.

THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION

Taylor Transformations into G 2

The log-behavior of n p(n) and n p(n)/n

We will look for series solutions to (1) around (at most) regular singular points, which without

Bertrand s Postulate

An analog of the arithmetic triangle obtained by replacing the products by the least common multiples

Applications of the Hurwitz-Lerch zeta-function

Math 4400/6400 Homework #7 solutions

sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n =

Advanced Physical Geodesy

Transcription:

Coguece fo equece iila to Eule ube Zhi-Hog Su School of Matheatical Sciece, Huaiyi Noal Uiveity, Huaia, Jiagu 00, Peole Reublic of Chia Received July 00 Revied 5 Augut 0 Couicated by David Go Abtact a E a a 0,,,..., Fo a 0 we defie {E a } by [/] whee [/] / o / accodig a o. I the ae we etablih odulo ie owe, ad how that thee i a et X ad a a T : X X uch that E a i the ube of fixed oit of T. ay coguece fo E a MSC: Piay B68, Secoday A07 Keywod: Eule olyoial, equece, coguece, -egula fuctio. Itoductio The Eule ube {E } ad Eule olyoial {E x} ae defied by. e t e t + 0 t E! t < π ad e xt e t + E x t t < π, 0! E-ail adde: zhihogu@yahoo.co URL: htt://www.hytc.edu.c/xjl/zh The autho i uoted by the Natioal Natual Sciece Foudatio of Chia No. 097078.

which ae equivalet to ee [6]. E 0, E 0, ad E x + E 0 E x x 0. Eule ube {E } i a iotat equece of itege ad it ha ay oetie ad alicatio. Fo exale, accodig to [] we have E / h 4 od, whee i a ie of the fo 4 + ad hd i the cla ube of the fo cla gou coitig of clae of iitive, itegal biay quadatic fo of diciiat d. I 005, Aia de Reya[] howed that thee i a et X ad a a T : X X uch that E i the ube of fixed oit of T. I [] the autho itoduced the equece S 4 E 4 ad howed that h 8 S od fo ay odd ie. I [4] the autho yteatically tudied the equece U E. Iied by the oetie of {E }, {S } ad {U }, we ty to itoduce oe equece of itege iila to Eule ube. Fo thi uoe, we itoduce the equece {E a } fo a 0 give by [/] a E a a 0,,,..., whee [x] i the geatet itege ot exceedig x. Actually, E a a E a, E E, E S ad {E a } i a equece of itege. I the ae we aily tudy the oetie of E a. We how that thee i a et X ad a a T : X X uch that E a i the ube of fixed oit of T. Thi geealize Aia de Reya eult fo Eule ube. I Sectio we etablih oe coguece fo E a odulo a ie. Fo exale, fo a ie > we have E / 0,h 4 o h od accodig a 5 od, od o od 4. Let Z ad N be the et of itege ad oitive itege, eectively. I Sectio we etablih oe geeal coguece fo E a +b odulo, whee a Z,,, N ad b {0,,,...}. Fo exale, we deteie E a +b od +4+t, whee t i the oegative itege give by t a ad t+ a. I the cae a, the coguece wa give i []. The coguece ca be viewed a a geealizatio of the Ste coguece [8,6] E +b E b od + fo eve b. Fo N let Z be the et of atioal ube whoe deoiato i coie to. Fo a ie, i [0] the autho itoduced the otio of -egula fuctio.

