n-points Inequalities of Hermite-Hadamard Type for h-convex Functions on Linear Spaces

Similar documents
INEQUALITIES OF HERMITE-HADAMARD TYPE FOR

ON SOME NEW INEQUALITIES OF HADAMARD TYPE INVOLVING h-convex FUNCTIONS. 1. Introduction. f(a) + f(b) f(x)dx b a. 2 a

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

ON THE WEIGHTED OSTROWSKI INEQUALITY

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

Hermite-Hadamard type inequalities for harmonically convex functions

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1)

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

The Hadamard s Inequality for s-convex Function

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

The Hadamard s inequality for quasi-convex functions via fractional integrals

S. S. Dragomir. 2, we have the inequality. b a

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave

Journal of Inequalities in Pure and Applied Mathematics

On some refinements of companions of Fejér s inequality via superquadratic functions

Journal of Inequalities in Pure and Applied Mathematics

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

Integral inequalities for n times differentiable mappings

ON PERTURBED TRAPEZOIDAL AND MIDPOINT RULES. f (t) dt

New general integral inequalities for quasiconvex functions

Journal of Inequalities in Pure and Applied Mathematics

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b)

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Inequalities of Jensen Type for h-convex Functions on Linear Spaces

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS

Research Article On New Inequalities via Riemann-Liouville Fractional Integration

Research Article On Hermite-Hadamard Type Inequalities for Functions Whose Second Derivatives Absolute Values Are s-convex

arxiv: v1 [math.ca] 28 Jan 2013

On Hermite-Hadamard type integral inequalities for functions whose second derivative are nonconvex

WEIGHTED INTEGRAL INEQUALITIES OF OSTROWSKI, 1 (b a) 2. f(t)g(t)dt. provided that there exists the real numbers m; M; n; N such that

A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications

An inequality related to η-convex functions (II)

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

Parametrized inequality of Hermite Hadamard type for functions whose third derivative absolute values are quasi convex

On new Hermite-Hadamard-Fejer type inequalities for p-convex functions via fractional integrals

Journal of Inequalities in Pure and Applied Mathematics

Bulletin of the. Iranian Mathematical Society

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Revista Colombiana de Matemáticas Volumen 41 (2007), páginas 1 13

0 N. S. BARNETT AND S. S. DRAGOMIR Using Gruss' integrl inequlity, the following pertured trpezoid inequlity in terms of the upper nd lower ounds of t

ON COMPANION OF OSTROWSKI INEQUALITY FOR MAPPINGS WHOSE FIRST DERIVATIVES ABSOLUTE VALUE ARE CONVEX WITH APPLICATIONS

Bounds for the Riemann Stieltjes integral via s-convex integrand or integrator

RIEMANN-LIOUVILLE FRACTIONAL SIMPSON S INEQUALITIES THROUGH GENERALIZED (m, h 1, h 2 )-PREINVEXITY

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS VIA TAYLOR S EXPANSION WITH INTEGRAL REMAINDER

Research Article On The Hadamard s Inequality for Log-Convex Functions on the Coordinates

RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR S f DIVERGENCE

Some New Inequalities of Simpson s Type for s-convex Functions via Fractional Integrals

INNER PRODUCT INEQUALITIES FOR TWO EQUIVALENT NORMS AND APPLICATIONS

NEW HERMITE HADAMARD INEQUALITIES VIA FRACTIONAL INTEGRALS, WHOSE ABSOLUTE VALUES OF SECOND DERIVATIVES IS P CONVEX

A basic logarithmic inequality, and the logarithmic mean

Some new integral inequalities for n-times differentiable convex and concave functions

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals

f(tx + (1 t)y) h(t)f(x) + h(1 t)f(y) (1.1)

ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES

Improvement of Ostrowski Integral Type Inequalities with Application

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions

Journal of Inequalities in Pure and Applied Mathematics

Grüss Type Inequalities for Complex Functions Defined on Unit Circle with Applications for Unitary Operators in Hilbert Spaces

Hadamard-Type Inequalities for s Convex Functions I

RGMIA Research Report Collection, Vol. 1, No. 1, SOME OSTROWSKI TYPE INEQUALITIES FOR N-TIME DIFFERENTIA

Inequalities of Hermite-Hadamard Type for h-convex Functions on Linear Spaces

Journal of Inequalities in Pure and Applied Mathematics

ON A CONVEXITY PROPERTY. 1. Introduction Most general class of convex functions is defined by the inequality

Improvements of some Integral Inequalities of H. Gauchman involving Taylor s Remainder

