Land Mass Change along the Bangladesh Coastline

Similar documents
COUNTRY PRESENTATION ON MR JAYNAL ABEDIN JOINT SECRETARY ( WORKS & DEVELOPMENT ) MINISTRY OF DEFENCE

CORRELATION BETWEEN TEMPERATURE CHANGE AND EARTHQUAKE IN BANGLADESH

... Asia. Based on Bloom s Taxonomy. Human & Movement. Location Place. Regions. Environment. Interactions

About places and/or important events Landmarks Maps How the land is, hills or flat or mountain range Connected to maps World Different countries

Warmup. geography compass rose culture longitude

2 Georgia: Its Heritage and Its Promise

What on Earth is Geography? Using the Five Themes of Geography to Study the Continent of Asia.

Subject Overview

Texas Geography. Understanding the physical and human characteristics of our state

GRAPHICAL PRESENTATION OF AGRO-CLIMATIC DATA. Table 1. Month wise average maximum and minimum temperature in Dhaka, Bangladesh

GRADE 6 GEOGRAPHY TERM 1 LATITUDE AND LONGITUDE (degrees)

Warm Up Vocabulary Check

Cardinal and Intermediate Directions:

Urban Centres in Bangladesh: Trends, Patterns and Characteristics. Md. Abdur Rouf 1 Sarwar Jahan 2

Remote Sensing and GIS Technology for Monitoring Bhola Island of Bangladesh

EFFECTIVE TROPICAL CYCLONE WARNING IN BANGLADESH

N05/3/GEOGR/HP2/ENG/TZ0/XX/Q GEOGRAPHY HIGHER LEVEL PAPER 2. Monday 7 November 2005 (morning) 2 hours 30 minutes INSTRUCTIONS TO CANDIDATES

Prior Review Thresholds

N07/3/GEOGR/HP2/ENG/TZ0/XX/Q+ Geography Higher level. Tuesday 13 November 2007 (morning) 2 hours 30 minutes

Maps and Globes. By Kennedy s Korner

Disaster Management and Spatial Data An Experience of Sri Lanka for Joint project team meeting 2012

Geography. Programmes of study for Key Stages 1-3

Storm Surge Modelling based on Analysis of Historical Cyclones for Patuakhali District of Bangladesh

Brazil The country of Brazil is used to consider the different climatic conditions that can occur and why that is. Sport

Software requirements * :

Map Skills and Geographic Tools

Country Report: Bangladesh

What Is a Globe? Hemispheres. Main Idea Globes and maps provide different ways of showing features of the earth. Terms to Know

Inquiry: Sumatran earthquakes with GPS Earth Science Education

Geography Skills Progression. Eden Park Primary School Academy

Hurricanes. Cause: a low pressure storm system over warm ocean water. Effect: potential massive widespread destruction and flooding.

Volcanic Hazards of Mt Shasta


Word Cards. 2 map. 1 geographic representation. a description or portrayal of the Earth or parts of the Earth. a visual representation of an area

Monitoring Lower Meghna River of Bangladesh using Remote Sensing and GIS Technology

UNIT 1 THE BASICS OF GEOGRAPHY

What a Hurricane Needs to Develop

Morphological Changes of the Offshore Islands of Western Part of Meghna Estuary over the Years

Sec$on 1: Geography and Early China. How does China s geography affect the culture?

The Indian Ocean. Copyright 2010 LessonSnips

Name Period Part I: INVESTIGATING OCEAN CURRENTS: PLOTTING BUOY DATA

SOIL FERTILITY STATUS OF DIFFERENT AGRO-ECOLOGICAL ZONES

How Will Melting Ice Sheets Affect Us?

Year 34 B2 Geography - Continents and Oceans 2018 Key Skills to be covered: Taken from Level 3 Taken from Level 4

Module 7, Lesson 1 Water world

Tuition, Medical and Behaviour Support Service

Chapter 21 Southwest Asia: Harsh & Arid Lands

Range of Opportunities

The World of Geography Pre-Test/Study Guide Chapter 1 Test

Hurricane Katrina Tracking Lab

Earthquake Investigation

Critical Thinking. about. GeoGRAPHY. United States, Canada, and Greenland. Jayne Freeman

GEOGRAPHY POLICY STATEMENT. The study of geography helps our pupils to make sense of the world around them.

