Left Quasi- ArtinianModules

Similar documents
PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY

Jacobi symbols. p 1. Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and nonresidues. That is, we could have ( a

MORE COMMUTATOR INEQUALITIES FOR HILBERT SPACE OPERATORS

Chain conditions. 1. Artinian and noetherian modules. ALGBOOK CHAINS 1.1

42 Dependence and Bases

A NOTE ON AN R- MODULE WITH APPROXIMATELY-PURE INTERSECTION PROPERTY

Week 5-6: The Binomial Coefficients

1. (a) If u (I : R J), there exists c 0 in R such that for all q 0, cu q (I : R J) [q] I [q] : R J [q]. Hence, if j J, for all q 0, j q (cu q ) =

1. By using truth tables prove that, for all statements P and Q, the statement

Chapter 2. Periodic points of toral. automorphisms. 2.1 General introduction

SOME FINITE SIMPLE GROUPS OF LIE TYPE C n ( q) ARE UNIQUELY DETERMINED BY THEIR ELEMENT ORDERS AND THEIR ORDER

On Some Properties of Tensor Product of Operators

Bernoulli Numbers and a New Binomial Transform Identity

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties

Inverse Matrix. A meaning that matrix B is an inverse of matrix A.

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles

Math 4707 Spring 2018 (Darij Grinberg): midterm 2 page 1. Math 4707 Spring 2018 (Darij Grinberg): midterm 2 with solutions [preliminary version]

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd,

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

AN APPLICATION OF HYPERHARMONIC NUMBERS IN MATRICES

Lecture 10: Bounded Linear Operators and Orthogonality in Hilbert Spaces

Double Derangement Permutations

1.2 AXIOMATIC APPROACH TO PROBABILITY AND PROPERTIES OF PROBABILITY MEASURE 1.2 AXIOMATIC APPROACH TO PROBABILITY AND

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero?

M A T H F A L L CORRECTION. Algebra I 1 4 / 1 0 / U N I V E R S I T Y O F T O R O N T O

On the 2-Domination Number of Complete Grid Graphs

Generalized Fibonacci Like Sequence Associated with Fibonacci and Lucas Sequences

Homework 1 Solutions. The exercises are from Foundations of Mathematical Analysis by Richard Johnsonbaugh and W.E. Pfaffenberger.

A NOTE ON WEAKLY VON NEUMANN REGULAR POLYNOMIAL NEAR RINGS

Lecture 4: Grassmannians, Finite and Affine Morphisms

LECTURE 13 SIMULTANEOUS EQUATIONS

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

Heat Equation: Maximum Principles

distinct distinct n k n k n! n n k k n 1 if k n, identical identical p j (k) p 0 if k > n n (k)

Jordan Chevalley Decomposition and Invariants for Locally Finite Actions of Commutative Hopf Algebras

MATH10212 Linear Algebra B Proof Problems

Martin Lorenz Max-Planck-Institut fur Mathematik Gottfried-Claren-Str. 26 D-5300 Bonn 3, Fed. Rep. Germany

Bertrand s postulate Chapter 2

A Note on Generalization of Semi Clean Rings

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution

Domination Number of Square of Cartesian Products of Cycles

Math F215: Induction April 7, 2013

4 The Sperner property.

Sequences and Series of Functions

DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS

Homework 2 January 19, 2006 Math 522. Direction: This homework is due on January 26, In order to receive full credit, answer

Discrete Mathematics: Lectures 8 and 9 Principle of Inclusion and Exclusion Instructor: Arijit Bishnu Date: August 11 and 13, 2009

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4.

Hoggatt and King [lo] defined a complete sequence of natural numbers

New proofs of the duplication and multiplication formulae for the gamma and the Barnes double gamma functions. Donal F. Connon

Commutativity in Permutation Groups

11. FINITE FIELDS. Example 1: The following tables define addition and multiplication for a field of order 4.

Matrix Algebra 2.2 THE INVERSE OF A MATRIX Pearson Education, Inc.