If f Z fo 0,,,... ad f 0 od fo all N, the f i called a -egula fuctio. If f ad g ae -egula fuctio, fo [0, Theoe.] we ow that f g i alo a -egula fuctio. Let be a odd ie, ad let b be a oegative itege. I Sectio 4 b+[ 4 ] +b E +b ad f +b ae -egula fuctio, whee a i the Ja- Uig the oetie of -egula fuctio i [0,], we deduce od. Fo exale, fo, N we have E ϕ +b b+[ 4 ] b E b od, whee ϕ i Eule totiet fuctio. I additio to the above otatio, we alo ue thoughout thi ae the followig we how that f b+ +b E [ + ] 6 cobi ybol. ay coguece fo E ad E otatio: {x} the factioal at of x, od the oegative itege α uch that α but α+ that i α, µ the Möbiu fuctio.. Coguece fo E a odulo a ie Defiitio.. Fo a 0 we defie {E a } by [/] a E a a 0,,,... By the defiitio we have E a Z fo a Z ad E E. The fit few Eule ube ae how below: E 0, E, E 4 5, E 6 6, E 8 85, E 0 505, E 70765, E 4 996098, E 6 99545. The fit few value of E ad E ae give below: E 0, E, E, E, E 4 57, E 5 6, E 6 76, E 7 46, E 8 5077, E 9 8704, E 0 6585; E 0, E, E 5, E 46, E 4 05, E 5 6, E 6 65, E 7 55086, E 8 454485, E 9 57456. The Beoulli ube {B } ad Beoulli olyoial {B x} ae defied by B 0, B 0 ad B x B x 0.

It i well ow that ee [6]. E x x E x B + x + B + + I aticula,. E E It i alo ow that ee [6] + + B + x + ad E 0 + B +. + x B +.. B + 0, B x B x ad E x E x. Thu, Theoe.. Let be a oegative itege ad a 0. The E a a E a Poof. By Defiitio. we have e at 0 [/] a a E + + B + + a. a t! 0 t a! 0 [/] E a a E a t! t eat + e at! 0 E a t.!.4 0 E a t! e at e at + e at / et e at +. Fo. we ow that 0 E a at we deduce E a a E a By. ad. we have + B + at 0 +!! et e at + a a E 4 0. Hece, fo the above ad. [/] a a E. E 0 at! e at +.

Thu 0 E a t! et e at + t 0! + + a B + t +! + + a B + t +! 0 ad o E a + + a B + +. The oof i ow colete. Coollay.. Let a 0 ad N. The E a { 0 if, + + a B + + if. Poof. By Theoe. ad the bioial iveio foula we have E a + + a B + +. Notig that B + 0 fo eve we deduce the eult. Lea.. Fo N we have E + E. Poof. Uig.,. ad.4 we ee that E 0 t! 0 E t + t et! e 6t + + e t e 6t + et + e 5t e 6t + et e t + + et e 6t + + t E 0! + t E 0!. So the eult follow. I [], Evall howed that fo a ie od 4,.5 E / h 4 od ad o E /. I [] the autho defied {S } by S S 0 ad howed that S 4 E 4. Thu, by Theoe. we have S E. Fo [, Theoe. ad Coollay.] we ow that fo ay odd ie,.6 h 8 E / od ad hece E /. Now we tate the iila coguece fo E / od. Theoe.. Let be a ie geate tha. The 0 od if 5 od, E E / h 4 od if od, h od if od 4. 5

Poof. If od 4, by Lea. ad.5 we have E + E + E { 0 od if 5 od, E h 4 od if od. Now aue od 4. It i ow that ee [6] B 6 B. Thu, B + 6 B + { 0 od if 7,, od 4, B + od if 9 od 4. Hece, by Theoe. ad. we have E 6 E 6 6 6 4 8B + 8B + 8B + B + 6 + B + B + + / B + B + 6 od if 7 od 4, od if, od 4, + 8B + od if 9 od 4. Now alyig [, Theoe.ii] we obtai E theoe i oved. / h od. So the Rea. I a iila way, oe ca how that fo ay ie,9 od 0, + + 4 h 5 E 5 od. Coollay.. Let be a odd ie with 5 od. The E /. Poof. Fo od 4, it i well ow that [5,.-5] h <. So the eult follow fo Theoe. ad.5. Theoe.. Let be a odd ie, {,,4,...} ad ± od. The <i< i i [ ] E/ od 6

ad [/] i i [/] i E/ od fo,4,...,. Poof. Let {} {,4,..., }. Puttig ad ubtitutig by i [, Coollay.] we ee that { E 0 [ } ] E [/] [/] i i i od. i i It i well ow that [5] B od. Thu, i view of. ad. we have E 0 B 0 od if, B od if. Uig. ad Theoe. we ee that { } E E E / Fo the above we deduce [/] i i E / od if, E E E/ od if +. i i ± [/] E/ od. Taig we have the ow eult [/] i i i od. Hece <i< i [/] i i [/] i i i [/] E/ od. i Fo {,4,..., }, uig. ad Theoe. we ee that E { i } E E / E / od. Now uttig all the above togethe we deduce the eult. 7

