Roots and Root Spaces of Compact Banach Lie Algebras

Similar documents
LIE ALGEBRAS: LECTURE 7 11 May 2010

THE ALTERNATIVE DUNFORD-PETTIS PROPERTY FOR SUBSPACES OF THE COMPACT OPERATORS

The Cartan Decomposition of a Complex Semisimple Lie Algebra

PRIME NON-COMMUTATIVE JB -ALGEBRAS

Substrictly Cyclic Operators

Topologies, ring norms and algebra norms on some algebras of continuous functions.

ON INVOLUTIVE LIE ALGEBRAS HAVING A CARTAN DECOMPOSITION

Cartan s Criteria. Math 649, Dan Barbasch. February 26

A PIERI RULE FOR HERMITIAN SYMMETRIC PAIRS. Thomas J. Enright, Markus Hunziker and Nolan R. Wallach

ON COMPLEMENTED SUBSPACES OF SUMS AND PRODUCTS OF BANACH SPACES

UNIQUENESS OF THE UNIFORM NORM

FURTHER STUDIES OF STRONGLY AMENABLE -REPRESENTATIONS OF LAU -ALGEBRAS

Ginés López 1, Miguel Martín 1 2, and Javier Merí 1

The Morozov-Jacobson Theorem on 3-dimensional Simple Lie Subalgebras

LIE ALGEBRA PREDERIVATIONS AND STRONGLY NILPOTENT LIE ALGEBRAS

COMPLEMENTED SUBALGEBRAS OF THE BAIRE-1 FUNCTIONS DEFINED ON THE INTERVAL [0,1]

THE DAUGAVETIAN INDEX OF A BANACH SPACE 1. INTRODUCTION

Fréchet algebras of finite type

ON k-abelian p-filiform LIE ALGEBRAS I. 1. Generalities

Spectrally Bounded Operators on Simple C*-Algebras, II

A New Characterization of Boolean Rings with Identity

ON MATRIX VALUED SQUARE INTEGRABLE POSITIVE DEFINITE FUNCTIONS

arxiv:math/ v1 [math.fa] 26 Oct 1993

THE DUAL FORM OF THE APPROXIMATION PROPERTY FOR A BANACH SPACE AND A SUBSPACE. In memory of A. Pe lczyński

2.4 Root space decomposition

Group Gradings on Finite Dimensional Lie Algebras

arxiv: v1 [math.rt] 14 Nov 2007

Regular Lie groups and a theorem of Lie-Palais

CHAPTER 6. Representations of compact groups

IRREDUCIBLE REPRESENTATIONS OF SEMISIMPLE LIE ALGEBRAS. Contents

Lie Algebras. Shlomo Sternberg

REAL RENORMINGS ON COMPLEX BANACH SPACES

Boundedly complete weak-cauchy basic sequences in Banach spaces with the PCP

Singular Value Inequalities for Real and Imaginary Parts of Matrices

ON ABELIAN SUBALGEBRAS AND IDEALS OF MAXIMAL DIMENSION IN SUPERSOLVABLE LIE ALGEBRAS

Representations of semisimple Lie algebras

Móstoles, Madrid. Spain. Universidad de Málaga. Málaga. Spain

5 Compact linear operators

APPROXIMATE WEAK AMENABILITY OF ABSTRACT SEGAL ALGEBRAS

A DECOMPOSITION FORMULA FOR EQUIVARIANT STABLE HOMOTOPY CLASSES

arxiv: v1 [math.co] 25 Jun 2014

Lecture 11 The Radical and Semisimple Lie Algebras

EXTENSION OF BILINEAR FORMS FROM SUBSPACES OF L 1 -SPACES

General Mathematics Vol. 16, No. 1 (2008), A. P. Madrid, C. C. Peña

Reducibility of generic unipotent standard modules

X-RAY TRANSFORM ON DAMEK-RICCI SPACES. (Communicated by Jan Boman)

Representations and Derivations of Modules

On Shalom Tao s Non-Quantitative Proof of Gromov s Polynomial Growth Theorem

Lemma 1.3. The element [X, X] is nonzero.