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan

2.1. The Algebraic and Order Properties of R Definition. A binary operation on a set F is a function B : F F! F.

Scientiae Mathematicae Japonicae Online, Vol.7 (2002), IN CSL-ALGEBRA ALGL

A PROBABILITY PROBLEM

arxiv: v1 [math.nt] 26 Feb 2014

Infinite Sequences and Series

Here are some examples of algebras: F α = A(G). Also, if A, B A(G) then A, B F α. F α = A(G). In other words, A(G)

Teacher s Marking. Guide/Answers

Square-Congruence Modulo n

Generalized Likelihood Functions and Random Measures

Name Period ALGEBRA II Chapter 1B and 2A Notes Solving Inequalities and Absolute Value / Numbers and Functions

Inferences of Type II Extreme Value. Distribution Based on Record Values

A Proof of Birkhoff s Ergodic Theorem

A Characterization of Compact Operators by Orthogonality

Stochastic Matrices in a Finite Field

Theorem: Let A n n. In this case that A does reduce to I, we search for A 1 as the solution matrix X to the matrix equation A X = I i.e.

Statistical Inference Procedures

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

Math 61CM - Solutions to homework 3

Math 7409 Homework 2 Fall from which we can calculate the cycle index of the action of S 5 on pairs of vertices as

ON SOME DIOPHANTINE EQUATIONS RELATED TO SQUARE TRIANGULAR AND BALANCING NUMBERS

Lecture 19. Curve fitting I. 1 Introduction. 2 Fitting a constant to measured data

FACTORS OF SUMS OF POWERS OF BINOMIAL COEFFICIENTS. Dedicated to the memory of Paul Erdős. 1. Introduction. n k. f n,a =

Chapter 9. Key Ideas Hypothesis Test (Two Populations)

PRELIM PROBLEM SOLUTIONS

Lecture 2: April 3, 2013

The Structure of Z p when p is Prime

Math 451: Euclidean and Non-Euclidean Geometry MWF 3pm, Gasson 204 Homework 3 Solutions

Proc. Amer. Math. Soc. 139(2011), no. 5, BINOMIAL COEFFICIENTS AND THE RING OF p-adic INTEGERS

Mathematical Induction

Chapter Vectors

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Zeta-reciprocal Extended reciprocal zeta function and an alternate formulation of the Riemann hypothesis By M. Aslam Chaudhry

Axioms of Measure Theory

Ma/CS 6a Class 22: Power Series

PERIODS OF FIBONACCI SEQUENCES MODULO m. 1. Preliminaries Definition 1. A generalized Fibonacci sequence is an infinite complex sequence (g n ) n Z

Metric Dimension of Some Graphs under Join Operation

SOLVED EXAMPLES

Binomial transform of products

The Boolean Ring of Intervals

Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Pearson Education, Inc.

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

f(1), and so, if f is continuous, f(x) = f(1)x.

Eigenvalues and Eigenvectors

MATH10040 Chapter 4: Sets, Functions and Counting

Transcription:

Aerica Joural of Matheatic ad Statitic 03, 3(): 6-3 DO: 0.593/j.aj.03030.04 Left Quai- ArtiiaModule Falih A. M. Aldoray *, Oaia M. M. Alhekiti Departet of Matheatic, U Al-Qura Uiverity, Makkah,P.O.Box 5699, Saudi Arabia Abtract thi paper we tudy a ew cla of left quai-artiia odule. we how: if i a left quai-artiia rig ad M i a left -odule, the (a) Soc(M) e M ad (b) ad(m) all i M.The we prove: if i a o-ilpotet left ideal i a left quai-artiia rig, the cotai a o-zero idepotet eleet. Fially we how that a coutative rig i quai-artiia if ad oly if i a direct u of a Artiia rig with idetity ad a ilpotet rig. Keyword Module with Chai Coditio, Left Quai-Artiia Module ad ilpotet ig. troductio By rig we ea a aociative rig that eed ot have a idetity. thi paper, we tudy a ew cla of left quai-artiia Module, which i a geeralizatio of left Artiia odule. Firt we tudy the proble of fidig coditio which are equivalet to the defiitio of left quai-artiia Module(Theore.). The we how that the cla of left quai-artiia Module i Q-cloed, S-cloed ad E-cloed. ectio two we tudy the odule tructure over left quai-artiia rig, i particular we prove that if i a left quai-artiia rig, the every fiitely geerated left -odule M i a left quai-artiia(theore.)fially we how that: f be a rig, = (), the i a left quai-artiia if ad oly if i ilpotet ad each of the,, 3, i left quai-artiia -odule (Theore.4). ectio three we decribe the ideal tructure ad we give oe claificatio, i particular we prove that if i a o-ilpotet left ideal i a left quai-artiia rig, the cotai a o-zero idepotet eleet (Theore 3.). ext we prove that if i a ei-prie left quai-artiia rig ad be a o-zero left ideal of, the =e for oe o-zero idepotet e i (Theore 3.5)... Defiitio ad Baic Propertie Let M be a left -odule. We ay that M i a left quai-artiia Module if for every decedig chai...... of left -ubodule of M, there exit Z + uch that for all. t i c lear that ay left Art iia odu le i left * Correpodig author: fadoary@uqu.edu.a (Falih A. M. Aldoray) Publihed olie at http://joural.apub.org/aj Copyright 03 Scietific & Acadeic Publihig. All ight eerved quai-artiia ad it i eay to prove the followig Lea. Let M be a left -odule. (a) f M= 0, the M i a left quai-artiia. (b)f ha a idetity ad M i uitary,the M i left quai-artiia if ad oly if M i left Artiia. ow we prove the followig which i a characterizatio of left quai-artiia odule. Theore. Let M be a left -odule. The the followig coditio are equivalet: ς of left -ubodule of M uch (a) every o-epty collectio K ς, the K ς,there exit a iial eleet. that if (b) For every decedig chai of left -ubodule...... there exit Z + uch that a decedig chai teriate. (c)m i left quai-artiia. (d) For every o-epty collectio ς of left -ubodule of M, there exit ς ad Z + uch that K for ayk ς, K. (a (b) Suppoe that...... i a decedig chai of left -ubodule of M but the decedig chai...... of left -ubodule of M doe ot teriate for all Z +. Therefore the collectio ς {,,...,,,...,, i a oepty collectio of -ubodule ad for all ς,...} we have ς. Hece ha o iial eleet, which