2 Earth s Changing Continents

Weathering, Erosion, and Deposition

EQ: Discuss main geographic landforms of the U.S. & Canada and examine varied landforms in relation to their lifestyles.

Map Skills Unit. Note taking unit

Geography GCSE. Year 9 Term and Topic Unit Content Homework Opportunities

News Release December 30, 2004 The Science behind the Aceh Earthquake

Subject Area: Geography

GCSE 4242/02 GEOGRAPHY (Specification B) FOUNDATION TIER UNIT 2 SECTION B

A Correlation of. Eastern Hemisphere. Ohio s Learning Standards Social Studies: K-12 Grade 6

Ice Sheets and Sea Level -- Concerns at the Coast (Teachers Guide)

Earth s Changing Continents

A GEOGRAPHIC ASSESSMENT OF MAJOR DISASTER DECLARATIONS ACROSS THE LOWER 48 STATES

The Impact of Geography in South and East Asia

Name: Date: Period: #: Chapter 1: Outline Notes What Does a Historian Do?

Investigation 11.3 Weather Maps

CHAPTER 1: EXPLORING GEOGRAPHY

Dynamic Earth A B1. Which type of plate boundary is located at the Jordan Fault? (1) divergent (3) convergent (2) subduction (4) transform

caused displacement of ocean water resulting in a massive tsunami. II. Purpose

Geography Route Planner

Five Themes of Geography. By PresenterMed

National Disaster Management Centre (NDMC) Republic of Maldives. Location

Saline Water Intrusion in Coastal Aquifers: A Case Study from Bangladesh

SUBJECT : Geography Topics: Learning Outcomes:

Reading a Map in Any Language. Kathy Sundstedt and Dawn Brown School not available. Content Area (Req.): Geography Unit (Opt.):

Mapping Coastal Change Using LiDAR and Multispectral Imagery

Wayne E. Sirmon GEO 301 World Regional Geography

How Geographers View the World: Human Geography. ESSENTIAL QUESTION: How does geography influence the way people live?

Northwestern Consolidated Schools of Shelby County. Curriculum. World Studies (Eastern Hemisphere) Prepared by. Rich Ballard

Paper presented in the Annual Meeting of Association of American Geographers, Las Vegas, USA, March 2009 ABSTRACT

43rd Session of The WMO/ESCAP PANEL on Tropical Cyclones New Delhi, India May, 2016

CHANGING PHYSICAL AND HUMAN LANDSCAPES SAMPLE ASSESSMENT MATERIALS

Module 7, Lesson 1 Water world

M14/3/GEOGR/SP2/ENG/TZ0/XX/Q GEOGRAPHY STANDARD LEVEL PAPER 2. Monday 19 May 2014 (morning) 1 hour 20 minutes INSTRUCTIONS TO CANDIDATES

Unit 1: Basics of Geography Test Review

Monitoring Coastal Change after the Tsunami in Thailand

Barlows Primary School Geography Curriculum Content Key Stage 1 and

Sea Level Rise and Storm surges: High Stakes for a Small Number of Developing Countries

APPLICATION OF NON PARAMETRIC TEST FOR TREND DETECTION OF RAINFALL IN THE LARGEST ISLAND OF BANGLADESH

locate the world s countries, using maps to focus on Europe (including the location of

SMART NOTES ON INDIAN GEOGRAPHY - 1

Colorado CoCoRaHS. Colorado CoCoRaHS. Because Every Drop Counts! November 2014 Volume 2, Issue 11

The Impact of Geography in South and East Asia

HURRICANES AND TORNADOES

SOCIAL STUDIES GRADE 5. I Can Checklist Office of Teaching and Learning Curriculum Division REGIONS AND PEOPLE OF THE WESTERN HEMISPHERE

