Iterative Algorithm for a Split Equilibrium Problem and Fixed Problem for Finite Asymptotically Nonexpansive Mappings in Hilbert Space

Similar documents
ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1

= y and Normed Linear Spaces

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Inequalities for Dual Orlicz Mixed Quermassintegrals.

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM

Fairing of Parametric Quintic Splines

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index

A Remark on the Uniform Convergence of Some Sequences of Functions

FULLY RIGHT PURE GROUP RINGS (Gelanggang Kumpulan Tulen Kanan Penuh)

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES

Professor Wei Zhu. 1. Sampling from the Normal Population

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

Intuitionistic Fuzzy Stability of n-dimensional Cubic Functional Equation: Direct and Fixed Point Methods

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION

Trace of Positive Integer Power of Adjacency Matrix

Sandwich Theorems for Mcshane Integration

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

An Expanded Method to Robustly Practically. Output Tracking Control. for Uncertain Nonlinear Systems

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE

PROJECTION PROBLEM FOR REGULAR POLYGONS

The Mathematical Appendix

Q-analogue of a Linear Transformation Preserving Log-concavity

MATH 247/Winter Notes on the adjoint and on normal operators.

Abstract. 1. Introduction

Council for Innovative Research

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS

Non-uniform Turán-type problems

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

CHAPTER 3 COMMON FIXED POINT THEOREMS IN GENERALIZED SPACES

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES

An Unconstrained Q - G Programming Problem and its Application

Permutations that Decompose in Cycles of Length 2 and are Given by Monomials

χ be any function of X and Y then

Quasi-Rational Canonical Forms of a Matrix over a Number Field

The Arithmetic-Geometric mean inequality in an external formula. Yuki Seo. October 23, 2012

Stability Analysis for Linear Time-Delay Systems. Described by Fractional Parameterized. Models Possessing Multiple Internal. Constant Discrete Delays

Aitken delta-squared generalized Juncgk-type iterative procedure

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces *

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

International Journal of Mathematical Archive-5(8), 2014, Available online through ISSN

Structure and Some Geometric Properties of Nakano Difference Sequence Space

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

A note on random minimum length spanning trees

Lecture 9 Multiple Class Models

Exercises for Square-Congruence Modulo n ver 11

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

A Strong Convergence Theorem for a Proximal-Type. Algorithm in Re exive Banach Spaces

On the Explicit Determinants and Singularities of r-circulant and Left r-circulant Matrices with Some Famous Numbers

Bounds on Cohomology and Castelnuovo Mumford Regularity

Hyper-wiener index of gear fan and gear wheel related graph

Harmonic Curvatures in Lorentzian Space

XII. Addition of many identical spins

Research Article Some Strong Limit Theorems for Weighted Product Sums of ρ-mixing Sequences of Random Variables

Collocation Method for Ninth order Boundary Value Problems Using Quintic B-Splines

18.413: Error Correcting Codes Lab March 2, Lecture 8

PTAS for Bin-Packing

Sums of Involving the Harmonic Numbers and the Binomial Coefficients

Spectral Continuity: (p, r) - Α P And (p, k) - Q

A Convergence Analysis of Discontinuous Collocation Method for IAEs of Index 1 Using the Concept Strongly Equivalent

On Eigenvalues of Nonlinear Operator Pencils with Many Parameters

X ε ) = 0, or equivalently, lim

Non-axial symmetric loading on axial symmetric. Final Report of AFEM

Some Integral Mean Estimates for Polynomials

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS

Allocations for Heterogenous Distributed Storage

Second Geometric-Arithmetic Index and General Sum Connectivity Index of Molecule Graphs with Special Structure

Using Difference Equations to Generalize Results for Periodic Nested Radicals

International Journal of Computer Science and Electronics Engineering (IJCSEE) Volume 3, Issue 1 (2015) ISSN (Online)

On ARMA(1,q) models with bounded and periodically correlated solutions

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Arithmetic Mean and Geometric Mean

8 Baire Category Theorem and Uniform Boundedness

SOME GENERAL NUMERICAL RADIUS INEQUALITIES FOR THE OFF-DIAGONAL PARTS OF 2 2 OPERATOR MATRICES

Complete Convergence for Weighted Sums of Arrays of Rowwise Asymptotically Almost Negative Associated Random Variables

A nonsmooth Levenberg-Marquardt method for generalized complementarity problem

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES

Generalizations and analogues of the Nesbitt s inequality

SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH SALAGEAN DERIVATIVE. Sayali S. Joshi

On Submanifolds of an Almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Metric Connection