Aerica Joural of Matheatic ad Statitic 03, 3(): 6-3 7 i a cotradictio. (b) (c) Let...... be ay decedig chai of left -ubodule of M the there exit Z + uch that...... for a decedig chai of left -ubodule of M ad by (b) there exit Z + uch that for all, but for all. Take t = ax {, } t the t for all, hece M i a left quai-artiia. (c) (d) Let be a o-epty collectio of left -ubodule of M uch that for each ad Z +, there exit K uch that K K. ow let ς ς uch that,where hece there exit, but the there exit, but 3, uch that 3, where 3 cotiuig i thi aer we ca cotruct a ifiite decedig chai...... of left -ubodule of M uch that,=,,.hece for oe, which i a cotradictio. (d) (a) Let be a o-epty collectio of left K for all K ς. K ς, for all Z +. But K K for -ubodule of M uch that The all Z +, hece by (d) there exit a Z + uch that K K for all Z +.Therefore if, the K K ad ha a iial eleet. ext we prove the followig: Propoitio.3 Let M be a left -odule. f M i left Artiia, the M i left quai-artiia. be a decedig chai of left -ubodule of M, Let... -uboduleof M. the... i a decedig chai of But M i left Artiia, hece there exit Z + uch that =. Therefore. For all Hece M i left quai-artiia. eark: The covere of Propoitio.3,eed ot be true a the followig exaple how: Let Q M Q quai-artiia 0 0 ad 0 Q 0. The M i left 0 -odule,but 0 0 M i ot left Artiia. Q 0 ow let Т be a cla of odule. The we ay that Т i S-cloed if i a ubodule of M ad M Т, the Т.We ay that Т i Q-cloed if M Т ad i a ubodule of M, the M Т. We ay that Т i E-cloed if i a ubodule of M ad, M Т, the M Т. Propoitio.4 Let Т be the cla of left quai-artiia odule. The (a)т i S-cloed. (b) Т i Q-cloed.(c) Т i E-cloed. (a) i clear (b) Suppoe that M i a left quai-artiia -odule ad i ubodule of M. Let π: M M = M be the atural hooorphi of left quai-artiia odule oto M. The i a decedig chai of ubodule of M, ad i a decedig chai of - ubodule - of M, where i π ( ) but M i left i quai-artiia, hece there exit Z + uch that for all. But k = k. Hece for all. Therefore Mi left quai-artiia. (c)suppoe that be a -ubodule of M ad, M Т. Let be a decedig chai of left -ubodule of M. The...... i a decedig chai of -ubodule of. But Z + uch that left quai-artiia, hece there exit i ( ) for all. ow + + i a decedig chai of ubodule ofm adm i left quai-artiia, therefore there exit k Z + uch that k ( k + ) + for all. That i k k + + for all. ow let = ax {, k} The ( ) ad + + for all. ow = + [ + ] ad by odular law, = + ( ) for all. ( ) Therefore ( ( ( ) ) ) for all Hece for all. Therefore M i left quai-artiia. A iediate coequece of Propotio.4, we have the followig Corollary Let Т be the cla of quai-artiia odule.f M = A+B