. Coguece fo E a odulo I [] the autho etablihed ay coguece fo E od, whee, N. I the ectio we exted uch coguece to E a +b od, whee a i a ozeo itege ad b {0,,,...}. Lea.. Let ad be oegative itege. The i if, 0 if <. ii + + + if, + 0 if <. Poof. i ca be foud i [4,.64]. We ow ue i to deduce ii. By i we have + + + + + if +, + + 0 if, 0 + 0 if <. Thi ove ii. Theoe..Let a be a ozeo itege, N ad let b be a oegative itege. Suoe that α N i give by α < α. i If i a odd ie divio of a, the ii We have { E a 0 od od a +b if, 0 od +oda if. { E a 0 od +od a α +od + if, 0 od od a+ α if 8

ad iii We have { E a 0 od +od a+ + if, 0 od od a+ od + if. Moeove, if ad b, the ad E a +b 0 od +od a α. E a +b 0 od +od a+ α. Poof. Uig Theoe., Lea. ad. we ee that E a 0 E a + 0 + a + B + + + a + B + + + a + B + + + a + B + + + 0 + + a + B + 0 + + + Fo Coollay. we ee that fo odd,. + + B + + + a + B + + + + a + B + + a + B + + 9 E Z. + +.

Thu, if i a odd ie with a, the + a + B + + 0 od oda. Now, fo the above we deduce that fo i 0,,. E a +i { 0 od od a if, 0 od +od a if. Fo [0,.5] we ow that fo ay fuctio f,. f + + + Thu,.4 E a +b [b/] f. E a +[ b ]+b [ b ] [ b ] + + E a +b [ b ]. Now alyig. we deduce i. Suoe {, +,..., } ad. If, the ad o 0 od od. Sice B + od ad od+ + < α+, we ee that od + α ad o If, we ee that Theefoe, od a + B + + od a + B + + E a Sice B + od fo odd we alo have E a + + od a α + od + od a α + od. a od od a α. + a + B + + { 0 od +od a α +od + if, 0 od od a+ α if. + + a + B + + { 0 od +od a+ if, 0 od od a+ od + if. 0

So ii hold. Sice od+ + α we ee that od + α. Thu, fo ii we deduce.5 E a +i 0 od +od a α fo i 0,. A α + α o α +, we ee that + α + α ad hece α α fo. Fo 0, by.5 we have + + E a +b [ b ] 0 od + α +++od a. Sice + α + α, we ut have + + Cobiig thi with.4 we obtai E a +b [ b ] 0 od α +od a. E a +b 0 od +od a α. ++ + ad o Now we aue ad b. Fo, N we have + > 7 5 < 6. Hece log + + log + log + + + < 4 ad o + + od a log + + > + + od a log +. Sice od ++ + + ad + α we ee that od + + log + + ad log + α. Thu, fo odd we have + + od a od + + + + od a log + + ad o by ii.6 + + + + od a log + + + od a log + + + od a α E a + 0 od ++od a α.

Fo eve, uig ii ad the fact + + od a + + + od a + + + od a α we ee that.6 i alo tue. Thu alyig.4 we deduce that E a +b 0 od ++od a α. Thi colete the oof. Coollay.. Let a be a ozeo itege ad b {0,,,...}. The f E a +b i a egula fuctio. Poof. Let α N be give by α < α. A >, we ee that α ad o α. Now alyig Theoe.iii we obtai the eult. Theoe.. Suoe that a i a ozeo itege,,,,t N ad b {0,,,...}. Fo N let α N be give by α < α ad let e a,b E a ]. The E a t+b Moeove, E a t+b +b [ b E a t+b od ++od a α. E a t+b + t e a,b od ++od a+ α +. I aticula, whe ad b, we have E a t+b E a t+b od ++od a+ α +. Poof. Fo N et A a,b 0 E a +b. A α, uig Theoe.iii we ee that A a,b Z ad { 0 od +od a α ++od a if ad b,.7 A a,b 0 od +od a α othewie. By [9, Lea.] we have.8 E a t+b E a t+b. 0 E a t+b