Bounds for the Connective Eccentric Index

SOME SOLVABILITY THEOREMS FOR NONLINEAR EQUATIONS

A New Method for Decision Making Based on Soft Matrix Theory

The Exponentiated Lomax Distribution: Different Estimation Methods

Marcinkiewicz strong laws for linear statistics of ρ -mixing sequences of random variables

Exponential Generating Functions - J. T. Butler

THE ANALYTIC LARGE SIEVE

MA 524 Homework 6 Solutions

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER

On the Subdifferentials of Quasiconvex and Pseudoconvex Functions and Cyclic Monotonicity*

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING

Spectral Problems of Two-Parameter System of Operators

Lecture 10: Condensed matter systems

UNIQUENESS IN SEALED HIGH BID AUCTIONS. Eric Maskin and John Riley. Last Revision. December 14, 1996**

Transcription:

Flomat 31:5 (017), 143 1434 DOI 10.98/FIL170543W Publshed by Faculty of Sceces ad Mathematcs, Uvesty of Nš, Seba Avalable at: http://www.pmf..ac.s/flomat Iteatve Algothm fo a Splt Equlbum Poblem ad Fxed Poblem fo Fte Asymptotcally Noexpasve Mappgs Hlbet Space Sheg Hua Wag a, M Jag Che b a Depatmet of Mathematcs ad Physcs, Noth Cha Electc Powe Uvesty, Baodg 071003, Cha b Depatmet of Mathematcs ad Sceces, Shjazhuag Uvesty of Ecoomcs, Shjazhuag 050031, Cha Abstact. I ths pape, we popose a teatve algothm fo fdg the commo elemet of soluto set of a splt equlbum poblem ad commo fxed pot set of a fte famly of asymptotcally oexpasve mappgs Hlbet space. The stog covegece of ths algothm s poved. 1. Itoducto Thoughout ths pape, let R deote the set of all eal umbes, N deote the set of all postve tege umbes, H be a eal Hlbet space ad C be a oempty closed covex subset of H. Let T : C C be a mappg. If thee exsts a sequece {k } [1, ) wth lm k = 1 such that T x T y k x y, x, y C, we call T a asymptotcally oexpasve mappg. If k 1, the T s sad to be a oexpasve mappg. The set of fxed pots of T s deoted by Fx(T). Let F : C C R be a bfucto. The equlbum poblem fo F s to fd z C such that The set of all solutos of (1.1) s deoted by EP(F),.e., F(z, y) 0, y C. (1.1) EP(F) = {z C : F(z, y) 0, y C}. May poblems physcs, optmzato, ad ecoomcs ca be educed to fd the soluto of (1.1); see [1 4]. I 1997, Combettes ad Hstoaga [5] toduced a teatve scheme of fdg the soluto of (1.1) ude the assumpto that EP(F) s o-empty. Late o, may teatve algothms ae cosdeed to fd the elemet of Fx(S) EP(F); see [6 8]. Recetly, some ew poblems called splt vaatoal equalty poblems ae cosdeed by some authos. Ceso et al. [9] tally studed ths class of splt vaato equalty poblems. Let H 1 ad H be two eal Hlbet spaces. Gve the opeatos f : H 1 H 1 ad : H H, bouded lea opeato 010 Mathematcs Subject Classfcato. Pmay 54E70; Secoday 47H5 Keywods. splt equlbum poblems; oexpasve mappgs; splt feasble soluto poblems; Hlbet spaces. Receved: 17 Febuay 015; Accepted: 10 Septembe 015 Commucated by Ljubom Ćć Emal addess: sheg-huawag@hotmal.com (Sheg Hua Wag)