8 Falih A. M. Aldoray et al.: Left Quai- ArtiiaModule where A,B i Т the M Т. M where eark: Suppoe that ha,o M= M { : M} adm { : M}. Here M i uitary ad left quai-artiia if ad oly if M i left So M. M 0 quai-artiia if ad oly if M i left Artiia.Ad M i left are Artiia. Artiia if ad oly if M ad M. The Subodule Structure M thi ectio we tudy the ubodule tructure by coider odule over left quai-artiia rig. Firt we prove the followig Theore. Let be a left quai-artiia rig. The every fiitely geerated left -odule i left quai-artiia Let M be a fiitely geerated left -odule, the M = x + x + + x where 0 x i M, i. f = the M i cyclic ad therefore ioorphic to L where L = a ax = 0. Sice i left quai-artiia, o i every factor odule. Aue iductively that the Theore hold for odule which ca be geerated by - or fewer eleet. Thex i left quai-artiia ad M x x + x + x x (x + x ) x (x + + x ) which i left quai-artiia. Therefore M i left quai-artiia. Let be a rig ad M i a left odule. The (a)soc M = K M K i iple i M = L M L i eetial i M (b) ad M = K K i axial ubodule i M = L L i all ubodule i M Theore. Let be a left quai-artiia rig ad M i a left -odule.the (a) ocm e M (b)admallim (a) Let 0 x M. The ρ x : x uch that ρ x r = rx(r ) i a hooorphi of oto the ubodule x with Kerel Kerρ x = l x = r rx = 0. So l (x) x. But i left quai-artiia, hece by Propoitio.4, x i left quai-artiia. We clai that x cotai a i ial ubodule. To p rove thi let l = x 0 x M, M be a oepty collectio of -ubodule of x ad J l The J = y for oe 0 y M.But J = y = y = y y = J l.but l ha a iial eleet, hece Soc() 0.But Soc x = x Soc(M), hece Soc M em. (b) Firt we how that ad M = JM where J = J().Sice for ay left -odule M the factor odule ad(m ad(m)) = 0. Therefore M ad(m)i ubdirect product of iple left - odule. But icej()i aihilate all iple left -odule, o it aihilatem ad(m) that i JM ad(m). Coverely ice J i ei-iple the we have Soc M = r M (J) Therefore Soc M JM = r M JM J J = r M JM 0 = M JM. Hece M JM i ei-iple J-odule. Sice J i cotaied i aihilator of every iple -ubodule of M, the M JM i ei-iple -odule, thu ad M JM = 0 but ad M ad M = 0. Therefore ad(m) JM. Hece ad M = JM. ow ice left quai-artiia, aue J = 0 for oe Z + ad coider a -ubodule K of M withjm + K = M. Multiplyig with J we obtai J M + JK = JM, the J M + JK + K = M. Cotiue i thi way we have after tep,k = J M + K = M. Hece JM all i M therefore by firt part,ad(m) all i M. Corollary.3 Let be left quai-artiia rig ad M left -odule, the M i fiitely geerated if ad oly if M ad(m) i fiitely geerated. By Theore., ice ad(m) all i M, the the reult follow. By the il radical =() of a rig we ea the u of all ilpotet ideal of, which i a il ideal. t i well kow [7. P.8 Theore ], that i the u of all ilpotet left ideal of ad it i the u of all ilpotet right ideal of. ow we give aother characterizatio of left quai-artiia rig,aely the followig: Theore.4 Let be a rig, = () be the il radical of, the i a left quai- i ilpotet ad each of,, 3, Artiia if ad oly if i left quai-artiia -odule. Suppoe i left quai-artiia. The by[3,corollary.3] i ilpotet. ow let M. The M i left i quai-artiia -odule ad i a ideal of for all i. i Therefore i a -ubodule of M for all i.but by Propoitio.4, i i left quai-artiia for all i. Alo i i+ i -ubodule of i+ o each i i+ i left quai-artiia. To prove the covere, ote that ice it follow fro Propoitio.4, that i left quai-artiia -odule ad by iductio i i left quai-artiia for all i. But i ilpotet, hece there exit Z + uch that = 0, therefore i left quai-artiia -odule.