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II

Generalized Hermite-Hadamard Type Inequalities for p -Quasi- Convex Functions

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

Journal of Inequalities in Pure and Applied Mathematics

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei

Properties and integral inequalities of Hadamard- Simpson type for the generalized (s, m)-preinvex functions

A short introduction to local fractional complex analysis

The Bochner Integral and the Weak Property (N)

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-1 Yıl:

An optimal 3-point quadrature formula of closed type and error bounds

Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics ICTAMI 2003, Alba Iulia

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

Improvement of Grüss and Ostrowski Type Inequalities

On some inequalities for s-convex functions and applications

Frobenius numbers of generalized Fibonacci semigroups

APPROXIMATING THE RIEMANN-STIELTJES INTEGRAL BY A TRAPEZOIDAL QUADRATURE RULE WITH APPLICATIONS

WENJUN LIU AND QUÔ C ANH NGÔ

THE HERMITE-HADAMARD TYPE INEQUALITIES FOR OPERATOR CONVEX FUNCTIONS

SOME HARDY TYPE INEQUALITIES WITH WEIGHTED FUNCTIONS VIA OPIAL TYPE INEQUALITIES

On some Hardy-Sobolev s type variable exponent inequality and its application

arxiv: v1 [math.ca] 11 Jul 2011

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

Asymptotic behavior of intermediate points in certain mean value theorems. III

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral

The Riemann Integral

Inequalities for convex and s-convex functions on Δ =[a, b] [c, d]

GENERALIZED ABSTRACTED MEAN VALUES

Improvements of the Hermite-Hadamard inequality

Transcription:

Armenin Journl o Mthemtics Volume 8, Number, 6, 38 57 n-points Inequlities o Hermite-Hdmrd Tpe or h-convex Functions on Liner Spces S. S. Drgomir Victori Universit, Universit o the Witwtersrnd Abstrct. Some n-points inequlities o Hermite-Hdmrd tpe or h-convex unctions deined on convex subsets in rel or complex liner spces re given. Applictions or norm inequlities re provided s well. Ke Words: Convex unctions, Integrl inequlities, h-convex unctions. Mthemtics Subject Clssiiction : 6D5; 5D Introduction We recll here some concepts o convexit tht re well known in the literture. Let I be n intervl in R. Deinition ([6]) We s tht : I R is Godunov-Levin unction or tht belongs to the clss Q (I) i is non-negtive nd or ll x, I nd t (, ) we hve (tx + ( t) ) t (x) + (). () t Some urther properties o this clss o unctions cn be ound in [], [], [3], [3], [35] nd [36]. Among others, its hs been noted tht nonnegtive monotone nd non-negtive convex unctions belong to this clss o unctions. The bove concept cn be extended or unctions : C X [, ) where C is convex subset o the rel or complex liner spce X nd the inequlit () is stisied or n vectors x, C nd t (, ). I the unction : C X R is non-negtive nd convex, then is o Godunov- Levin tpe. 38

n-points Inequlities o Hermite-Hdmrd Tpe 39 Deinition ([3]) We s tht unction : I R belongs to the clss P (I) i it is nonnegtive nd or ll x, I nd t [, ] we hve (tx + ( t) ) (x) + (). () Obviousl Q (I) contins P (I) nd or pplictions it is importnt to note tht lso P (I) contins ll nonnegtive monotone, convex nd qusi convex unctions, i. e. nonnegtive unctions stising (tx + ( t) ) mx { (x), ()} (3) or ll x, I nd t [, ]. For some results on P -unctions see [3] nd [33] while or qusi convex unctions, the reder cn consult []. I : C X [, ), where C is convex subset o the rel or complex liner spce X, then we s tht it is o P -tpe (or qusi-convex) i the inequlit () (or (3)) holds true or x, C nd t [, ]. Deinition 3 ([7]) Let s (, ]. A unction : [, ) [, ) is sid to be s-convex (in the second sense) or Breckner s-convex i (tx + ( t) ) t s (x) + ( t) s () or ll x, [, ) nd t [, ]. For some properties o this clss o unctions see [], [], [7], [8], [8], [9], [7], [9] nd [38]. The concept o Breckner s-convexit cn be similrl extended or unctions deined on convex subsets o liner spces. It is well known tht i (X, ) is normed liner spce, then the unction (x) = x p, p is convex on X. Utilising the elementr inequlit ( + b) s s + b s tht holds or n, b nd s (, ], we hve or the unction g (x) = x s tht g (tx + ( t) ) = tx + ( t) s (t x + ( t) ) s (t x ) s + [( t) ] s = t s g (x) + ( t) s g () or n x, X nd t [, ], which shows tht g is Breckner s-convex on X. In order to uni the bove concepts or unctions o rel vrible, S. Vrošnec introduced the concept o h-convex unctions s ollows. Assume tht I nd J re intervls in R, (, ) J nd unctions h nd re rel non-negtive unctions deined in J nd I, respectivel.