SPECTRAL THEORY EVAN JENKINS

ALGORITHMIC INVARIANTS FOR ALEXANDER MODULES

LIE ALGEBRAS: LECTURE 3 6 April 2010

n WEAK AMENABILITY FOR LAU PRODUCT OF BANACH ALGEBRAS

The projectivity of C -algebras and the topology of their spectra

arxiv: v1 [math.ra] 10 Nov 2018

RIGHT-LEFT SYMMETRY OF RIGHT NONSINGULAR RIGHT MAX-MIN CS PRIME RINGS

Lecture Notes Introduction to Cluster Algebra

REFLEXIVITY OF THE SPACE OF MODULE HOMOMORPHISMS

Inner product on B -algebras of operators on a free Banach space over the Levi-Civita field

Topics in Representation Theory: Roots and Complex Structures

LIMITING CASES OF BOARDMAN S FIVE HALVES THEOREM

Pre-Hilbert Absolute-Valued Algebras Satisfying (x, x 2, x) = (x 2, y, x 2 ) = 0

On the Irreducibility of the Commuting Variety of the Symmetric Pair so p+2, so p so 2

SEMISIMPLE LIE GROUPS

1 v >, which will be G-invariant by construction.

THE SPECTRAL EXTENSION PROPERTY AND EXTENSION OF MULTIPLICATIVE LINEAR FUNCTIONALS

On the Harish-Chandra Embedding

A 2 G 2 A 1 A 1. (3) A double edge pointing from α i to α j if α i, α j are not perpendicular and α i 2 = 2 α j 2

The only global contact transformations of order two or more are point transformations

JORDAN HOMOMORPHISMS AND DERIVATIONS ON SEMISIMPLE BANACH ALGEBRAS

A CHARACTERIZATION OF THE MOONSHINE VERTEX OPERATOR ALGEBRA BY MEANS OF VIRASORO FRAMES. 1. Introduction

LECTURE 25-26: CARTAN S THEOREM OF MAXIMAL TORI. 1. Maximal Tori

e j = Ad(f i ) 1 2a ij/a ii

René Bartsch and Harry Poppe (Received 4 July, 2015)

Simple Lie algebras. Classification and representations. Roots and weights

A NOTE ON FAITHFUL TRACES ON A VON NEUMANN ALGEBRA

Proper SL(2,R)-actions on homogeneous spaces

THE SPECTRAL DIAMETER IN BANACH ALGEBRAS

ON C*-ALGEBRAS WHICH CANNOT BE DECOMPOSED INTO TENSOR PRODUCTS WITH BOTH FACTORS INFINITE-DIMENSIONAL

(Kac Moody) Chevalley groups and Lie algebras with built in structure constants Lecture 1. Lisa Carbone Rutgers University

Classification of discretely decomposable A q (λ) with respect to reductive symmetric pairs UNIVERSITY OF TOKYO

Decay to zero of matrix coefficients at Adjoint infinity by Scot Adams

arxiv: v1 [math.rt] 15 Oct 2008

MAT 445/ INTRODUCTION TO REPRESENTATION THEORY

10. Cartan Weyl basis

ON OPERATORS WITH AN ABSOLUTE VALUE CONDITION. In Ho Jeon and B. P. Duggal. 1. Introduction

A Leibniz Algebra Structure on the Second Tensor Power

A DECOMPOSITION OF E 0 -SEMIGROUPS

A Criterion for Flatness of Sections of Adjoint Bundle of a Holomorphic Principal Bundle over a Riemann Surface

ON REGULARITY OF FINITE REFLECTION GROUPS. School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

Locally Compact Topologically Nil and Monocompact PI-rings

On classification of minimal orbits of the Hermann action satisfying Koike s conditions (Joint work with Minoru Yoshida)