Fo Coollay. ad the oof of [, Theoe 4.] we ow that E a t+b.9 0 A a,bt t + A a,b t + + j+ j, j j! j! whee {,} ad {S,} ae Stilig ube give by ad xx x + x,x S,xx x +. By [, Lea 4.], fo + j we have.0, j j! j,! S j,! j! j Z ad,!!,!! S j,! j t j, j! od. A α + α + we have + α + α ad hece α α fo. Theefoe, by.7 we have +od a++ α + A a,b fo +. Hece, uig.9 we get. E a t+b t A a,b od ++od a+ α +. Fo.7 we have +od a α A a,b. Sice α + α o α + we ee that + + + od a α + + + od a α. Hece, by. we get. E a t+b 0 od ++od a α. Fo + we have α + α + ad o + + od a α + od a + + + α +. Thu, uig. we ee that fo +,. E a t+b 0 od +++od a+ α +.

Whe ad b, by Theoe.iii ad the fact α + α we have od A a,b + od a + α + + od a + α +. Thu, it follow fo. that.4 By.4 we have.5 A a,b [b/] Fo Theoe.iii we ow that + + 0 E a +b 0 od ++od a+ α +. [b/] + + 0 E a +b [ b ]. E a +b [ b ] 0 od +od a+ α +. Fo N we have + od a + α + + od a + + + α +. Thu, fo the above we deduce that.6 A a,b e a,b od +od a++ α +. Now cobiig.-.4,.6 with.8 we deive the eult. Theoe.. Let a be a ozeo itege,, N, ad b {0,,,...}. The E a +b Ea b a b + 5 a + a b od +4+oda if a, ab + + 4 b + od +4 if a ad b, a od +4 if ab. Poof. Fo N let α Z be give by α < α, ad let A a,b E a +b ad e a,b E a +b [ b ]. Sice,! ad S j,, taig ad t i.9 we ee that.7 { E a b E a +b A a,b + j A a,b j, j j! j j j j }.! j! 4

Fo j it i eaily ee that j j! j 0 od 4. By Theoe.iii we have +od a α A a,b. Thu, fo 5 we have od A a,b + od a α 5od a + 5 α 5 + 5od a. Set H + + +. Fo the defiitio of Stilig ube we ow that,!h fo. Thu, fo,,! H.!! Hece, fo the above we deduce that E a +b Ea b Set A a,b + A a,b H od +4+oda. f H α H α. Sice α H Z we ee that f 0 od 4 fo 5. It i eaily ee that f, f ad f 4. Hece, fo the above we deduce that.8 { } E a +b Ea b + A a,b + A a,b 0 od +4+oda if ad, { 4 A a,b + A 4 a,b} od +4+oda if > o >. Fo.6 we ee that.9 A 4 a,b e 4 a,b od +5oda ad A a,b e a,b od +4oda. If b, by Theoe.iii we have A 4 a,b 4 4 Fo Theoe. we have 4 E a +b 0 od +5od a..0 E a 0, E a a, E a a, E a a + a, E a 4 4a + 8a, E a 5 5a + 0a 6a 5, E a 6 6a + 40a 96a 5, E a 7 7a + 70a 6a 5 + 7a 7, E a 8 8a + a 896a 5 + 76a 7. 5

