Optimization of Conjugated-Polymer-Based Bulk Heterojunctions

Similar documents
The influence of materials work function on the open circuit voltage of plastic solar cells

Published in: ELECTRONIC PROPERTIES OF NOVEL MATERIALS - PROGRESS IN MOLECULAR NANOSTRUCTURES

Vikram Kuppa School of Energy, Environmental, Biological and Medical Engineering College of Engineering and Applied Science University of Cincinnati

Organic Photovoltaic Devices. Hole Transfer Dynamics in. Maxim S. Pshenichnikov. Jan C. Hummelen. Paul H.M. van Loosdrecht. Dmitry Paraschuk (MSU)

University of Groningen. Cathode dependence of the open-circuit voltage of polymer Mihailetchi, V. D.; Blom, P. W. M.; Hummelen, Jan; Rispens, M. T.

Organic Solar Cells. All Organic solar cell. Dye-sensitized solar cell. Dye. τ inj. τ c. τ r surface states D*/D + V o I 3 D/D.

Towards a deeper understanding of polymer solar cells

Global warming in the last millennium

Thin Solid Films (2004) precursor. Lenneke H. Slooff *, Martijn M. Wienk, Jan M. Kroon

Improvement of Photovoltaic Properties for Unmodified Fullerene C 60 -Based Polymer Solar Cells by Addition of Fusible Fullerene

Recombination-Limited Photocurrents in Low Bandgap Polymer/Fullerene Solar Cells Lenes, Martijn; Morana, Mauro; Brabec, Christoph J.; Blom, Paul W. M.

Device physics of polymer:fullerene bulk heterojunction solar cells Bartesaghi, Davide

Charge transport in MDMO-PPV:PCNEPV all-polymer solar cells

Modelling MEH-PPV:PCBM (1:4) bulk heterojunction solar cells

OPV Workshop September 20, Materials for Polymer Solar Cells: Achievements and Challenges. Wei You

University of Groningen

University of Wollongong. Research Online

Electronic Supplementary Information (ESI)

Planar Organic Photovoltaic Device. Saiful I. Khondaker

Photoconductive Atomic Force Microscopy for Understanding Nanostructures and Device Physics of Organic Solar Cells

Organic solar cells based on conjugated polymer/fullerene interpenetrating networks

Charge dynamics in solar cells with a blend of p-conjugated polymer-fullerene studied by transient photo-generated voltagew

Investigation of three important parameters on performance of organic solar cells based on P3HT:C 60

Citation for published version (APA): Mihailetchi, V. D. (2005). Device physics of organic bulk heterojunction solar cells s.n.

SCAPS Simulation of P3HT:Graphene Nanocomposites-Based Bulk-Heterojunction Organic Solar Cells

Introduction to Organic Solar Cells

Conjugated Polymers Based on Benzodithiophene for Organic Solar Cells. Wei You

Effects of Intercalation on the Hole Mobility of Amorphous Semiconducting Polymer Blends

Ultrafast Electron Transfer and Decay Dynamics in a Small Band Gap Bulk Heterojunction Material**

University of Groningen. Molecular Solar Cells Hummelen, Jan. Published in: EPRINTS-BOOK-TITLE

Role of coherence and delocalization in photo-induced electron transfer at organic interfaces

Development of active inks for organic photovoltaics: state-of-the-art and perspectives

Electronic Supplementary Information

Charge separation in molecular donor acceptor heterojunctions

Supporting Information

High-Mobility n-channel Organic Field Effect Transistors based on Epitaxially Grown C 60 Films

Citation for published version (APA): Lenes, M. (2009). Efficiency enhancement of polymer fullerene solar cells Groningen: s.n.

The driving force dependence of charge Carrier dynamics in donor-acceptor Organic photovoltaic systems using Optical and electronic techniques

Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solarcell

Supporting Information. Fully Solution-Processed Semitransparent Organic Solar Cells with a Silver Nanowire Cathode and a Conducting Polymer Anode

Organic Semiconductors for Photovoltaic Applications

Dielectric constant measurement of P3HT, polystyrene, and polyethylene

Organic Electronics. Polymer solar cell by blade coating

ORGANIC-BASED LIGHT HARVESTING ELECTRONIC DEVICES

Recent advancement in polymer solar cells

Electronic Supplementary Information. inverted organic solar cells, towards mass production

POLYMER-FULLERENE BASED BULK HETEROJUNCTION P3HT:PCBM SOLAR CELL: THE INFLUENCE OF PTU AS A CHEMICAL ADDITIVE ON PHOTOVOLTAIC PERFORMANCE