Topics in Representation Theory: Roots and Weights

L(C G (x) 0 ) c g (x). Proof. Recall C G (x) = {g G xgx 1 = g} and c g (x) = {X g Ad xx = X}. In general, it is obvious that

On p-groups having the minimal number of conjugacy classes of maximal size

One-parameter automorphism groups of the injective factor. Yasuyuki Kawahigashi. Department of Mathematics, Faculty of Science

THE SEMISIMPLE SUBALGEBRAS OF EXCEPTIONAL LIE ALGEBRAS

Representations of Totally Disconnected Groups

On the solvability of groups with four class sizes.

arxiv: v1 [math.oa] 21 Aug 2018

Transcription:

Irish Math. Soc. Bulletin 49 (2002), 15 22 15 Roots and Root Spaces of Compact Banach Lie Algebras A. J. CALDERÓN MARTÍN AND M. FORERO PIULESTÁN Abstract. We study the main properties of roots and root spaces associated to a Cartan subalgebra of a compact Banach Lie algebra. As a consequence, we describe the topologically simple compact Banach Lie algebras having a Cartan decomposition relative to some Cartan subalgebra. 1. Introduction A Banach Lie algebra L is a complex Lie algebra such that its underlying vector space is a Banach space and satisfies [x, y] 2 x y for every x, y L. We shall say that L is compact if the linear operators ad(x) : L L, ad(x)(y) = [x, y], are compact for any x L (see [2, Chapter IV] for a general reference on compact Banach algebras). This paper is a study of such algebras with emphasis, of course, on the infinite dimensional ones. The paper is organized as follows. In the second section we study the roots and root spaces associated to a Cartan subalgebra of a compact Banach Lie algebra, our main results in this section are that the root spaces associated to nonzero roots are one-dimensional and that the only integral multiplies kα of a nonzero root α which are roots are 0 and ±α. In the third section we study the direct limit of a direct system of Banach Lie algebras, we prove the existence of the direct limit (unique up to isometric isomorphism), and we 2000 Mathematics Subject Classification. Primary 17B65, 46H70; Secondary 17B05. Supported by the PCI of the Spanish Junta de Andalucía Estudio analíticoalgebraico de sistemas triples y de pares en diferentes clases de estructuras no asociativas, by the PAI of the Spanish Junta de Andalucía, project number FQM-298, and by the Spanish DGICYT, project number PB97-1497.

16 A. J. Calderón Martín and M. Forero Piulestán study some of its properties. Finally, in the fourth section we obtain a description of infinite dimensional topologically simple compact Banach Lie algebras having a Cartan decomposition L, by approximating L as the direct limit of a suitable family of simple finite dimensional Banach Lie subalgebras. It is shown that this class can be realized as topologically simple Lie subalgebras of certain topologically simple associative Banach algebras. The results turn out to be natural extensions of the finite dimensional theory and the L -algebras theory of Schue (see [7, 8]). 2. Roots and Cartan Decompositions In order to make sense, the definition of Cartan subalgebra given below requires a definition of semisimplicity for infinite dimensional Banach Lie algebras. Following [6], a Banach Lie algebra is said to be semisimple if it has no non trivial abelian closed ideals. We define the annihilator of a Banach Lie algebra L as the closed ideal given by Ann(L) = {x L : [x, y] = 0 for all y L}. It is clear that any semisimple Banach Lie algebra L has zero annihilator, therefore L is also semisimple in the sense given in [7] for L -algebras. We shall say that a Banach Lie algebra L is topologically simple if the product is nonzero and has no nonzero proper closed ideals. In the remainder of this section L will denote a semisimple Banach Lie algebra. A Cartan subalgebra H of L is defined as a maximal abelian subalgebra; let us note that a Cartan subalgebra is necessarily closed. A root of L relative to H is a mapping α : H C such that there exists v α L, v α 0 satisfying [h, v α ] = α(h)v α for any h H. The root space associated to α is the subspace L α = {v α L : [h, v α ] = α(h)v α for any h H}. Given a set S of nonzero roots of L, we shall denote by Sp Z S the set of mappings { n } Sp Z S = p i α i : p i Z and α i S. i=1 We shall say that L has a Cartan decomposition relative to H if L = H α Λ L α, where Λ is the set of all nonzero roots of L relative to H, and for any finite set S Λ we have that Sp Z S Λ is also finite. Suppose that L has a Cartan decomposition L = H α Λ L α. We then