S.H. Wag, M.J. Che / Flomat 31:5 (017), 143 1434 144 A : H 1 H, ad oempty closed covex subsets C H 1 ad Q H, the splt vaatoal equalty poblem s fomulated as follows: ad such that fd a pot x C such that f (x ), x x 0, x C y = Ax Q solves (y ), y y 0, y Q. Afte vestgatg the algothm of Ceso et al., Moudaf [10] toduced a ew teatve scheme to solve the followg splt mootoe vaatoal cluso: ad such that fd x H 1 such that 0 f (x ) + B 1 (x ) y = Ax H sovles 0 (y ) + B (y ), whee B 1 : H H s a set-valued mappgs fo = 1,. I 013, Kazm ad Rzv [11] cosdeed a ew class of splt poblem called splt equlbum poblem. Let F 1 : C C R ad F : Q Q R be two bfuctos ad A : H 1 H be a bouded lea opeato. The splt equlbum poblem s to fd x C such that ad such that F 1 (x, x) 0, x C, (1.) y = Ax Q sovles F (y, y) 0, y Q. (1.3) The set of all solutos of (1.) ad (1.3) s deoted by Ω,.e., Ω = {z C : z EP(F 1 ) such that Az EP(F )}. O splt equlbum poblem, the teested autho also may efe to [1, 13] whch the autho gave a teatve algothm to fd the commo elemet of sets of solutos of the splt equlbum poblem ad heachcal fxed pot poblem. To the kowledge of autho, the splt equlbum poblems ad fxed pot poblems fo asymptotcally oexpasve mappgs have ot bee vestgated lteatue by fa. I ths pape, sped by the esults [11 13], we popose a teatve algothm to fd the commo elemet of soluto sets of a splt equlbum poblem ad commo fxed pots set of a fte famly of asymptotcally oexpasve mappgs Hlbet spaces ad pove the stog covegece fo the algothm.. Pelmaes Let H be a Hlbet space ad C be a oempty closed ad covex subset of H. Fo each pot x H, thee exsts a uque eaest pot of C, deoted by P C x, such that x P C x x y fo all y C. Such a P C s called the metc pojecto fom H oto C. It s well kow that P C s a fmly oexpasve mappg fom H oto C,.e., P C x P C y P C x P C y, x y, x, y H. Futhe, fo ay x H ad z C, z = P C x f ad oly f x z, z y 0, y C. A mappg A : C H s called a α-vese stogly mootoe f thee exsts α > 0 such that x y, Ax Ay α Ax Ay, x, y H. Fo each λ (0, α], I λa s a oexpasve mappg of C to H; see [14]. Cosde the followg vaatoal equalty o vese stogly mootoe mappg A: fd u C such that v u, Au 0, v C.

S.H. Wag, M.J. Che / Flomat 31:5 (017), 143 1434 145 The set of solutos of the vaatoal equalty s deoted by VI(C, A). It s kow that u VI(C, A) u = P C (u λau) fo ay λ > 0. Let S : C C be a mappg. It s kow that S s oexpasve f ad oly f the complemet I S s 1 -vese stogly mootoe; see [15]. Let T : C C be a asymptotcally oexpasve mappg wth the sequece {k }. The fo ay (x, ˆx) C Fx(T), we have whch s obtaed dectly fom the followg T x x x T x, x ˆx + (k 1) x ˆx, N, (.1) k x ˆx T x T ˆx = T x ˆx = T x x + (x ˆx) = T x x + x ˆx + T x x, x ˆx. Let F be a bfucto of C C to R satsfyg the followg codtos: (A1) F(x, x) = 0 fo all x C; (A) F s mootoe,.e., F(x, y) + F(y, x) 0 fo all x, y C; (A3) fo each x, y, z C, lm t 0 F(tz + (1 t)x, y) F(x, y); (A4) fo each x C, y F(x, y) s covex ad lowe semcotuous. Lemma.1 [16] Let C be a oempty closed covex subset of a Hlbet space H ad let F : C C R be a bfucto whch satsfes the codtos (A1)-(A4). Fo x H ad > 0, defe a mappg T F : H C by The T s well defed ad the followg hold: (1) T F s sgle-valued; () T F s fmly oexpasve,.e., fo ay x, y H, (3) Fx(T F ) = EP(F); (4) EP(F) s closed ad covex. T F (x) = {z C : F(z, y) + 1 y z, z x 0, y C}. (.) T F x T F y T F x T F y, x y ; Lemma. [17] Let F : C C R be a bfucto satsfyg the codtos (A1)-A(4). Let T F ad Ts F be defed as Lemma.1 wth, s > 0. The, fo ay x, y H, oe has T F x Ts F y x y + 1 s T F x x. Lemma.3 [8] Let F : C C R be a fuctos satsfyg the codtos (A1)-(A4) ad let T F s ad T F t be defed as Lemma.1 wth s, t > 0. The the followg holds: fo all x H. Ts F x Tt F x s t T s x T t x, T s x x s Lemma.4 [18] Let {x } ad {y } be bouded sequeces a Baach space E ad let {β } be a sequece [0, 1] wth 0 < lm f β lm sup β < 1. Suppose x +1 = β y + (1 β )y fo all teges 0 ad lm sup ( y +1 y x +1 x ) 0. The, lm y x = 0. Lemma.5 [19] Let T be a asymptotcally oexpasve mappg o a closed ad covex subset C of a eal Hlbet space H. The I T s demclosed at ay pot y H. That s, f x x ad x Tx y H, the x Tx = y.