Comparative Study of APFO-3 Solar Cells Using Monoand Bisadduct Fullerenes as Acceptor

Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films

Charge Extraction from Complex Morphologies in Bulk Heterojunctions. Michael L. Chabinyc Materials Department University of California, Santa Barbara

ORGANIC NANOMATERIALS FOR EFFICIENT BULK HETEROJUNCTION SOLAR CELLS

International Journal of Nano Dimension

Effect of Composition on Conjugation Structure and Energy Gap of P3HT:PCBM Organic Solar Cell

Supporting Information

The Current Status of Perovskite Solar Cell Research at UCLA

Fabrication and Characteristics of Organic Thin-film Solar Cells with Active Layer of Interpenetrated Hetero-junction Structure

The influence of doping on the performance of organic bulk heterojunction solar cells

Absorbance/Transmittance/Reflectance of PCDTBT:PC 70 BM Organic Blend Layer

On the Morphology of Polymer-Based Photovoltaics

Mesoporous titanium dioxide electrolyte bulk heterojunction

Organic solar cells. State of the art and outlooks. Gilles Horowitz LPICM, UMR7647 CNRS - Ecole Polytechnique

К вопросу о «горячей диссоциации»

Supporting Information for

Device physics of polymer Blom, Paul W. M.; Mihailetchi, Valentin D.; Koster, Lambert; Markov, Denis E.

Citation for published version (APA): Koster, L. J. A. (2007). Device physics of donor/acceptor-blend solar cells s.n.

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample.

Accurate Measurement and Characterization of Organic Solar Cells**

Making OLEDs efficient

Advances on the Synthesis of Small Molecules. as Hole Transport Materials for Lead Halide. Perovskite Solar Cells.

Mini-project report. Organic Photovoltaics. Rob Raine

Novel device Substrates and Materials for Organic based Photovoltaics

Influence of nanomorphology on the photovoltaic action of polymer fullerene composites Chirvase, D.; Parisi, J.; Hummelen, Jan; Dyakonov, V.

Highly Efficient Organic Solar Cells Using Solution-Processed Active Layer with Small Molecule Donor and Pristine Fullerene

Electronic Supplementary Information. Thermal Annealing Reduces Geminate Recombination in TQ1:N2200 All- Polymer Solar Cells

doi: /

Doping a D-A Structural Polymer Based on Benzodithiophene and Triazoloquinoxaline for Efficiency Improvement of Ternary Solar Cells

Supplementary Materials for

What will it take for organic solar cells to be competitive?

CHARGE CARRIERS PHOTOGENERATION. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015

Diffusion-enhanced hole transport in thin polymer light-emitting diodes Craciun, N. I.; Brondijk, J. J.; Blom, P. W. M.

Plastic Electronics. Joaquim Puigdollers.

Electron transfer optimisation in organic solar cells

SUPPLEMENTARY INFORMATION

Поляризационная спектроскопия

Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells**

1. Depleted heterojunction solar cells. 2. Deposition of semiconductor layers with solution process. June 7, Yonghui Lee

Nanoparticle polymer and polymer polymer blend composite photovoltaics

Spiro-Configured Bifluorenes: Highly Efficient Emitter for UV Organic Light-Emitting Device and Host Material for Red Electrophosphorescence

Highly efficient hybrid perovskite solar cells by interface engineering

SUPPLEMENTARY INFORMATION

Macromolecular Research, Vol. 14, No. 5, pp (2006)

Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer

HKBU Institutional Repository

Goal for next generation solar cells: Efficiencies greater than Si with low cost (low temperature) processing

Electronic Supplementary Information. Au/Ag Core-shell Nanocuboids for High-efficiency Organic Solar Cells with Broadband Plasmonic Enhancement

Published in: Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002

University of Groningen

Organic Electronic Devices

Supporting Information

Incomplete Exciton Harvesting from Fullerenes in Bulk Heterojunction Solar Cells

Transcription:

ptimization of Conjugated-Polymer-Based Bulk Heterojunctions J.C. (Kees) Hummelen Molecular Electronics Materials Science Centre Plus University of Groningen, The Netherlands GCEP Solar Energy Workshop ct. 18 18, 2004 Stanford University

~ 20 nm ~ 500 nm SUBSTRATE Al CPC BLEND TC Introduction, Morphology, Mobilities, Improving V oc, Improving I sc, - N.S.Sariciftci, A.J. Heeger, USPatents 1992/1993 - G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789-91 (1995) - S. E. Shaheen, C. J. Brabec, F. Padinger, T. Fromherz, J. C. Hummelen, N. S. Sariciftci, Appl. Phys.Lett. 78, 841 (2001).