Hece, if b, fo.9 ad.0 we deduce that A 4 a,b e 4 a,b E a 0 4E a + 6E a 4 4E a 6 + E a 8 6 8a 5 7a 4 0 od +5oda. Theefoe, we alway have A 4 a,b 0 od +5oda. Fo.0 we ee that. e a,b 8 Ea 0 E a + E a 4 E a 6 a 6a if b, E a + E a 5 E a 7 a 7a 4 + 8a if b. 8 Ea Thu, alyig.9 we get A a,b e a,b + ab a od +od a. Theefoe, 4 A a,b 4 + ab a 4a + ab + od 4+od a. Hece, by the above ad.8 we obtai. { E a +b Ea b A a,b + A a,b } 4a + ab + od +4+oda. Fo Theoe.ii we ee that. 0 E a +b [ b ] 0 od 7+5od a fo 4. Thu, by.5 we have A a,b [b/] [b/] 4 + + 0 4 E a 0 [ b +b [ b ] 4e a,b [ b 4 Fo.0 we ow that.4 e a,b 4 E a +b [ b ] ] 0 ] 8e a,b e a,b [ b E a +b [ b ] ] e a,b od 4+od a. { a E b [ b ] Ea + a if b, +b [ b ] Ea 4+b [ b ] 4a a if b. Thi togethe with. yield e a,b [ b] e a,b a b a 6a a + b 6a b if b, 4a a b a 7a 4 + 8a a 7a 4 b + 6 8ba + b + if b. 6

Thu,.5 A a,b e a,b [ b] e a,b a + b od 4+oda if a, a b od 4+oda if a ad b, 0 od 4+oda if ab. By. ad.5 we have A a,b [b/] [b/] + + E a 0 +b [ b ] [b/] + + E a 0 +b [ b ] e a,b [ b] [ b 4e a,b + ] 8e a,b e a,b [ b] e a,b + [ b][b] e a,b od 4+oda. Fo.0 we have.6 e a,b { a E a if b, b [ b ] Ea +b [ b ] a a if b Hece, fo the above we deduce.7 A a,b e a,b [ b] e a,b + [ b][b] e a,b a b a bb + a 6a a a b + 6a 4 bb a a b od 4+oda if b, a a b 4a a + b b a 7a 4 + 8a a a b od 4+oda if a ad b, a a b 4a a + b b a 7a 4 + 8a a od 4+oda if a ad b. Now ubtitutig.5 ad.7 ito. we obtai the eult. Fo a, b ad 4, by Theoe. we have { Eb + 5 od +4 if b 0,6 od 8, E +b E b od +4 if b,4 od 8. 7

Thi ha bee give by the autho i []. Coollay.. Let be a oegative itege. The { E 56 + od 5 if 4, 4 56 55 od 5 if 4, { E 00 od 5 if 4, 4+ 00 + 5 od 5 if 4, E 4+ 5 od 5, E 4+ 4 + od 5. Poof. Taig a ad i Theoe. we deduce the eult fo. Sice E 0, E, E ad E, we ee that the eult i alo tue fo 0. Theoe.4. Let a be a ozeo itege,, N ad b {0,,,...}. The E a +b Ea +b Ea b od ++oda. Poof. Fo N et e a,b E a +b [ b ]. Fo.4 we ow that a e a,b ad o +oda e a,b. Now taig ad t i Theoe. ad the alyig the above we deduce the eult. 4. Coguece fo E +b ad E +b od Let be a odd ie. I [] the autho howed that f +b E +b i a -egula fuctio whe b i eve. I thi ectio we etablih iila eult fo E ad E, ad the ue the to deduce coguece fo E +b ad E +b od. Lea 4.. Let N, {0,,,..., } ad b {0,,,...}. Let be a odd ie ot dividig. The f +b E +b A A E +b +b i a -egula fuctio, whee A {0,,..., } i give by A od. Poof. Fo x Z let x be the leat oegative eidue of x odulo. Fo [0,Theoe.] we ow that B +b+ x B +b+ + b + B +b+ x+ x +b B +b+ + b + 8

i a -egula fuctio. Hece g B +b+ + B +b+ + b + +b B +b+ + + + B +b+ + b + + i a -egula fuctio. Let A {0,,..., } be uch that A od. The A ± + od ad A A o A accodig a A < o A. A + + A A ad + + + uig. we ee that B +b+ + + + + + A + + + + A + B +b+ + b + + A + A if A <, if A, B +b+ A + B +b+ A +b+ E + b + +b A if A <, B +b+ A B +b+ A +b+ E + b + +b A +b+ A A E +b. Alo, by. we have if A. B +b+ + B +b+ +b+ E + b + +b. Thu, fo the above we ee that g +b+ E +b A A E +b +b 9