Compact Banach Lie Algebras 17 recover the definition of Cartan subalgebra for finite dimensional Lie algebras, and for Lie algebras of arbitrary dimension given by Billing and Pianzola in [1]. Indeed, H is nilpotent of length two, and it is easy to prove that H is its own normalizer, N(H), taking into account that given x N(H) we have for any h H that [h, x] H α Λ L α = 0. Hence, by the maximal character as abelian subalgebra of H, x H. Let us observe finally that in case that L has an involution our definition of Cartan subalgebra coincides with the one given by Schue for L -algebras in [7], and the one given by De la Harpe for c-involutive Lie algebras in [6, definition 4 on page 32], by adding to H the condition of being also selfadjoint. It is easy to prove that the roots are continuous and linear mappings, the root spaces are closed, the root space associated to the zero root is the Cartan subalgebra and, by the Jacobi identity, that if α + β is a root then [L α, L β ] L α+β and if α + β is not a root then [L α, L β ] = 0. Lemma 1. Let α and β be two nonzero roots of L relative to H. Then we have: (1) There exists n Z such that nα is a root and mα, mα are not roots for any m N such that m > n. (2) There exists p Z such that β + pα is a root and β + qα, β qα are not roots for all q N such that q > p. Proof. For a root γ of L relative to H, we have γ 2. Indeed, γ(h) h for any h H and thus γ = sup γ(h) / h 2. h H (1) If kα is a root, as kα 2 then k 2 α follows easily. and the result (2) If β + kα is a root then 2 β + kα k α β and therefore (2) is clear. Lemma 2. Let L be a semisimple compact Banach Lie algebra, let H be a Cartan subalgebra of L, and let α be a nonzero root of L relative to H. Then the following assertions hold: (1) The dimension of the root space L α is finite; (2) α is a root; (3) [L α, L α ] 0. Proof. (1) Fix 0 h 0 H and 0 v α L α, as ad(h 0 )(v α ) = α(h 0 )v α. Then α(h 0 ) is an eigenvalue of ad(h 0 ) and v α L(α(h 0 )), where L(α(h 0 )) denotes the eigenspace associated to α(h 0 ). Hence

18 A. J. Calderón Martín and M. Forero Piulestán L α L(α(h 0 )). As the operator ad(h 0 ) is compact, dim L(α(h 0 )) is finite and so is dim L α. (2) Let us suppose that α is not a root. Fix 0 h 0 H such that α (h 0 ) 0, and let us consider L := Ch 0 Cv α L jα, where 0 v α L α. It is easy to check that L is a finite dimensional semisimple Lie algebra, Ch 0 is a Cartan subalgebra of L and that L has a Cartan decomposition relative to Ch 0, given by L = Ch 0 L L, where α jα α = α Ch0 and jα = jα Ch0 are roots j=2 of L relative to Ch 0, being then L = Cv α α and L = L jα jα, j 2. It is well known from the theory of finite dimensional split semisimple Lie algebras that if α is a root of L, then α is also. We have therefore a contradiction. The proof of (3) is similar by considering now L := Ch 0 L α L jα. j=1 Lemma 3. Let L be a semisimple compact Banach Lie algebra, let H be a Cartan subalgebra of L, and let α, β be two nonzero roots of L relative to H. Then we have: (1) If β + α and β α are not roots then β(h α ) = 0 for any h α [L α, L α ]; (2) β(h α ) = rα(h α ) with r Q and h α as above. Proof. We obtain (1) as an easy consequence of the Jacobi identity and the identities [L α, L β ] = [L α, L β ] = 0. (2) Let us fix h α = [v α, v α ] with v α L α and v α L α. Let us consider V = L(L β+jα : j Z), the linear space generated by {L β+jα : j Z}. By Lemmas 1-(2) and 2-(1), it is clear that V is a finite dimensional vector space invariant for ad(v α ), ad(v α ) and ad(h α ) = ad(v α )ad(v α ) ad(v α )ad(v α ). The fact that the trace of ad(h α ) on V is 0 gives us the equation mβ(h α ) + kα(h α ) = 0 with m 0 and m, k Z. Hence β(h α ) = k m α(h α). Corollary 1. Let L be a semisimple compact Banach Lie algebra having a Cartan decomposition relative to a Cartan subalgebra H, and let α be a nonzero root. Then α(h α ) 0 for each nonzero h α [L α, L α ]. j=2