S.H. Wag, M.J. Che / Flomat 31:5 (017), 143 1434 146 Lemma.6 [0] Assume that {α } s a sequece of oegatve umbes such that α +1 (1 a )α + a t, 0, whee {a } s a sequece (0, 1) ad {t } s a sequece R such that (1) =1 a = ; () ethe lm sup t 0 o =0 a t <. The lm α = 0. 3. Ma Results Theoem 3.1 Let H 1 ad H be two eal Hlbet spaces ad C H 1 ad Q H be oempty closed ad covex subsets. Let F : C C R ad G : Q Q R be two bfuctos satsfyg (A1-A4) ad assume that G s uppe semcotuous the fst agumet. Let f : C C be ρ-cotacto ad {T } l : C C be l asymptotcally oexpasve mappgs wth the same sequece {k } satsfyg the codto that lm sup x K T +1 x T x = 0 (Γ) fo ay bouded subset K of C ad each = 1,, l. Let A : H 1 H be a bouded lea opeato. Suppose that Fx(T) Ω, whee Fx(T) = l Fx(T ) ad Ω = {v C : v EP(F) such that Av EP(G)}. Let {α } (0, 1) be a sequece. Defe the sequece {x } by the followg mae: x 0 C ad u = T F (I γa (I Ts G )A)x, x +1 = α f (x ) + (1 α l ) T l u, N, whee { } [, ) wth > 0, {s } [s, ) wth s > 0, γ (0, 1/L ], L s the spectal adus adus of the opeato A A ad A s the adjot of A. If the cotol sequeces {α }, { }, {s } ad {k } satsfy the followg codtos: () lm α = 0, =1 α = ; () =1 α α 1 <, =1 1 <, =1 s s 1 < ; k () lm 1 α = 0, the {x } geeated by (3.1) stogly coveges to z = P Fx(T) Ω f (z). Remak 3.1. Fo each N, A (I T G )A s a 1 -vese stogly mootoe mappg. I fact, sce T G L s s (fmly) oexpasve ad I Ts G s 1 -vese stogly mootoe, we have A (I T G s )Ax A (I T G s )Ay = A (I T G s )(Ax Ay), A (I T G s )(Ax Ay) = (I T G s )(Ax Ay), AA (I T G s )(Ax Ay) L (I T G s )(Ax Ay), (I T G s )(Ax Ay) = L (I T G s )(Ax Ay) L Ax Ay, (I T G s )(Ax Ay) = L x y, A (I T G s )(Ax Ay), fo all x, y H, whch mples that A (I T G s )A s a 1 L -vese stogly mootoe mappg. Note that γ (0, 1 L ]. Thus I γa (I T G s )A s oexpasve. (3.1)

S.H. Wag, M.J. Che / Flomat 31:5 (017), 143 1434 147 Poof. We fst show that {x } s bouded. Let p Fx(S) Ω. The p = T F p ad (I γa (I T G s )A)p = p. Thus we have u p = T F (I γa (I T G s )A)x T F (I γa (I T G s )A)p (I γa (I T G s )A)x (I γa (I T G s )A)p x p. Take ɛ (0, 1 ρ). Sce (k 1)/α 0 as, thee exsts N N such that fo all N, (k 1) < ɛα. Let T = 1 l l T fo each N. It s easy to see that T x T y k x y fo all x, y C ad N. Fom (3.1) ad (3.) t follows that, fo all > N, (3.) x +1 p = α ( f (x ) f (p)) + α ( f (p) p) + (1 α )(T u p) α f (x ) f (p) + α f (p) p + (1 α ) T u p α ρ x p + α f (p) p + (1 α )k u p = (1 α (1 ρ)) x p + α f (p) p + (1 α )(k 1) u p (1 α (1 ρ)) x p + α f (p) p + α ɛ x p = (1 α (1 ρ ɛ)) x p + α f (p) p max{ x p, 1 f (p) p }. 1 ρ ɛ (3.3) By ducto, we see that, fo all > N, x p max { x N p, 1 1 ρ ɛ f (p) p }. It follows that {x } s bouded ad so s {u }. Next we pove that lm x +1 x = 0. Sce (I γa (I T G s )A) s oexpasve, by Lemma. we have u +1 u = T F +1 (I γa (I T G s +1 )A)x +1 T F (I γa (I T G s )A)x (I γa (I T G s +1 )A)x +1 (I γa (I T G s )A)x + +1 T F +1 (I γa (I Ts G +1 )A)x +1 (I γa (I Ts G +1 )A)x +1 +1 x +1 x + (I γa (I Ts G +1 )A)x (I γa (I Ts G )A)x + +1 σ +1 = x +1 x + γ A (Ts G Ts G +1 )Ax + +1 σ +1, whee σ = sup{ N} T F (I γa (I T G s )A)x (I γa (I T G s )A)x. Futhe, by Lemma.3 we get u +1 u x +1 x + γ A Ts G Ax Ts G +1 Ax + +1 σ +1 x +1 x + γ A ( s s +1 Ts G s Ax Ts G +1 Ax, Ts G Ax Ax ) 1 + +1 σ +1 x +1 x + γ A ( s s +1 ) 1 η s + +1 σ +1, (3.4) whee η = sup N T G s Ax T G s +1 Ax, T G s Ax Ax.