i a -egula fuctio. By Feat little theoe we have +b b 0 od. Thu +b+ +b i a -egula fuctio. Hece, by the oduct theoe fo -egula fuctio [0, Theoe.], f +b+ +b g i a -egula fuctio a aeted. Fo Lea 4. we have the followig eult. Lea 4.. Let be a odd ie, {,,4,...} ad ± od. Let b be a oegative itege ad {,,..., }. The f +b +b E +b if od, + b++ +b +b E +b if od i a -egula fuctio. Poof. Let A {,,..., } be uch that A od. The clealy A o accodig a o od. Sice E x E x, we have E +b +b E +b b E +b. Now alyig the above ad Lea 4. we deduce the eult. Theoe 4.. Let be a odd ie ad let b be a oegative itege. The i f b+[ 4 ] +b E +b i a -egula fuctio. ii f [ + ] 6 b+ +b E +b i a -egula fuctio. Poof. Puttig 4 ad i Lea 4. ad alyig Theoe. we obtai i. Puttig 6 ad i Lea 4. ad alyig Theoe. we obtai ii i the cae >. Fo Theoe.i we ee that ii i alo tue fo. So the theoe i oved. Fo Theoe 4. ad [, Theoe 4. with t ad d 0] we deduce the followig eult. Theoe 4.. Let be a odd ie ad,, N. Let b be a oegative itege. The b+[ 4 ] ϕ +b E ad [ + 6 ] ϕ +b b+ ϕ +b E ϕ +b 0 b+[ 4 ] ϕ +b E ϕ +b od

[ + 6 ] b+ ϕ +b E ϕ +b od. I aticula, fo we have E ϕ +b b+[ 4 ] b E b od ad E + ϕ +b [ ] 6 b+ b E b od. Lea 4.. See [0, Theoe.]. Let be a ie, N ad let f be a -egula fuctio. The thee ae itege a 0,a,...,a uch that f a + + a + a 0 od fo 0,,,... Moeove, if, the a 0,a,...,a od ae uiquely deteied ad od! a fo 0,,...,. Fo Theoe 4. ad Lea 4. we deduce the followig eult. Theoe 4.. Let be a odd ie, N ad. Let b be a oegative itege. The thee ae uique itege a 0,a,...,a,c 0,c,...,c {0,±,±,..., ± } uch that fo evey oegative itege, b+[ 4 ] +b E +b a + + a + a 0 od ad [ + 6 ] b+ +b E +b c + + c + c 0 od. Moeove, od! a ad od! c fo 0,,...,. Coollay 4.. Let N. The i E 9 + 6 od 7, E + 9 + 6 4 od 7; ii E 4 75 75 + 05 + od 5 ; iii E 4+ 65 475 80 6 od 5; iv E 4+ 75 975 5 78 od 5; v E 4+ 500 + 85 00 + 86 od 5. Poof. A E 0, E ad E, taig i Theoe 4. we ee that E 9 + 6 od 7 ad + + E + 9 + 6 4 od 7. Thi yield i. Pat ii-v ca be oved iilaly. Coollay 4.. Let N. The i E 6 + od 7, E + 6 od 7; ii E 4 75 + 450 60 od 5; iii E 4+ 504 65 75 675 od 5; iv E 4+ 654 500 + 000 85 + 0 od 5; v E 4+ 654 65 55 45 454 od 5.