Compact Banach Lie Algebras 19 Proof. Let us suppose that α(h α ) = 0. By Lemma 3-(2), β(h α ) = 0 for all roots β and hence [h α, L] = 0. Therefore h α Ann(L) and thus h α = 0, a contradiction. Theorem 1. Let L be a semisimple compact Banach Lie algebra having a Cartan decomposition relative to a Cartan subalgebra H, and let α be a nonzero root. Then L α is one-dimensional and the only integral multiplies kα which are roots are 0 and ±α. Proof. By Lemma 2-(3) we can fix 0 v α L α and 0 v α L α such that 0 h α = [v α, v α ]. Let us consider L = C[v α, L α ] Cv α L jα. From Lemmas 1 and 2 it is easy to check that L is a finite dimensional semisimple Lie algebra invariant for ad(v α ), ad(v α ), and j=1 ad(h α ) = [ad(v α ), ad(v α )]. Since the trace of ad(h α ) on L is 0 and since [h α, v α ] = α(h α )v α, [h α, v jα ] = jα(h α )v jα, and [h α, h ] = 0 for any h C[v α, L α ], we have α(h α )(1 + ( j)d j ) = 0 where d j is the dimension of L jα. By Corollary 1, α(h α ) 0, hence 1 + ( j)d j = 0. Thus 2α, 3α, are not roots and d 1 = 1. Since we can replace α by α in the argument, we have both conclusions of the theorem. The next corollary is now immediate Corollary 2. Under the hypothesis of Theorem 1, if α, β and α + β are nonzero roots of L relative to H then [L α, L β ] = L α+β. 3. Direct Limits of Banach Lie Algebras Let (I, ) be a directed set and let {L i } i I be a family of Banach Lie algebras such that for any i, j I with i j there exists an isometric monomorphism e ji : L i L j such that e ji e ik = e jk and e ii = Id for all i, j, k with k i j. Then we shall say that S = ({L i } i I, {e ji } i j ) is a direct system of Banach Lie algebras.