The Impact of Geography in South and East Asia

Programme of Study and Success Criteria for Key Stage 3 - GEOGRAPHY

4th Grade US Regional Geography First Nine Weeks

Transcription:

Land Mass Change along the Bangladesh Coastline Manar Hasan CE 394K.3 Fall 2016 December 2 nd, 2016

Introduction Motivation Bangladesh is a small country in Asia with a massive population. Always somewhere in the top 10 lists of countries with the highest population (158 million), the country boasts one of the highest population density values in the world; the country is roughly the size of Georgia - 56,977 square miles - but has the population of California, Texas, New York, Florida, Illinois, Pennsylvania, Ohio, Georgia, and Michigan combined. The capital of this country, Dhaka, has a population estimate of about 19 million people, roughly the same as New York City, L.A., Chicago, Houston, Philadelphia, and Phoenix combined, even though it s the size of Waco. There is 115,000 people per square mile in Dhaka, whereas the population density of New York City is 27,000 people per square mile. Figure 1. Location of Bangladesh (shown in green) relative to India. Figure 2. Geography of Bangladesh, with the capital Dhaka starred.

I am also originally from Dhaka, Bangladesh, and my primary motivation for this course project was to use the GIS skills learned in class to be able to tell a story about a significant problem that Bangladesh faces: Dhaka s rapid population growth. Due to a lack of data, the project scope was modified to tell a story about another significant issue facing the Bangladeshi population: fear of losing land mass due to climate change. In 2010, a National Geographic Society report concluded that Bangladesh was among the countries most vulnerable to climate change. Fears have grown over the last few years that Bangladesh, a country in a low-lying coastal region, would lose its land mass and millions of people would be displaced. Figure 3. 2011 Climate Change Vulnerability Index The motivation for the project shifted from telling a story about rapid population growth in one of the densest regions in the world to telling a story about land mass changes in a country deemed to be at highly vulnerable to climate change impacts. Objective The final objective of the project is to tell a story about Bangladesh s land mass changing along the coastlines, and answer the question as to whether Bangladesh is truly at risk of sinking into the ocean. Furthermore, after determining whether a risk of sinking is currently present, this paper aims to gain an

understanding of what factors lead to certain land accretion or erosion behaviors, i.e. are there relationships between Bangladesh s land mass change patterns and major weather events in the region. Data Erosion-Accretion data along the coastline of Bangladesh between the years 1973 and 2015 were provided by the Center for Environmental and Geographic Information Systems (CEGIS) in Dhaka, Bangladesh. The data were provided for 14 coastal districts along the Bangladesh coastline, at 4 different time ranges 1973 to 1984, 1984 to 1996, 1996 to 2006, and 2006 to 2015. This data were provided in the form of Landsat images. The data were used to determine the land mass changes year to year in Bangladesh, to determine risk of sinking land. Data related to major earthquakes and cyclones occurring in the region were also obtained from United States geological Survey Earthquake Catalog and Unisys Weather. These data were used to find patterns between major weather events in the region and erosion-accretion patterns. Methodology To determine whether Bangladesh should be concerned about sinking land at this point in time, the Erosion-Accretion data was tabulated and mapped using ARCGIS. Shapefiles gleaned from Landsat images were also analyzed with ArcGIS geoprocessing tools to determine total areas of erosion and accretion. From these, total area values for Erosion-Accretion were calculated, as well as net rates of land mass change over the years. This was done in the following way: the erosion-accretion values obtained from the data showed values for 14 different coastal districts, all near the Meghna river estuary. From this data, which show erosion mass and accretion mass in each district, the value for erosion was subtracted from accretion to determine net accretion. This net accretion value was divided by the total time range of the data points to determine net accretion rates per year. This process was followed for all districts across all points in time. The process is shown below in flowchart form. Figure 4. Flowchart showing data analysis of erosion-accretion data.