5. { E a } i ealizable Let {b } be a give equece of itege, ad let {a } be defied by a b ad a b + a b + + a b,,4,... If {a } i alo a equece of itege, followig [] we ay that {b } i a Newto-Eule equece. Lea 5.. See [4, Lea 5.]. Let {b } be a equece of itege. The the followig tateet ae equivalet: i {b } i a Newto-Eule equece. ii d µ d bd 0 od fo evey N. iii Fo ay ie ad α, N with we have b α b α od α. iv Fo ay,t N ad ie with t we have b b od t. v Thee exit a equece {c } of itege uch that b d dc d fo ay N. Poof. Fo [, Theoe ] o [] we ow that i, ii ad iii ae equivalet. Clealy iii i equivalet to iv. Uig Möbiu iveio foula we ee that ii ad v ae equivalet. So the lea i oved. Let {b } be a equece of oegative itege. If thee i a et X ad a a T : X X uch that b i the ube of fixed oit of T, followig [7] ad [] we ay that {b } i ealizable. I [7], Pui ad Wad oved that a equece {b } of oegative itege i ealizable if ad oly if fo ay N, d µ d b d i a oegative itege. Thu, uig Möbiu iveio foula we ee that a equece {b } i ealizable if ad oly if thee exit a equece {c } of oegative itege uch that b d dc d fo ay N. I [] J. Aia de Reya howed that {E } i a Newto-Eule equece ad { E } i ealizable. Lea 5.. See [6,.0]. Fo N ad 0 x we have E x 4! i + πx π π + 0 + +. Taig x 4 i Lea 5. ad alyig Theoe. we deduce 5. 0 [ ] + + E π +.! 4 Theoe 5.. Let a, N. The E a > 4+ a! π + a + + > 0

ad E a E a < 4+ a! π + a Poof. By Theoe. ad Lea 5. we have a E a 4+ a! π + 4+ a! π + 0 a 4a 4! π + i +π a + + < 4+ a! π + + + 4+ a! π + + π i a Fo {0,,...,a } we have i +π a Thu, i i +π a π 0 + + a + a +. i +π a 4a + + + 4a + + + 4a + a + + +. > 0 ad o + π a 4a + + + > 0. 4a + a + + + E a > 4+ a! π + a + + i π a. It i well ow that ix π x fo 0 x π. Thu i π a a. So the fit iequality i tue. Sice a a < a + π i a 4a + + + 4a + a + + + 4a + + + 4a + 4a + + + + + < + a +, cobiig the above we obtai the eaiig iequality. Theoe 5.. Let N with. The + E > 0 ad + E > 0. Poof. Fo 0 we ee that 8 + + 8 + + 8 + 5 + + 8 + 7 +

Thu, 8 + + + 8 + 7 + 8 + + 8 + 7 + 8 + + + 8 + 5 + 8 + + 8 + 5 + > 8 + + + 8 + 7 + 8 + + 8 + 5 + 8 + + 8 + 5 + + 8 + 4 + + 8 + 4 + 8 + + 8 + 5 + > 0. + 0 [ ] + + 8 + + 8 + + 8 + 5 + + 8 + 7 + Now alyig 5. we deduce + E > 0. Siilaly, fo 0 we have + + + 5 + + 7 + + > 0. + + Thu, uig Lea 5. ad Theoe. we obtai + + E π + 4 6! E 6 π + 4! + i + π 6 0 + + > 0. + + + 5 + + 7 + + + + > 0. Hece, + E > 0. The oof i ow colete. Theoe 5.. Let a be a oitive itege. Fo ay ie divio of N we have E a Ea / od od. Hece {E a } i a Newto-Eule equece. Poof. Suoe ad 0 with 0. Fo Theoe. we ee that E a Ea 0 od fo ad N. It i well ow that E. Thu, uig Theoe. we ee that E a a E 0 + a E od. Hece, E a Ea 0 E a 0 E a od. Now uoe that i a odd ie divio of ad with. If a, by Theoe. ad the fact Z fo we have E a a a + a E a od 4