4 S. S. Drgomir Deinition 4 ([4]) Let h : J [, ) with h not identicl to. We s tht : I [, ) is n h-convex unction i or ll x, I we hve or ll t (, ). (tx + ( t) ) h (t) (x) + h ( t) () (4) For some results concerning this clss o unctions see [4], [6], [3], [39], [37] nd [4]. This concept cn be extended or unctions deined on convex subsets o liner spces in the sme w s bove replcing the intervl I be the corresponding convex subset C o the liner spce X. We cn introduce now nother clss o unctions. Deinition 5 We s tht the unction : C X [, ) is o s-godunov-levin tpe, with s [, ], i or ll t (, ) nd x, C. (tx + ( t) ) t s (x) + ( t) s (), (5) We observe tht or s = we obtin the clss o P -unctions while or s = we obtin the clss o Godunov-Levin. I we denote b Q s (C) the clss o s-godunov-levin unctions deined on C, then we obviousl hve P (C) = Q (C) Q s (C) Q s (C) Q (C) = Q (C) or s s. The ollowing inequlit holds or n convex unction deined on R ( ) + b b () + (b) (b ) < (x)dx < (b ),, b R. (6) It ws irstl discovered b Ch. Hermite in 88 in the journl Mthesis (see [3]). But this result ws nowhere mentioned in the mthemticl literture nd ws not widel known s Hermite s result. E. F. Beckenbch, leding expert on the histor nd the theor o convex unctions, wrote tht this inequlit ws proven b J. Hdmrd in 893 [5]. In 974, D. S. Mitrinović ound Hermite s note in Mthesis [3]. Since (6) ws known s Hdmrd s inequlit, the inequlit is now commonl reerred s the Hermite-Hdmrd inequlit. For relted results, see []-[3], [4] nd [34]. We cn stte the ollowing generliztion o the Hermite-Hdmrd inequlit or h-convex unctions deined on convex subsets o liner spces [7].

n-points Inequlities o Hermite-Hdmrd Tpe 4 Theorem Assume tht the unction : C X [, ) is h-convex unction with h L [, ]. Let, x C with x nd ssume tht the mpping [, ] t [( t) x + t] is Lebesgue integrble on [, ]. Then ( ) x + h ( ) [( t) x + t] dt [ (x) + ()] h (t) dt. (7) Remrk I : I [, ) is h-convex unction on n intervl I o rel numbers with h L [, ] nd L [, b] with, b I, < b, then rom (7) we get the Hermite-Hdmrd tpe inequlit obtined b Srik et l. in [37] ( ) + b h ( ) b b (u) du [ () + (b)] h (t) dt. I we write (7) or h (t) = t, then we get the clssicl Hermite-Hdmrd inequlit or convex unctions ( ) x + (x) + () [( t) x + t] dt. (8) I we write (7) or the cse o P -tpe unctions : C [, ), i.e., h (t) =, t [, ], then we get the inequlit ( ) x + [( t) x + t] dt (x) + (), (9) tht hs been obtined or unctions o rel vrible in [3]. I is Breckner s-convex on C, or s (, ), then b tking h (t) = t s in (7) we get ( ) x + s [( t) x + t] dt (x) + (), () s + tht ws obtined or unctions o rel vrible in [8]. Since the unction g (x) = x s is Breckner s-convex on on the normed liner spce X, s (, ), then or n x, X we hve x + s ( t) x + t s dt x s + x s. () s + I : C [, ) is o s-godunov-levin tpe, with s [, ), then ( ) x + (x) + () [( t) x + t] dt. () s+ s