pening the box of Pandora: from bilayer to mixture p/n p:n metal top electrode transparent bottom electrode glass - D A Light G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789 (1995)

Basic processes in a PV cell h+ eexc Electrode 1 ito n Electrode 2 Light

Commonly used PPVs EH MEH-PPV M DM MDM-PPV (C 1 C 10 PPV) M

The standard fullerene acceptor Microsoft owerpoint Presentatio PCBM A highly processable methanofullerene (50-80 weight % of the D:A blend!) Available from Nano-C Inc. (Westwood, Mass) nano-c.com

PCBM (PhCl) crystal structure Fullerene moieties at < 10 Å in THREE dimensions Spheres: orientation always K! M.T. Rispens, A. Meetsma, R. Rittberger, C.J. Brabec, N.S. Sariciftci, J.C. Hummelen, Chem. Commun. 2116-2118 (2003)

SCLC: Experimental and calculated (solid lines) J-V characteristics of IT/PEDT:PSS/PCBM/LiF/Al devices with thicknesses L=90 nm and 170 nm (symbols),using V bi =1.4 ev and V Rs =30 Ω The device band diagram is indicated in the inset. The electron transport is described by SCLC, with an electron mobility µ e=2.0 10-7 m 2 /Vs and a dielectric constant ε r =3.9. Charge carrier mobility in PCBM (MDM-PPV: holes µ h = 5 10-7 cm 2 /Vs) PCBM: electrons µ e = 2 10-3 cm 2 /Vs (C 60 films: 8.10-2 cm 2 /Vs ; C 60 single crystals: 0.5 cm 2 /Vs) Mobility measurements on PCBM films i.e. PCBM does 4000 times better than MDM-PPV! Average hopping distance in PCBM ~ 3 nm! Mihailetchi, van Duren, Blom, Hummelen, Janssen, Kroon, Rispens, Verhees, Wienk, Adv. Funct. Mat. 13, 43-46 (2003)

Charge carrier mobility in blend µ [m 2 /Vs] 10-6 10-7 10-8 10-9 10-10 10-11 T=295K µ e µ h µ h pure MDM-PPV 20 30 40 50 60 70 80 90 100 weight percentage PCBM [wt.-%] enhanced intermolecular interaction by adding PCBM. MDM-PPV MDM-PPV:PCBM C. Melzer et al., Adv. Funct. Mat., (accepted) M. Kemerink et al., Nano Lett., 2003,3, 1191 electron mobility increases due to the increase number of percolated pathways. more balanced transport: µ e 10 µ h.

Morphology: influence of spin cast solvent: a from toluene MDM-PPV:PCBM from chlorobenzene b 0.5 µm 0.5 µm Surface Height (nm) 8 4 0-4 0.0 0.5 1.0 1.5 2.0 2.5 Distance (µm) Surface Height (nm) 8 4 0-4 0.0 0.5 1.0 1.5 2.0 2.5 Distance (µm)

Morphology: influence of spin cast solvent: 0 Active layer PEDT LiF Aluminum Glass IT - SMU + Current Density (ma/cm 2 ) -1-2 -3-4 -5 from toluene from chlorobenzene -6 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Voltage (V) S. E. Shaheen, C. J. Brabec, F. Padinger, T. Fromherz, J. C. Hummelen, N. S. Sariciftci, Appl. Phys.Lett. 78, 841-3 (2001).

Morphology control: compatibilizing with the PCBX series PCBM PCBE PCBPr PCBEH PCBDM H

Dropcasting using different acceptors Gilch-PPV/PCBM Toluene 1:4 Gilch-PPV/PCBDM Toluene 1:4 2001 01096 2002 01505 TEM Unfiltered T. Martens, Z. Beelen, J. D Haen, J. Manca, IMEC

Dropcasting using different acceptors Gilch-PPV/PCBM Chlorobenzene 1:4 2001 01078 Gilch-PPV/PCBDM Chlorobenzene 1:4 2002 01521 T. Martens, Z. Beelen, J. D Haen, J. Manca, IMEC TEM Unfiltered

The photoinduced LUM-LUM electron transfer process (from excited donor) Light E ref LUM HM V oc(max) D A Anode Cathode

Improving V oc E ref V oc(max) D A Anode Cathode is there some truth in this picture?