To determine whether these patterns of erosion and accretion throughout Bangladesh s history can be associated with major weather events in the region, the pattern shifts were compared to historical data for major weather events such as earthquakes and cyclones. Results and Discussion Following the methodology previously described, ArcGIS was used to draw maps showing eroded and accreted land. Figure 5. Erosion-Accretion Map from 1973 through 1984.

Figure 6. Erosion-Accretion Map from 1984 through 1996. Figure 7. Erosion-Accretion Map from 1996 through 2006.

Figure 8. Erosion-Accretion Map from 2006 through 2015. The data in the maps were also tabulated and are shown below: Table 1. Erosion-Accretion Data from 1973 through 1984. 1973 to 1984 District Accretion (km 2 ) Erosion (km 2 ) Net Accretion (km 2 ) Accretion rate (km 2 /yr) Bagerhat 12 12 0 0 Barguna 25 24 1 0.1 Barisal 132 88 44 4 Bhola 160 189-29 -2.7 Chandpur 16 53-37 -3.4 Chittagong 85 47 38 3.5 Cox's Bazar 85 2 82 7.5 Feni 12 5 7 0.7 Jhalokati 4 6-2 -0.2 Lakshmipur 43 72-29 -2.6 Noakhali 242 104 138 12.6 Patuakhali 89 178-89 -8.1 Pirojpur 12 3 9 0.8 Shariatpur 20 7 13 1.2 936 790 147 13.3

Table 2. Erosion-Accretion Data from 1984 through 1996. 1984 to 1996 District Accretion (km 2 ) Erosion (km 2 ) Net Accretion (km 2 ) Accretion rate (km 2 /yr) Bagerhat 15 13 1 0.1 Barguna 34 14 20 1.7 Barisal 83 128-45 -3.8 Bhola 174 137 37 3.1 Chandpur 41 45-5 -0.4 Chittagong 78 64 14 1.1 Cox's Bazar 5 45-41 -3.4 Feni 20 7 13 1.1 Jhalokati 5 6-1 -0.1 Lakshmipur 70 37 32 2.7 Noakhali 199 106 93 7.7 Patuakhali 268 71 197 16.4 Pirojpur 3 5-2 -0.2 Shariatpur 13 10 3 0.2 1006 689 317 26.4 Table 3. Erosion-Accretion Data from 1996 through 2006. 1996 to 2006 District Accretion (km 2 ) Erosion (km 2 ) Net Accretion (km 2 ) Accretion rate (km 2 /yr) Bagerhat 11 9 2 0.1 Barguna 16 12 4 0.3 Barisal 99 104-5 -0.4 Bhola 202 147 55 4.6 Chandpur 34 46-12 -1 Chittagong 132 48 84 7 Cox's Bazar 25 11 14 1.2 Feni 10 7 3 0.2 Jhalokati 3 3 1 0.1 Lakshmipur 39 65-26 -2.2 Noakhali 175 116 60 5 Patuakhali 109 60 49 4.1 Pirojpur 2 4-3 -0.2 Shariatpur 7 26-19 -1.5 865 657 207 17.3

Table 4. Erosion-Accretion Data from 2006 through 2015. 2006 to 2015 District Accretion (km 2 ) Erosion (km 2 ) Net Accretion (km 2 ) Accretion rate (km 2 /yr) Bagerhat 6 9-3 -0.3 Barguna 6 19-13 -1.4 Barisal 83 88-5 -0.5 Bhola 137 154-17 -1.8 Chandpur 46 23 23 2.6 Chittagong 120 74 46 5.1 Cox's Bazar 21 6 15 1.7 Feni 5 8-3 -0.4 Jhalokati 2 4-2 -0.2 Lakshmipur 30 86-56 -6.3 Noakhali 246 84 162 18 Patuakhali 46 70-24 -2.7 Pirojpur 1 5-5 -0.5 Shariatpur 21 10 12 1.3 770 640 130 14.4 Looking at the maps and tables presented so far, especially at the total accretion values along the entire coastline, it can be seen that Bangladesh (as a whole) has been adding land mass since the first point in time of available data, i.e. 1973. This leads to the conclusion that, although Bangladesh may truly be in an area of high vulnerability to effects of climate change, the population of Bangladesh has no reason to currently be afraid of the country sinking. Not only is Bangladesh not losing land mass along the coast, but it is actually adding mass, at the rate of about 15 kilometers per year. Now, looking individually at district-level behavior, there were patterns across the different districts that appeared to change from time period to time period. Districts that were experiencing net accretion over a long period of time suddenly shifted to eroding and vice versa. A couple of examples of this behavior follow: Patuakhali went from experiencing significant erosion to about two decades of accretion, before reverting back to a pattern of erosion in the most recent decade. Chandpur experienced overall erosion for three decades, but experienced accretion in the most recent time period. One possible hypothesis postulated was that perhaps there were patterns of accretion or erosion based on the geographic location in relation to the Meghna river, i.e. all districts to the West of the Meghna river behaved in a certain way, while those to the East behaved in another. To investigate this, the tables were modified to separately consider Western and Eastern districts. The resulting data table and graphs analyzing net accretion rates are shown on the following page:

Table 5. Net accretion along all districts along Bangladesh s coast over the years, separated by West/East. 1973 to 1984 1984 to 1996 1996 to 2006 2006 to 2015 East/West of Meghna District Net Accretion (km 2 ) Net Accretion (km 2 ) Net Accretion (km 2 ) Net Accretion (km 2 ) West Bagerhat 0 1 2-3 West Barguna 1 20 4-13 West Barisal 44-45 -5-5 West Bhola -29 37 55-17 East Chandpur -37-5 -12 23 East Chittagong 38 14 84 46 East Cox's Bazar 82-41 14 15 East Feni 7 13 3-3 West Jhalokati -2-1 1-2 East Lakshmipur -29 32-26 -56 East Noakhali 138 93 60 162 West Patuakhali -89 197 49-24 West Pirojpur 9-2 -3-5 West Shariatpur 13 3-19 12 147 317 207 130 Figure 9. Net accretion along coastal districts, separated by location relative to Meghna River. Patterns noticed from separating Eastern and Western districts: Most Western districts are facing mild erosion. Most Eastern districts are experiencing significant accretion

Still, no straight line patterns exist for most districts, i.e. districts that face erosion are not consistently eroding and vice-versa. While this did provide more answers, sudden changes in the erosion-accretion pattern cannot be explained. For that, the second half of the project analysis was performed: comparing these patterns to major weather events in the region. Cyclones Extracting historical cyclone data from Unisys Weather s Hurricane/Tropical Data storage, a table like the following was created for the years between 1973 and 2015: Table 6. Sample data table of historical cyclones in Bangladesh Year Month Day Wind Speeds 1973 11 3 60 11 14 55 12 5 60 1974 11 23 75 1975 6 4-11 7 50 1976 10 15 - The data was compared to the erosion-accretion data to see if there were major cyclones before the end points of the various time ranges. For example, there is a break point in the erosion-accretion data during year 1996, so the cyclone data was checked to see if there were major cyclones on or immediately before 1996, which could change the erosion-accretion pattern. Analyzing the first break point in 1984, there were no significantly different cyclones in the years prior. Significantly different refers to any cyclones that were either more severe than normal or occurring at different times of the year than typical. For that region, typical times of the year are in the fall/winter months and normal severities are near 50 knots. For the second break point in 1996, the years prior had severe and atypically timed cyclones, in the range of 120 knots in wind speeds. For the third break point in 2006, the cyclone behavior in the years prior went back to normal and typical, but in the year just after the break point (2007), Bangladesh experienced its worst ever cyclone, which could have impacted the erosion-accretion behavior for the rest of the time period (2006-2015). Comparing this with the available erosion-accretion data, whether or not the behavior changed from before a particular break point to the next was checked. Meaning, for 1996 (the 2 nd break point, separating the 2 nd and 3 rd date range), it was checked to see if districts that were experience erosion prior to the break started to experience accretion afterwards and vice-versa. The results are shown in the following table:

Table 7. Change in Erosion-Accretion behavior between time range break points. From the table above, I was unable to discern any strong patterns that would suggest that cyclones definitively caused certain erosion or accretion patterns. Earthquakes Change in Erosion- Accretion Behavior Between 1st and 2nd Range Change in Erosion- Accretion Behavior Between 2nd and 3rd Range Extracting earthquake data from the United States Geological Survey s Earthquake Catalog, a list of earthquakes occurring in the region surrounding Bangladesh since 1973 was obtained. A portion is shown below: Table 8. Sample data table for historical earthquakes in Bangladesh region. Change in Erosion- Accretion Behavior Between 3rd and 4th Range Bagerhat No No Yes Barguna No No Yes Barisal Yes No No Bhola Yes No Yes Chandpur No No Yes Chittagong No No No Cox's Bazar Yes Yes No Feni No No Yes Jhalokati No Yes Yes Lakshmipur Yes Yes No Noakhali No No No Patuakhali Yes No Yes Pirojpur Yes No No Shariatpur No Yes Yes Yes 6 4 8 No 8 10 8 time latitude longitude depth mag gap dmin rms net id place 2015-12-15T 23.8301 86.5783 14.79 4.5 171 5.101 0.5 us us10004846 6km E of Gobindpur, India 2015-11-27T 22.5864 94.9855 13.79 4.6 63 3.089 0.57 us us100041qe 54km NNW of Monywa, Burma 2015-11-25T 26.4076 92.9745 54.52 4.7 60 3.666 0.77 us us1000419g 30km SE of Tezpur, India 2015-11-25T 29.6929 89.8692 77.42 4.7 102 1.094 0.57 us us1000415j 47km N of Qiangqinxue, China 2015-11-24T 28.1552 84.7587 8.19 4.6 60 0.661 0.96 us us100040q1 39km E of Lamjung, Nepal

Most of the earthquakes that have occurred in this region in the time period of concern have been of magnitudes around 4 and 5 on the Richter scale. First, it was checked to see if there were any major earthquakes in the region which corresponded to a change in the erosion-accretion behavior; there weren t any significantly larger earthquakes during this time period. Next, the number of earthquakes occurring on or near the break point years was summarized, to see if that was related to the erosion-accretion behavior. The following table shows the data obtained. Table 9. Comparison of number of earthquakes around each time period break point. Given that the number of earthquakes occurring around those times have stayed relatively constant, this avenue of inquiry did not prove fruitful. Summary Number of Earthquakes in/around 1984 140 Number of Earthquakes in/around 1996 143 Number of Earthquakes in/around 2006 134 This project began with the intention of using GIS to tell a story about rapid population growth then evolved into a project that aims to further explore the effect of climate change on Bangladesh s shoreline. Through the use of ArcGIS s geoprocessing tools, erosion-accretion data was used to determine whether Bangladesh was losing or gaining land mass overall. As it turns out, the country is, at this point in time, experiencing land mass additions of about 15 kilometers per year. Thus, fears of a sinking country are not corroborated by the data. After trying to determine if erosion and accretion behavior differed significantly based on location, it was seen that the Eastern coastline was experiencing accretion overall, while the Western coastline was experiencing more erosion. Then, the project aimed to gain an understanding of factors that may affect the erosion-accretion patterns, such as major weather events in the region. Two specific types of weather events were selected for further investigation: cyclones and earthquakes. The investigation proved inconclusive for both factors. Ideas for further research to build upon the information gathered are: The Meghna river estuary near the coastline is the conglomeration of three separate rivers which run through the country and join near the Indian Ocean. Investigations could look into whether erosion-accretion patterns are related to discharge rates and activities of the three circuits leading to the estuary. Could the flow discharge coming from the Himalayas be impacting erosion-accretion patterns? For cyclones, could the impact be related to not just cyclones in general, but which area of the country the cyclones hit?

References: 1. Center for Environmental and Geographic Information Services (http://www.cegisbd.com/) 2. http://weather.unisys.com/hurricane/ 3. http://earthquake.usgs.gov/earthquakes/search/