ad / a + E a Sice a, we have a a E a od. a a ϕ + a a od. Thu E a Ea / od. Let u coide the cae a. Suoe that A {0,,...,a } i give by a A. Fo Lea 4. we ow that fo a give oegative itege b, f a +b E +b a A a a +b E +b A a +b i a -egula fuctio. By [0, Coollay.] we have f f 0 od. Thu, uig Theoe. we obtai 5. E a +b Ea b od fo b. A, uig 5. we ee that E a Ea Ea + E a E a / od. Now uttig all the above togethe with Lea 5. we obtai the eult. Theoe 5.4. Let a N. The { E a } i ealizable. Poof. Suoe that i a ie divio of ad t od. Fo Theoe 5. we ow that E a Ea / od t. It i eaily ee that / od t. Thu, E a / E a / od t. Hece, uig Lea 5. we ow that { E a } i a Newto-Eule equece ad o d µ d d E a d Z. By Theoe 5., E a > 0. Now it eai to how that d µ d d E a d 0. Fo.0 we have E a a ad E a 4 4a + 8a. Thu the iequality i tue fo,. Fo ow o we aue. Obeve that + a < a ad + a+ + + 7 6 7 fo N. Uig Theoe 5. we ee that fo N, 5. Hece 6 7 4+ a! π + < E a < 4+ a +! π +. µ/d d E a d d 5

E a E a + d,d [/] d 6 7 6a π! 4a µ/d d E a d d E a d > 6 7 4+ a! π + [/] π d 6 7 6a π! { + + 4a 4a d! π π 4a Fo a we have 4a > 4a [ π π ]+ 4a ad π + + 4 5 6 > 7 6 [/] d π 7 6 π 4 4a π /4 6/π 7 6 π 4 4 d+ a d+ d! π d+ π [ ]+ 4a π 4a π 4a /π. Thu, fo the above we deduce d µ d d E a d > 0. Fo a we ee that 4 7 + + π 4 + 7 > π 6 6 π 4 4 π 4 π [ ]+ 4 π 7 > 4/π 6 ad o d µ d d E a d > 0 by the above. Now uaizig the above we ove the theoe. 4/π > 0 Acowledgeet. The autho tha the efeee fo hi helful coet ad valuable uggetio o iovig Theoe.. Refeece [] J. Aia de Reya, Dyaical zeta fuctio ad Kue coguece, Acta Aith. 9 005, 9-5. [] B.S. Du, S.S. Huag ad M.C. Li, Geealized Feat, double Feat ad Newto equece, J. Nube Theoy 98 00, 7-8. [] R. Evall A coguece o Eule ube, Ae. Math. Mothly 89 98, 4. [4] H.W. Gould, Cobiatoial Idetitie, A Stadadized Set of Table Litig 500 Bioial Coefficiet Suatio, Rev. Ed., Mogatow Pitig ad Bidig Co., Wet-Vigiia, 97. 6 }.

[5] K. Ielad ad M. Roe, A Claical Itoductio to Mode Nube Theoy d editio, Sige, New Yo, 990,.,48. [6] W. Magu, F. Obehettige ad R.P. Soi, Foula ad Theoe fo the Secial Fuctio of Matheatical Phyic d editio, Sige, New Yo, 966,. 5-. [7] Y. Pui ad T. Wad, Aithetic ad gowth of eiodic obit, J. Itege Seq. 400, At. 0.., 8. [8] M.A. Ste, Zu Theoie de Euleche Zahle, J. Reie Agew. Math. 79 875, 67-98. [9] Z.H. Su, Coguece fo Beoulli ube ad Beoulli olyoial, Dicete Math. 6 997, 5-6. [0] Z.H. Su, Coguece coceig Beoulli ube ad Beoulli olyoial, Dicete Al. Math. 05000, 9-. [] Z.H. Su, O the oetie of Newto-Eule ai, J. Nube Theoy 4005, 88-. [] Z.H. Su, Coguece ivolvig Beoulli olyoial, Dicete Math. 08008, 7-. [] Z.H. Su, Eule ube odulo, Bull. Aut. Math. Soc. 8 00, -. [4] Z.H. Su, Idetitie ad coguece fo a ew equece, It. J. Nube Theoy, to aea. [5] J. Ubaowicz ad K.S. Willia, Coguece fo L-Fuctio, Kluwe Acadeic Publihe, Dodecht, Boto, Lodo, 000. [6] S.S. Wagtaff J., Pie divio of the Beoulli ad Eule ube, i: M.A. Beett et al. Ed., Nube Theoy fo the Milleiu, vol. III Ubaa, IL, 000, A K Pete, 00,. 57-74. 7