Aerica Joural of Matheatic ad Statitic 03, 3(): 6-3 9 Hece i left quai-artiia rig. 3. The deal Structure thi ectio we tudy the ideal tructure i a left quai-artiiarig. ote that if = Q 0, the 0 0 0 i a ilpotet ideal of. There ad Q 0 Q are left quai-artiia, 0 but i ot left quai-artiia. Hece the cla of left quai-artiia rig i ot E-cloed, however we have the followig: Theore3. A fiite direct u of left quai-artiia rig i a left quai-artiia. By iductio, it i eough to prove the reult whe = are left quai-artiia. Let where,...... be a decedig chai of left ideal of.the ad...,but, ideal of there exit r, uch that ) r ( ) i a decedig chai of left ideal of i a decedig chai of left are left quai-artiia rig,hece r r ) ( ad (.Let =ax{r,}.the ) ( ) ( ) ( ad ( for all. But ),hece for all ad for all.therefore i left quai-artiia. Theore3. Let be a o-ilpotet left ideal i a left quai-artiia rig, the cotai a o-zero idepotet eleet. To prove thi we eed the followig lea. Lea3.3 Let be a left quai-artiia rig. The every o-ilpotet left ideal of cotai a iial o-ilpotet left ideal. Let be a o-ilpotet left ideal of ad uppoe that doe ot cotai a iial o-ilpotet left ideal of. The 0 ad i ot ilpotet. Therefore there exit a o-ilpotet left ideal 3. Hece 0 ad i ot ilpotet. thi way we ca fid a o-ilpotet left ideal the 0 ad i ot ilpotet ad o o. Hece...... i a ifiite decedig chai of left ideal of which i a cotradictio. Therefore cotai a iial o-ilpotet left ideal of. Proof of Theore Let be o-zero o-ilpotet left ideal of. Sice i a left quai-artiia rig, the by Lea3.3, cotai a iial o-ilpotet left ideal K. Sice K 0 the there exit. However xk K x K uch that xk 0 ad xk i a left ideal of, hece by iiilty of ek K we have xk =K. Therefore there exit uch that xe x ad ice xe xe we get thatx ( e e) 0. ow, let K o { ak xa 0 }, therefore Ko i a left ideal of ad K o K ice, xk 0, for all x K. Therefore we ut have Ko 0 ad ( e e ) Ko. Hece e e. Sice xe x 0 we have that e 0. ow, e K i a left ideal of ad cotai e e 0, o that e 0, the e e K. Hece e. Corollary3.4 f i left quai-artiia rig, the every il left ideal of i ilpotet. Let be a o-zero il left ideal of ad uppoe that i ot ilpotet. The by Theore 3., there exit a ozero idepotet eleet e ad e. Therefore e i ilpotet which i a cotradictio. Hece ut be ilpotet. ext we prove the followig Theore3.5 Let be a ei-prie left quai-artiia rig ad be a ozero left ideal of, the = e for oe ozero idepotet e i. Sice i ot ilpotet, it follow fro Theore 3.,that cotai a o-zero idepotet eleet ay, e. Let the the et of left ideal A( e) { x xe 0} L { A( e) 0 e e } i ot epty. ow, if A(e) L, the A(e)L. ow ice i a left ideal of, the re, where r, e, therefore 0 re re, but i a left quai-artiia, hece by Theore.,Lha a iial eleet A ( e 0 ), ay. Either A( e 0 ) 0 or A ( e 0 ) = 0. f A ( e 0 ) 0, the A ( e 0 ) ut have a idepotet e, ay. By defiitio of A ( e 0 ), e ad e e 0 0. Coider e e0 e e0e, the