S.H. Wag, M.J. Che / Flomat 31:5 (017), 143 1434 148 Let y = x +1 α f (x ) 1 α. The fom (3.1) ad (3.4) t follows that y +1 y x +1 x = T +1 u +1 T u x +1 x T +1 u +1 T +1 u x +1 x + T +1 u T u [ ( s s +1 (k +1 1) x +1 x + k γ A s + T +1 u T u η ) 1 [ ( s s +1 (k +1 1)( x +1 + x ) + k γ A s + 1 l l l T +1 u T u. η ) 1 + +1 ] σ +1 + +1 ] σ +1 Sce the mappgs {T } l satsfy the codto (Γ), by the codto () we get lm sup( y +1 y x +1 x ) = 0. Hece, by Lemma.4 we coclude that whch mples that Futhe, by (3.4) we get Fom (3.1) ad (3.5) t follows that lm y x = 0, lm x +1 x = 0. (3.5) lm u +1 u = 0. (3.6) lm T u x = 0. (3.7) Now we pove that lm T x x 0 fo each {1,, l}. To show ths, we fst pove that lm u x = 0. Sce A (I T G s )A s 1 L -vese stogly mootoe, by (3.1) we have u p = T F (I γa (I T G s )A)x T F (I γa (I T G s )A)p (I γa (I T G s )A)x (I γa (I T G s )A)p = (x p) γ(a (I T G s )Ax A (I T G s )Ap) = x p γ x p, A (I T G s )Ax A (I T G s )Ap + γ A (I T G s )Ax A (I T G s )Ap x p γ L A (I T G s )Ax A (I T G s )Ap + γ A (I T G s )Ax A (I T G s )Ap = x p + γ(γ 1 L ) A (I T G s )Ax A (I T G s )Ap = x p + γ(γ 1 L ) A (I T G s )Ax

S.H. Wag, M.J. Che / Flomat 31:5 (017), 143 1434 149 Thus we have x +1 p α f (x ) p + (1 α )k u p α f (x ) p + (1 α )k [ x p + γ(γ 1 L ) A (I Ts G )Ax ] = α f (x ) p + (1 α )(1 + θ + θ ) x p + γ(1 α )k(γ 1 L ) A (I Ts G )Ax α f (x ) p + x p + (1 α )(θ + θ ) x p + γ(1 α )k(γ 1 L ) A (I Ts G )Ax, whee θ = k 1. Theefoe, γ(1 α )k ( 1 L γ) A (I T G s )Ax α f (x ) p + x x +1 ( x p + x +1 p ) + (1 α )(θ + θ ) x p. Sce α 0, k 1 ad both { f (x )} ad {x } ae bouded, by (3.5) we have whch mples that lm A (I Ts G )Ax = 0, (3.8) lm (I TG s )Ax = 0. (3.9) Sce T F s fmly oexpasve ad (I γa (T G s I)A) s oexpasve, by (3.1) we have u p = T F ( x + γa (T G s I)Ax ) T F (p) u p, x + γa (T G s I)Ax p = 1 { u p + x + γa (T G s I)Ax p u p [x + γa (Ts G I)Ax p] } = 1 { u p (I + γa (Ts G I)A)x (I γa (Ts G I)A)p u x γa (Ts G I)Ax } 1 { u p x + p u x γa (Ts G I)Ax } = 1 { u p x + p [ u x + γ A (Ts G I)Ax γ u x, A (T G s I)Ax ]}, whch mples that u p x p u x + γ u x A (T G s I)Ax. (3.10)