Soluble fullerene derivatives with varying acceptor strength N N PCBM-[6,6] EH-Azafulleroid-[5,6] EH-Ketolactam

PCBM E red tuning CH 3 CH 3 CH 3 CH 3 CH 3 CH 3 CH 3 CH 3 CH 3 Joop Knol, Floris Kooistra

V oc versus E red acceptor in MDM-PPV/acceptor cells (CB) 900 800 2,3,4-(Me) 3 PCBM 3,4-(Me). 2 PCBM, TCBM PCBM PCBM V oc 700 AF C 60 600 KL -1.15-1.10-1.05-1.00-0.95 E red vs Fc/Fc +

Higher fullerenes: [70]PCBM M.M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal, and R. A. J. Janssen, Angew. Chemie 42, 3371-5 (2003)

The photoinduced HM-HM electron transfer process (to excited acceptor) E vac LUM Light V oc(max) HM D A Anode ~ hole transfer Cathode

IPR Fullerenes C 60 -C 80 (calculated)

UV-Vis spectrum of [60]PCBM 50 extinction coefficient / L -1 g cm -1 40 30 20 10 0 300 400 500 600 700 800 wavelength / nm

Synthesis of [70]PCBM Me NNHTs base, C 70 DCB Me + + Me Me 85 % 15 % (chiral)

UV-Vis spectra of [60]PCBM and [70]PCBM 50 extinction coefficient / L -1 g cm -1 40 30 20 10 0 300 400 500 600 700 800 wavelength / nm [60]PCBM:MDM-PPV (4:1, w/w) and [70]PCBM:MDM-PPV (4:1, w/w) (normalized) All in toluene

PL decay of the fullerene emission at 720 nm of [70]PCBM:MDM-PPV (4:1 w/w) films Counts 10000 1000 PL quenching: 0, 30, 60, 95 % 100 10 0 1 2 3 4 Time / ns Spun from chlorobenzene, o-xylene, and DCB. Yellow: pristine [70]PCBM film

AFM tapping mode height images [70]PCBM:MDM-PPV (4:1 w/w) films on glass CB z-range = 86 nm rms roughness = 12 nm o-xylene z-range = 37 nm rms roughness = 7 nm DCB z-range = 8.2 nm rms roughness = 1.0 nm 10000 Counts 1000 100 10 0 1 2 3 4 Time / ns

Spectral response (EQE) of IT/PEDT-PSS/fullerene:MDM-PPV/LiF/Al cells 0.7 0.6 0.5 0.4 EQE 0.3 0.2 0.1 0.0 400 500 600 700 800 900 wavelength / nm [70]PCBM:MDM-PPV cells, spun from CB and DCB [60]PCBM: MDM-PPV cell spun from CB; active areas = 0.1 cm 2

I / V characteristics of [70]PCBM:MDM-PPV devices Current Density / macm -1 20 15 10 5 0-5 1000 10 0.1 1E-3 1E-5-2 -1 0 1 2 V C = 0.77 V I SC = 7.6 ma/cm 2 FF = 0.51 η = 3.0 % M.M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal, and R. A. J. Janssen, Angew. Chemie 42, 3371-5 (2003) -10-1.0-0.5 0.0 0.5 1.0 Voltage / V [70]PCBM Available from Nano-C Inc. (Westwood, Mass) nano-c.com

Morphology of the bulk heterojunction Formation phases, domain sizes, percolation, wetting, processing, annealing, thickness Efficiency exciton diffusion, charge separation, charge recombination, (balanced) mobilities Stability phase separation (crystallization), (photo-)chemistry

Some provoking remarks No theoretical grounds for inferior efficieny of molecular devices Higher efficiency => improved stability Molecular materials offer infinite architectural opportunities (even for 3 rd generation tricks) General: 225M$ is very attractive! Beware of groups that not have a real focus on sustainable energy? (PV in this case)

Joop Knol Minze T. Rispens Floris Kooistra Luis Sanchez Jan Alma Patrick van t Hof Valentin Mihailetchi Paul Blom (RuG) Paul van Hal René Janssen (TU/e) Acknowledgments Acknowledgments Jan M. Kroon Wiljan Verhees Martijn Wienk (ECN) Christoph Brabec (now Siemens/Konarka) Serdar Sariciftci (Uni Linz) David Kronholm Henning Richter (Nano-C) Novem (The Netherlands rganization for Energy and the Environment) E.E.T. ( Economy, Ecology, Technology by Dutch EZ, C&W, VRM depts)