The Particle World. This talk: What is our Universe made of? Where does it come from? Why does it behave the way it does?

Similar documents
Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016

Introduction to CERN and CMS

The LHC The Large Hadron Collider and ATLAS

1. What does this poster contain?

Chapter 32 Lecture Notes

The Physics of Particles and Forces David Wilson

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

Introduction to the Standard Model

Quanta to Quarks. Science Teachers Workshop 2014 Workshop Session. Adrian Manning

PHY-105: Introduction to Particle and Nuclear Physics

THE STANDARD MODEL OF MATTER

Particle Physics Lectures Outline

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F.

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks

Unravelling the Mysteries of Matter with the CERN Large Hadron Collider An Introduction/Overview of Particle Physics

TEACHER. The Atom 4. Make a drawing of an atom including: Nucleus, proton, neutron, electron, shell

Particle Physics (concise summary) QuarkNet summer workshop June 24-28, 2013

ATLAS Z-Path Masterclass 2013

cgrahamphysics.com Particles that mediate force Book pg Exchange particles

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

An Introduction to Particle Physics

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry

Elementary particles, forces and Feynman diagrams

The Building Blocks of Nature

Analyzing CMS events

Wesley Smith, U. Wisconsin, January 21, Physics 301: Introduction - 1

The God particle at last? Science Week, Nov 15 th, 2012

High Energy Physics. QuarkNet summer workshop June 24-28, 2013

An Introduction to Modern Particle Physics. Mark Thomson University of Cambridge

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles

The God particle at last? Astronomy Ireland, Oct 8 th, 2012

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe

Saturday Morning Physics -- Texas A&M University. What is Matter and what holds it together? Dr. Rainer J. Fries. January 27, 2007

Saturday Morning Physics -- Texas A&M University Dr. Rainer J. Fries

Discovery of the W and Z 0 Bosons

Elementary Particles - Quarks, Bosons, Leptons. The three types of subatomic particles are: Protons Neutrons Electrons.

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007

Essential Physics II. Lecture 14:

Intro to Particle Physics and The Standard Model. Robert Clare UCR

Particles in the Early Universe

Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons

Introduction to Particle Physics and the Standard Model. Robert Clare UCR

Atomic Structure. From Molecules to Quarks

Lecture 02. The Standard Model of Particle Physics. Part I The Particles

An Introduction to Modern Particle Physics

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.)

A few thoughts on 100 years of modern physics. Quanta, Quarks, Qubits

Review Chap. 18: Particle Physics

The Standard Model (part I)

PHL424: 4 fundamental forces in nature

Particle Physics Columbia Science Honors Program

The God Particle and what it means. Peter Bussey. CiS Northern Meeting, April

Particle Physics: Problem Sheet 5

Modern physics 1 Chapter 13

LECTURE 7 The Standard Model. Instructor: Shih-Chieh Hsu

The achievements of the CERN proton antiproton collider

The Four Fundamental Forces. The Four Fundamental Forces. Gravitational Force. The Electrical Force. The Photon (γ) Unification. Mass.

The discovery of W ± and Z 0 vector-bosons

Optimizing Selection and Sensitivity Results for VV->lvqq, 6.5 pb -1, 13 TeV Data

Exam Results. Force between charges. Electric field lines. Other particles and fields

Option 212: UNIT 2 Elementary Particles

LHC Detectors and their Physics Potential. Nick Ellis PH Department, CERN, Geneva

1. Introduction. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 1. Introduction 1

Cosmology and particle physics

The Standard Model. 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli

HERA e-p scattering events observed in the H1Detector. H1 Events Joachim Meyer DESY

ATLAS-CONF October 15, 2010

Particle physics: what is the world made of?

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system.

UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL 2018 EXAMINATIONS. PHY357H1S (Solutions) [grades] Duration 3 hours

Search for the Z Boson in the Dielectron Channel

Particle + Physics at ATLAS and the Large Hadron Coillder

Results from the Tevatron: Standard Model Measurements and Searches for the Higgs. Ashutosh Kotwal Duke University

MINERVA Masterclass. Teachers Manual. Vera Zimanyine Horvath Francesco Mezzanotte Tom Lambert

THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS & SCIENCES W BOSON PRODUCTION CHARGE ASYMMETRY IN THE ELECTRON CHANNEL ASHLEY S HUFF

Photon Coupling with Matter, u R

At this time the quark model consisted of three particles, the properties of which are given in the table.

Finish up our overview of small and large

Particles and Forces

Recent Results from 7 GeV proton proton running at CMS

A first trip to the world of particle physics

Hand of Anna Röntgen. From Life magazine,6 April 1896

PhysicsAndMathsTutor.com

MASS OF THE TOP QUARK

Physics 424: Dr. Justin Albert (call me Justin!)