Now, fom (3.1) ad (3.10) we get Hece, S.H. Wag, M.J. Che / Flomat 31:5 (017), 143 1434 1430 x +1 p α f (x ) p + (1 α ) T u p α f (x ) p + (1 α )k u p α f (x ) p + (1 α )k [ x p u x + γ u x A (T G s I)Ax ] = α f (x ) p + (1 α )(1 + θ + θ ) x p (1 α )k u x + (1 α )k γ u x A (T G s I)Ax ] α f (x ) p + (θ + θ ) x p (1 α )k u x + x p + k γ u x A (T G s I)Ax ] (1 α )k u x α f (x ) p + x x +1 ( x p + x +1 p ) + (θ + θ ) x p + k γ( u + x ) A T G s I)Ax. Sce α 0, k 1 ad {x } ad {u } ae bouded, by (3.5) ad (3.10) we have lm u x = 0. (3.11) Combg (3.5) ad (3.11), by u x +1 u x + x x +1 we see that lm u x +1 = 0. (3.1) Note that 1 l l (T u u ) = (T u u ) By (.1) ad (3.13), fo each = 1,, l, we have 1 l T u u 1 l l = l T u u = 1 1 α [ x+1 u + α (u f (x )) ]. l T u u, u p + (k 1) u p [ x+1 u, u p + α u f (x ), u p ] + (k 1) u p. (1 α ) (3.13) (3.14) Sce α 0 ad k 1, fom (3.1) ad (3.14) t follows that, fo each = 1,, l, lm T u u = 0. (3.15) Let k = sup N k <. Cosequetly, by (3.6) ad (3.15) we get that, fo each = 1,, l, T u u T u T +1 u + T +1 u T +1 u +1 + T +1 u +1 u +1 + u +1 u k u T u + T +1 u +1 u +1 + (1 + k ) u +1 u 0, as.

Futhe, we have, fo each = 1,, l, S.H. Wag, M.J. Che / Flomat 31:5 (017), 143 1434 1431 T x x T x T u + T u u + u x (k 1 + 1) u x + T u u 0, as. (3.16) Sce P Fx(S) Ω f s a cotacto, thee exsts a uque z Fx(S) Ω such that z = P Fx(S) Ω f (z). Sce {x } s bouded, we ca choose a subsequece {x k } of {x } such that lm sup f (z) z, x z = lm f (z) z, x z. k As {x k } s bouded, thee s a subsequece {x k } of {x k } covegg weakly to some w C. Wthout loss of geealty, we ca assume that x k w. Now we show that w l Fx(T ). I fact, sce each x T x 0 ad x k w, by Lemma.3 we obta that w Fx(T ). So w Fx(T) = l Fx(T ). Next we show that w Ω. By (3.1), u = T F (I γa (I Ts G )A)x, that s F(u, y) + 1 y u, u x 1 y u, γa (T G s I)Ax 0, y C. Fom the mootocty of F t follows that 1 y u, γa (T G s I)Ax + 1 y u, u x F(y, u ), y C. Replacg wth k the above equalty, we have 1 k y u k, γa (T G s I)Ax k + 1 k y u k, u x k F(y, u k ), y C. Sce u k x k 0, A (T G k I)Ax k 0 ad x k w 0 as k, we have F(y, w) 0, y C. Fo ay 0 < t 1 ad y C, let y t = ty + (1 t)w. The we have y t C. Futhe, we have 0 = F(y t, y t ) tf(y t, y) + (1 t)f(y t, w) tf(y t, y). So F(y t, y) 0. Let t 0, oe has F(w, y) 0,.e., w EP(F). Next we show that Aw EP(G). Sce A s bouded lea opeato, Ax k follows that Ts G Ax k Aw. By the defto of T G Ax k, we have Aw. The fom (3.9) t G(T G s Ax k, y) + 1 s k y T G s Ax k, T G s Ax k Aw 0, y C. (3.1) Sce each G s uppe semcotuous the fst agumet, takg lm sup to (3.1) as k, we get whch mples that Aw EP(G). Theefoe, w Ω. By the popety o P Fx(T) Ω, we have G(Aw, y) 0, y C, lm sup f (z) z, x z = lm f (z) z, x k z k = f (z) z, w z 0. (3.13)