30 Falih A. M. Aldoray et al.: Left Quai- ArtiiaModule e ad i itelf a o-zero idepotet eleet. Moreover, e e e ( e0 e e0e ) e 0, hece e 0. ow if A(e ), the xe 0 ad x e 0 + e e 0 e = 0. Therefore x e 0 + e e 0 e e 0 = 0 ad xe 0 = 0. Therefore x A( e 0 ) ad A( e) A( e0), ice e A( e 0 ) ad e A( e ) we have that A( e) A( e0), which cotradict the iiality of A ( e 0 ). Therefore A( e 0 ) =0. But ( x xe0 ) e0 0 for all x hece ( x xe0 ) A( e0) 0 ad x xe for all x, 0 which ip lie that e e0. Hece 0 e 0. Corollary3.6 Ay ei-prie left quai-artiia rig i a ei-iple left Artiia. By Theore 3.5 every o-zero left ideal of i geerated by a o-zero idepotet e, ay. But we kow that e act a right idetity for the left ideal =e, ad ice i itelf a ideal, hece ha a idetity eleet. Therefore i left Artiia. ow, J() i ilpotet, ad i a ei-prie rig, iplie that J() = 0. Hece i a ei-iple. ow we decribe left quai-artiia rig uig the o coutative verio of Wedderbur Theore. particular we prove the followig Theore3.7 A coutative rig i quai-artiia if ad oly if i a direct u of a Artiia rig with idetity ad a ilpotet rig. To prove thi we eed the followig Lea3.8 Let be a left quai-artiia rig ad be the il radical of. The i a ei-iple Artiia rig. Sice i ilpotet ad follow that i left quai-artiia, it i a ei-prie left quai-artiia. Therefore by Corollary 3.5, i a ei-iple Artiia rig. Proof of theore3.7 Suppoe that i a direct u of a Artiia rig with idetity ad a ilpotet rig, ice ay Artiia rig ad ay ilpotet rig are quai-artiia,it follow that i a quai Artiia rig. To prove the covere. Let = () be a il radical of. The by Corollary 3.4, i ilpotet ad by Lea 3.8, i a ei-iple Artiia rig. Therefore by Wedderbur' Theore i a fiite direct u of it iial ideal, each of which i a iple Artiia rig, that i..., where i e i i a iial ideal of which i a iple Artiia rig. But a fiite direct u of Artiia i agai Art iia, hece i i a Artiia rig i ad i a ei-iple Artiia. But i i a ei-iple Artiia o, it ha a idetity eleet. Therefore i i a Artiia rig with idetity. Hece, i i ad i a direct u of Artiia rig i with idetity ad ilpotet rig. Fially we prove the followig which characterize the prie ideal i left Quai-Artiia rig. Theore3.8 Let be a coutative quai-artiia rig ad be a iial ideal i. The a( ) i a axial ideal. To prove thi we eed the followig Lea3.9 f i a coutative quai-artiia rig,the every prie ideal of i axial. Let P be a prie ideal of, the P i a prie rig. ow P i a ei-prie quai-artiia rig. Therefore by Corollary 3.5 P i a ei-iple Artiia.Hece by Wedderbur' Theore P i a fiite direct u of iial ideal, each of which i a iple Artiia rig. But a prie rig caot be writte a a direct u of o-trivial ideal, hece P i a iple rig. Therefore P i axial. A iediate coequece of Lea 3.9 we have the followig Corollary3.0 f i a quai-artiia rig, the J()= rad()= (). Where J() i the Jacobo radical of ad rad( ) ithe prie radical of. Proof of Theore3.8 By Lea 3.0, it eough to how that a( ) i a prie ideal i. Let x, y uch that x, y a( ). The x 0 ad y 0, but x ad y. But x ad y. 0 xy ad xy 0. Hece a( ) i a iial ideal of, hece Therefore xy, ad a( ) i a prie ideal of.

Aerica Joural of Matheatic ad Statitic 03, 3(): 6-3 3 EFEECES [] M. F. Atiyah ad A. G. MacDoald, troductio to Coutative Algebra, Addio-Weley,969. [] D. Burto, A Firt coure i ig ad deal, Addio-Weley,970. [3] A. W. Chatter & C.. Hajaravi, ig with chai coditio, Pita eearch ote i Matheatic 44 (980). [4].S.Coh, Coutative ig with etricted iiu coditio, Duke Math. J. 7 (950), 7-4. [5] K.. Goodearl, ig Theory (oigular rig ad odule), Marcel Dekker, 976. [6]..Hertei, o coutative ig, The Matheatical Aociatio of Aerica (975) [7] C. Hopki, ig with iiu coditio for left ideal, Aal of Matheatic, 40(939), 7-730. [8] M. Gray, A adical Approach to Algebra, Addio-Weley,970. [9]. Jacobo, Baic Algebra,Freea 980. [0].H. McCoy,Prie ideal i geeral rig, Aer. J. ath. 7 (949), 83-833. [].Wibauer, Foudatio of Module ad ig Theory, Gorde ad Breach ciece Publiher (99) [] F. W. Adero &K.. Fuller,ig ad Categorie of Module, ew York Spriger-Verlag c, (973)