20 A. J. Calderón Martín and M. Forero Piulestán Given S we define a direct limit, lim S, as a couple (L, {e i } i I ) where L is a Banach Lie algebra, e i : L i L is an isometric monomorphism that satisfies e i = e j e ji and (L, {e i } i I ) is universal for this property in the sense that if (L, {t i } i I ) is another such couple, then there exists a unique isometric monomorphism θ from L to L such that t i = θ e i for all i I. It is clear that if a direct limit exists, then it is unique up to isometric isomorphism. We define the concepts of direct system and direct limit for associative Banach algebras in a similar way. If A is an associative Banach algebra then A will denote the Banach Lie algebra whose underlying vector space and norm agree with that of A and whose product is given by [x, y] = xy yx. As in [3], we can prove that any direct system of Banach Lie algebras S has a direct limit, and state the following results. Theorem 2. Let S = ({A i } i I, {e ji } i j ) be a direct system of associative Banach algebras. Then S = ({A i } i I, {e ji } i j ) is a direct system of Banach Lie algebras and lim S = (lim S). Theorem 3. Let S = ({A i } i I, {e ji } i j ) be a direct system of associative Banach algebras, with {ξ i } i I a family of isometric involutive antiautomorphisms, ξ i : A i A i, such that ξ j e ji = e ji ξ i for i j. Write A = lim S; then: (1) There exists a unique isometric involutive antiautomorphism ξ : A A satisfying ξ e i = e i ξ i for any i I. (2) If we consider the Banach Lie subalgebra of A i, Skw(A i, ξ i ) then Skw(S, ξ) := ({Skw(A i, ξ i )} i I, {e ji Skw(Ai,ξ i)} i j ) is a direct system of Banach Lie algebras and lim (Skw(S, ξ)) = Skw(lim S, ξ). 4. The Description Theorem We proved in [4] that if L is an infinite dimensional simple Lie algebra having a Cartan decomposition (in the sense of 2 for Banach Lie algebras with the only difference that L is now written as L = H L α ), relative to a Cartan subalgebra (in the sense of [1]) H, and α Λ

Compact Banach Lie Algebras 21 such that the nonzero roots spaces are finite dimensional, then L is isomorphic to lim S, where S = ({L i } i I, {i ji } i j ) is a direct system of simple finite dimensional Lie subalgebras of the same type A l, B l, C l or D l. Let us now consider an infinite dimensional topologically simple compact Banach Lie algebra L having a Cartan decomposition relative to a Cartan subalgebra H. By 2, H is also a Cartan subalgebra in the sense of [1]. As consequence of Theorem 1 the nonzero root spaces of L satisfy the condition of being finite dimensional. Hence, there is no problem in refining the argument used in the proof of the above result to obtain that L is isometrically isomorphic to lim S, with S = ({L i } i I, {i ji } i j ) a direct system of simple finite dimensional Banach Lie subalgebras of the same type A l, B l, C l or D l. Finally, the properties of the direct limits given in 3 let us formulate the following result. Theorem 4. Suppose that L is an infinite dimensional topologically simple compact Banach Lie algebra having a Cartan decomposition relative to a Cartan subalgebra H. Then L is isometrically isomorphic to some of the following ones: (1) A, where A is a topologically simple associative Banach algebra. (2) Skw(A, ξ) with A as above and ξ an involutive antiautomorphism of A. Acknowledgement. The authors are grateful to Professor Cándido Martín for stimulating discussions during the preparation of this work, and to the referee for his valuable suggestions. References [1] Y. Billig and A. Pianzola, On Cartan subalgebras, J. Algebra 171 (1995), 397 412. [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras. Springer-Verlag, Berlin Heidelberg New York, 1973. [3] A. J. Calderón and C. Martín, Direct limits of L -triples, Algebra Groups Geom. Palm Harbor, FL. 18 (2001), 223 232. [4] A. J. Calderón and M. Forero, On infinite dimensional Lie algebras having a Cartan decomposition, Preprint, Universidad de Cádiz (2002). [5] J. A. Cuenca, A. García and C. Martín, Structure theory for L -algebras, Math. Proc. Camb. Phil. Soc. 107 (1990), 361 365.

22 A. J. Calderón Martín and M. Forero Piulestán [6] P. De la Harpe, Classical Banach Lie algebras and Banach Lie groups of operators in Hilbert spaces, Lecture notes in Math. 285, Springer, Berlin, 1972. [7] J. R. Schue, Hilbert Space methods in the theory of Lie algebras, Trans. Amer. Math. Soc. 95 (1960), 69 80. [8] J. R. Schue, Cartan decompositions for L -algebras, Trans. Amer. Math. Soc. 98 (1961), 334 349. A. J. Calderón Martín, M. Forero Piulestán, Departamento de Matemáticas, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain ajesus.calderon@uca.es Received on 8 October 2001 and in revised form on 12 September 2002.