S.H. Wag, M.J. Che / Flomat 31:5 (017), 143 1434 143 Sce α 0, thee exsts N 1 N such that ( ρ)α < 1 fo all N 1. Now, by (3.1) we have, fo all > N 1, x +1 z = α f (x ) + (1 α )T u p So whee M = sup N x z. Put ad The (1 α ) T u p + α f (x ) z, x +1 z [(1 α )k ] u p + α f (x ) f (z), x +1 z + α f (z) z, x +1 z [(1 α )k ] x p + ρα x z x +1 z + α f (z) z, x +1 z [(1 α )k ] x p + ρα ( x z + x +1 z ) + α f (z) z, x +1 z = [(1 α )(k 1) + (1 α )] x z + ρα x z + ρα x +1 z + α f (z) z, x +1 z = [1 ( ρ)α + α + (1 α ) (k 1) + (1 α ) (k 1)] x z + ρα x +1 z + α f (z) z, x +1 z [1 ( ρ)α + α + (k 1) + (k 1)] x z + ρα x +1 z + α f (z) z, x +1 z. x +1 z 1 ( ρ)α 1 ρα x z + α + (k 1) + (k 1) 1 ρα M + α 1 ρα f (z) z, x +1 z = (1 (1 ρ)α 1 ρα ) x z + α + (k 1) + (k 1) 1 ρα M + α 1 ρα f (z) z, x +1 z, s = (1 ρ)α 1 ρα δ = α + (k 1) + (k 1) (1 ρ)α M + 1 1 ρ f (z) z, x +1 z. x +1 z (1 s ) x z + s δ. Note that s 0, =1 s = ad lm sup δ 0. By theoem.6 we coclude that lm x z = 0. Ths completes the poof. I Theoem 3.1, f T T, the the codto (Γ) s educed to asymptotcally egula ad we get the followg Coollay 3.1 Let H 1 ad H be two eal Hlbet spaces ad C H 1 ad Q H be oempty closed covex subsets. Let F : C C R ad G : Q Q R be two bfuctos satsfyg (A1-A4) ad assume that G s uppe semcotuous the fst agumet. Let f : C C be ρ-cotacto ad T : C C be a asymptotcally oexpasve mappg wth the sequece {k } satsfyg the codto that lm sup x K T +1 x T x = 0

S.H. Wag, M.J. Che / Flomat 31:5 (017), 143 1434 1433 fo ay bouded subset K of C. Assume that T s asymptotcally egula ad suppose that Fx(T) Ω, whee Ω = {v C : v EP(F) ad Av EP(G)}. Let {α } (0, 1) be a sequece. Let A : H 1 H be a bouded lea opeato. Defe the sequece {x } by the followg mae: x 0 C ad { u = T F (I γa (I T G s )A)x, x +1 = α f (x ) + (1 α )T u, N, whee { } (, ) wth > 0, {s } [s, ) wth s > 0, γ (0, 1/L ], L s the spectal adus adus of the opeato A A ad A s the adjot of A. If the cotol sequeces {α } ad {k } satsfy the followg codtos: () lm α = 0, =1 α = ; () =1 α α 1 <, =1 1 <, =1 s s 1 < ; k () lm 1 α = 0, the {x } stogly coveges to z = P Fx(T) EP(F) f (z). I Coollay 3.1, f A 0, the we get the followg Coollay 3. Let H 1 ad H be two eal Hlbet spaces ad C H 1 ad Q H be oempty closed covex subsets. Let F : C C R be a bfucto satsfyg (A1-A4). Let f : C C be ρ-cotacto ad T : C C be a asymptotcally oexpasve mappg wth the sequece {k } satsfyg the codto that lm sup x K T +1 x T x = 0 fo ay bouded subset K of C. Assume that T s asymptotcally egula ad suppose that Fx(T) EP(F). Let {α } (0, 1) be thee sequece. Defe the sequece {x } by the followg mae: x 0 C ad { u = T F x, x +1 = α f (x ) + (1 α )T u, N, whee { } [, ) wth > 0. If the cotol sequeces {α }, { }, {s } ad {k } satsfy the followg codtos: () lm α = 0, =1 α = ; () =1 α α 1 <, =1 1 < ; k () lm 1 α = 0, the {x } stogly coveges to z = P Fx(T) EP(F) f (z). I Coollay 3., f F(x, y) 0 ad s 1, the u = P C x = x ad we get the followg Coollay 3.3 Let H 1 ad H be two eal Hlbet spaces ad C H 1 ad Q H be oempty closed covex subsets. Let f : C C be ρ-cotacto ad T : C C be a asymptotcally oexpasve mappg wth the sequece {k } satsfyg the codto that lm T +1 x T x = 0 sup x K fo ay bouded subset K of C. Assume that T s asymptotcally egula ad suppose that Fx(T). Let {α } (0, 1) be thee sequece. Defe the sequece {x } by the followg mae: x 0 C ad { x+1 = α f (x ) + (1 α )T x, N. If the cotol sequeces {α }, { } ad {k } satsfy the followg codtos: () lm α = 0, =1 α < ; () =1 α α 1 < ; () lm k 1 α = 0,