Hunting the Higgs Boson. Part 3 Laboratories / Amelia Brennan. August 1, 2017

Physics 661. Particle Physics Phenomenology. October 9, Physics 661, lecture 5 1

Frontier Science: The mystery of Antimatter

The ATLAS Experiment and the CERN Large Hadron Collider

Z-Path 2014 Event Displays Examples of l + l -, and 4-lepton events

Name : Physics 490. Practice Final (closed book; calculator, one notecard OK)

Dark Side of the Universe

Lecture 26 Fundamentals of Physics Phys 120, Fall 2015 Quantum Fields

Democritus, a fifth century B.C. philosopher, is credited with being the first

PhysicsAndMathsTutor.com 1

Electron-Positron Annihilation

Earlier in time, all the matter must have been squeezed more tightly together and a lot hotter AT R=0 have the Big Bang

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down!

Transcription:

The Particle World What is our Universe made of? Where does it come from? Why does it behave the way it does? Particle physics tries to answer these questions. This talk: particles as we understand them now (the Standard Model) prepare you for the exercise Later: future of particle physics. JMF Southampton Masterclass 22 23 Mar 2004 1/26

Beginning of the 20th century: atoms have a nucleus and a surrounding cloud of electrons. The electrons are responsible for almost all behaviour of matter: emission of light electricity and magnetism electronics chemistry mechanical properties... technology. JMF Southampton Masterclass 22 23 Mar 2004 2/26

Nucleus at the centre of the atom: tiny yet contains almost all the mass of the atom. Yet, it s composite, made up of protons and neutrons (or nucleons). Open up a nucleon... it contains quarks. Normal matter can be understood with just two types of quark. u or up quark, charge +2/3 d or down quark, charge 1/3 Subsequently, particle physicists have discovered four more types of quark, two more pairs of heavier copies of the up and down: c or charm quark, charge +2/3 s or strange quark, charge 1/3 t or top quark, charge +2/3 b or bottom quark, charge 1/3 Existed only in the early stages of the universe and nowadays created in high energy physics experiments. JMF Southampton Masterclass 22 23 Mar 2004 3/26

But this is not all... The electron has a friend the electron-neutrino, ν e. Needed to ensure energy and momentum are conserved in β-decay: n p + e + ν e Neutrino: no electric charge, (almost) no mass, hardly interacts at all. Sun is a huge neutrino factory: have learned a lot from studying solar neutrinos as well as using neutrinos produced in reactors and particle physics experiments. JMF Southampton Masterclass 22 23 Mar 2004 4/26

There are heavier copies of the electron and its neutrino: µ or muon ν µ or muon neutrino τ or tau ν τ or tau neutrino Together these are the leptons Not really sure why we have extra copies of quarks and leptons, but in total they make up three generations. JMF Southampton Masterclass 22 23 Mar 2004 5/26

But this is still not all... Forces are mediated by force carriers. Electromagnetic force Electrons have electric charge and are affected by electromagnetism. Particle physics views the electromagnetic e γ e + force as the exchange of photons. e e + Weak Force Weak decays, eg β-decay, n p + e + ν e is understood as decay of a d quark, mediated by a W particle. Also have a friend of the charged W ±, the neutral Z. The W and Z are massive, around 80 and 90 GeV respectively. JMF Southampton Masterclass 22 23 Mar 2004 6/26

Strong Force Binds nucleons in the atomic nucleus. Binds quarks into nucleons and other hadrons Quarks come in three colours. Exchange of coloured gluons between quarks is the mechanism of the strong force. experimentally. If you try to pull two quarks apart, so much energy is needed that it s favourable to create a new quark-antiquark pair instead: you end up with two hadrons rather than separated quarks. The strong force confines quarks inside hadrons. We never find isolated quarks JMF Southampton Masterclass 22 23 Mar 2004 7/26

JMF Southampton Masterclass 22 23 Mar 2004 8/26

Gravity Don t need to worry about gravity here. Higgs Boson There s one more particle, the Higgs boson, whose existence is tied up with the mechanism used to give mass to the other particles. Nearly discovered at LEP: first job of the LHC is to look for the Higgs (but that s in a few years time). JMF Southampton Masterclass 22 23 Mar 2004 9/26

Studying Particles Produce beams and smash them together: accelerators Look at what comes out: detectors JMF Southampton Masterclass 22 23 Mar 2004 10/26

LEP: the Large Electron Positron Collider 27 km long tunnel, 100 m underground, straddling French-Swiss border, just outside Geneva. JMF Southampton Masterclass 22 23 Mar 2004 11/26

LEP Bend particles around with magnets. Kick them with electric fields on each orbit to raise energy. Collide the beams at intersection points inside detectors. JMF Southampton Masterclass 22 23 Mar 2004 12/26