the {x } stogly coveges to z = P Fx(T) f (z). S.H. Wag, M.J. Che / Flomat 31:5 (017), 143 1434 1434 Remak 3. I [11 13], a gap appeas the computato pocess of u +1 u. I ths pape, we use a ew method to estmate the value of u +1 u by Lemma.3 ad the vese stog mootocty of I γa (I T G s )A, whch s smple ad avods the gap [11 13]. Ackowledgmets Ths wok s suppoted by Natual Scece Foudato of Hebe Povce (Gat Numbe: A0155001), Fudametal Reseach Fuds fo the Cetal Uvestes (Gat Numbe: 014ZD44,015MS78) ad the Poject-sposoed by SRF fo ROCS, SEM. Refeeces [1] S.-S. Chag, H. W. J. Lee, ad C. K. Cha, A ew method fo solvg equlbum poblem fxed pot poblem ad vaatoal equalty poblem wth applcato to optmzato, Nolea Aal. 70 (009) 3307 3319. [] P. Katchag ad P. Kumam, A ew teatve algothm of soluto fo equlbumpoblems, vaatoal equaltes ad fxed pot poblems a Hlbet space, J. Appl. Math. Comp. 3 (010) 19 38. [3] X. Q, M. Shag, ad Y. Su, A geeal teatve method fo equlbum poblems ad fxed pot poblems Hlbet spaces, Nolea Aal. 69 (008) 3897 3909. [4] S. Plubteg ad R. Pupaeg, A geeal teatve method fo equlbum poblems ad fxed pot poblems Hlbet spaces, J. Math. Aal. Appl. 336 (007) 455 469. [5] P. L. Combettes ad S. A. Hstoaga, Equlbum pogammg usg poxmal lke algothms, Mathematcal Pog. 78 (1997) 9 41. [6] A. Tada ad W. Takahash, Weak ad stog covegece theoems fo a oexpasve mappg ad a equlbum poblem, J. Optm. Theoy Appl. 133 (007) 359 370. [7] S. Takahash ad W. Takahash, Vscosty appoxmato methods fo equlbum poblems ad fxed pot poblems Hlbet spaces, J. Math. Aal. Appl. 331 (007) 506 515. [8] S. Takahash ad W. Takahash, Stog covegece theoem fo a geealzed equlbum poblem ad a oexpasve mappg a Hlbet space, Nolea Aal. 69 (008) 105 1033. [9] Y. Ceso, A. Gbal, ad S. Rech, Algothms fo the splt vaatoal equalty poblem, Numecal Algo. 59(01) 301 33. [10] A. Moudaf, Splt Mootoe Vaatoal Iclusos, Joual of Optmzato Theoy Appl. 150 (011) 75 83. [11] K. R. Kazm ad S. H. Rzv, Iteatve appoxmato of a commo soluto of a splt equlbum poblem, a vaatoal equalty poblem ad a fxed pot poblem, J. Egypta Math. Socety. 1 (013) 44 51. [1] A. Bouhachem, Stog covegece algothm fo splt equlbum poblems ad heachcal fxed pot poblems, The Scetfc Wold Joual, 014, Atcle ID 390956, 1 pages. [13] A. Bouhachem, Algothms of commo solutos fo a vaatoal equalty, a splt equlbum poblem ad a heachcal fxed pot poblem, Fxed Pot Theoy Appl. 013, atcale 78, pp. 1 5, 013. [14] H. Iduka, W. Takahash, Stog covegece theoems fo oexpasve mappgs ad vese-stogly mootoe mappgs. Nolea Aal. (61) (005) 341 350. [15] W. Takahash, Nolea Fuctoal Aalyss, Yokohama Publshes, Yokohama, 000. [16] P.L. Combettes ad S.A. Hstoaga, Equlbum pogammg Hlbet spaces. J. Nolea Covex Aal. 6 (005) 117 136. [17] F. Cacauso, G. Mao, L. Mugla, ad Y. Yao, A hybd pojecto algothm fo fdg solutos of mxed equlbum poblem ad vaatoal equalty poblem, Fxed Pot Theoy ad Applcatos, vol. 010, Atcle ID383740, 19 pages, 010. [18] T. Suzuk, Stog covegece of Kasoselsk ad Ma s type sequeces fo o-paamete oexpasve semgoups wthout Boche tegals, J. Math. Aal. Appl. 305 (005) 7 39. [19] Y. J. Cho, H.Y. Zhou, G.T. Guo, Weak ad stog covegece theoems fo thee-step teatos wth eos fo asymptotcally oexpasve mappgs, Comput. Math. Appl. 47 (004) 707 717. [0] L.S. Lu, Iteatve pocesses wth eos fo olea stogly accetve mappgs Baach spaces, J. Math. Aal. Appl. 194 (1995) 114 15.