Studying Collisions at LEP Collide beams of electrons and positrons head-on at high energy. Here, an electron (e ) and a positron (e + ) collide to produce a Z 0. Because the initial e and e + have momenta which are opposite in direction and equal in magnitude the Z 0 has no net momentum and is stationary. After a very short time (about 10 25 s) the Z 0 decays to produce a muon (µ ) and an antimuon (µ + ) which fly apart back to back. We surround the place where the Z 0 is produced with detectors, which enable us to see the particles produced when it decays. Later, you ll look at collisions where produce pairs of W s. JMF Southampton Masterclass 22 23 Mar 2004 13/26

The OPAL Detector Study events recorded by OPAL, one of the four detectors at LEP. OPAL was approximately cylindrical. Particles produced on-axis axis at the centre and travelled out through several layers of detectors. Different types of particle leave different signals in the various detectors: this lets us distinguish them. JMF Southampton Masterclass 22 23 Mar 2004 14/26

Detector Ingredients Tracking chamber: records the tracks of charged particles Electromagnetic calorimeter or ecal: measures energy of light particles (electrons, photons) as they interact with electrically charged particles inside matter Hadron calorimeter: measures energy of hadrons as they interact with atomic nuclei Muon detectors: muons get right through the calorimeters; outer muon detectors observe charged particles (rather like the tracking detectors) JMF Southampton Masterclass 22 23 Mar 2004 15/26

Detecting Muons Only type of particle that has a high probability of passing through all the calorimeters and leaving signals in the muon chambers. JMF Southampton Masterclass 22 23 Mar 2004 16/26

Detecting Electrons Electrons lose all their energy in the ecal. Momentum of charged track should be similar to energy observed in ecal track and cluster usually same colour. No signal in hadronic calorimeter or muon chambers. JMF Southampton Masterclass 22 23 Mar 2004 17/26

Detecting Hadrons Hadrons made of quarks, antiquarks and gluons. Track momentum usually larger than energy dumped in ecal. No signals in muon chambers. Energy often visible in hadronic calorimeter. Signals less clear-cut than for electrons or muons. If unsure, ask: Is this particle an electron? Is this particle an muon? If no to both, safe to assume it s a hadron! JMF Southampton Masterclass 22 23 Mar 2004 18/26

Detecting Quarks Quarks not seen directly: See a shower or jet of particles, flying off in direction of original quark. Most particles in the jet are hadrons: see a number of charged particle tracks and energy deposited in the electromagnetic and hadronic calorimeters. JMF Southampton Masterclass 22 23 Mar 2004 19/26

Detecting Quarks (2) Sometimes a jet may contain an electron or muon (as in this example) as well as hadrons. JMF Southampton Masterclass 22 23 Mar 2004 20/26

Terrible τ s Don t see τ s directly: they decay after travelling a fraction of a millimetre. 17% τ ν τ + e + ν e 17% τ ν τ + µ + ν µ 66% τ ν τ + hadrons Neutrinos escape without being detected (infer their presence using energy-momentum of observed particles). The 66% of hadronic decays comprises 16% with one charged hadron 50% with three charged hadrons JMF Southampton Masterclass 22 23 Mar 2004 21/26

Both τ s decay leptonically. e + e Z 0 τ + τ e + µ + neutrinos JMF Southampton Masterclass 22 23 Mar 2004 22/26

τ s decay to hadrons. e + e Z 0 τ + τ 3 chgd hadrons + 1 chgd hadron + neutrinos JMF Southampton Masterclass 22 23 Mar 2004 23/26

τ s decay to muon pair... e + e Z 0 τ + τ µ + + µ + neutrinos Looks like Z 0 µ + µ, but check energy. JMF Southampton Masterclass 22 23 Mar 2004 24/26

W Decays W decays to a pair of particles, either quarks or leptons. Must conserve charge. W has charge either +1 or 1, so must the total of the decay products. Decay products must have less mass than the W they started from, or energy would not be conserved. This excludes the top quark. The following decays are possible: W down and anti-up quarks strange and anti-charm quarks electron and anti-neutrino muon and anti-neutrino tau lepton and anti-neutrino W + anti-down and up quarks anti-strange and charm quarks positron and neutrino anti-muon and neutrino anti-tau lepton and neutrino JMF Southampton Masterclass 22 23 Mar 2004 25/26

W + W Decays and Counting Colours Consider e + e W + W with the W ± subsequently decaying. Each W can decay to any of the three leptons and to two types of quark-antiquark pair. But, quarks come in n colours, so if all decay modes are equally likely, expect for each W: three leptonic modes 2n quark (hadronic) modes For a large number of W + W pair decays, expect the following relative numbers of different decay modes: Leptonic Mixed Four jets l m f 9 12n 4n 2 Count event types to fix number of colours: n = 3 m 4 l n = 3 f 2 l n = 3 f m JMF Southampton Masterclass 22 23 Mar 2004 26/26