4 S. S. Drgomir We notice tht or s = the irst inequlit in () still holds, i.e. ( ) x + 4 [( t) x + t] dt. (3) The cse o unctions o rel vribles ws obtined or the irst time in [3]. Motivted b the bove results, in this pper some n-points inequlities o Hermite-Hdmrd tpe or h-convex unctions deined on convex subsets in rel or complex liner spces re given. Applictions or norm inequlities re provided s well. Some New Results In [7] we lso obtined the ollowing result: Theorem Assume tht the unction : C X [, ) is n h-convex unction with h L [, ]. Let, x C with x nd ssume tht the mpping [, ] t [( t) x + t] is Lebesgue integrble on [, ]. Then or n λ [, ] we hve the inequlities { [ ] [ ]} ( λ) x + (λ + ) ( λ) x + λ h ( ) ( λ) + λ (4) [( t) x + t] dt [ (( λ) x + λ) + ( λ) () + λ (x)] {[h ( λ) + λ] (x) + [h (λ) + λ] ()} We cn stte the ollowing new corollr s well: h (t) dt h (t) dt. Corollr With the ssumptions o Theorem we hve h ( ) { [ ] [ ( λ) x + (λ + ) ( λ) + (λ + ) x ( λ) + [( t) x + t] dt [ ] () + (x) (( λ) x + λ) dλ + h (t) dt [ [ (x) + ()] h (λ) dλ + ] h (t) dt. (5) ]} dλ

n-points Inequlities o Hermite-Hdmrd Tpe 43 Proo. The proo ollows b integrting the inequlit (4) over λ nd b using the equlit [ ] ( λ) x + λ λ dλ = The ollowing result or double integrl lso holds: [ ] ( + µ) x + ( µ) ( µ) dµ. Corollr With the ssumptions o Theorem we hve h ( ) (b ) (6) { [ ] [ ]} x + (β + ) (β + ) x + + ddβ () () [( t) x + t] dt [ b b ( βx + (b ) [ b b ( β (b ) h or n b >. Proo. I we tke λ = +β we hve ) ddβ + ) ddβ + ] () + (x) h (t) dt ] [ (x) + ()] h (t) dt, h ( ) { [ ] β βx + () () + [ ]} (β + ) x + () [( t) x + t] dt [ ( ) βx + + β () + ] (x) h (t) dt {[ ( ) β h + ] [ ( ) (x) + h + β ] } () h (t) dt, (7) or n, β with >.

44 S. S. Drgomir Since the mpping [, ] t [( t) x + t] is Lebesgue integrble on [, ], then the double integrl b ( ) b βx+ ddβ exists or n b >. +β The sme holds or the other integrls in (6). Integrting the inequlit (7) on the squre [, b] over (, β) we hve h ( ) (b ) { [ ] β βx + () () [ (b ) Observe tht + [ (β + ) x + () ]} ddβ [( t) x + t] dt ( ) βx + + β () + ] (x) ddβ h (t) dt {[ ( ) β h (t) dt h + ] (x) + [ ( ) + h + β ] } () ddβ. (8) = [ β βx + () () [ x + (β + ) () ] ddβ ] ddβ nd then { [ ] β βx + () + [ (β + ) x + () () { [ ] [ x + (β + ) (β + ) x + = + () () Also nd since then we hve ddβ + ddβ = β ddβ = β ddβ ddβ = (b ). ]} ddβ ]} ddβ. ddβ = (b ),

n-points Inequlities o Hermite-Hdmrd Tpe 45 Moreover, we hve ( ) h ddβ = Utilising (8), we get the desired result (6). ( ) β h ddβ. Remrk Let : C X C be convex unction on the convex subset C o rel or complex liner spce X. Then or n x, C nd b > we hve ( ) x + (9) (b ) { [( t) x + t] dt [ b b (b ) () + (x). [ ] [ x + (β + ) (β + ) x + + () () ( βx + ) ddβ + ] () + (x) ]} ddβ The second nd third inequlities re obvious rom (6) or h (t) = t. B the convexit o we hve { [ ] [ ]} x + (β + ) (β + ) x + + () () [ {[ ] [ ]}] x + (β + ) (β + ) x + + () () ( ) x + = or n, β with >. I we multipl this inequlit b [, b] we get +β nd integrte on the squre { [ ] [ x + (β + ) (β + ) x + + () () ( ) x + b b ( ) x + ddβ = (b ), ]} ddβ

46 S. S. Drgomir since we know tht This proves the irst inequlit in (9). B the convexit o we lso hve ( ) βx + ddβ = (b ). β (x) + () or n, β with >. Integrting on the squre [, b] we get (x) ( βx + ) ddβ β ddβ + () = (b ) [ () + (x)], which proves the lst inequlit in (9). ddβ Let (X, ) be normed liner spce over the rel or complex number ields. Then or n x, X, p nd b > we hve: p x + () (b ) ( t) x + t p dt [ b b (b ) p + x p. { x + (β + ) () βx + p + (β + ) x + () p ddβ + p + x p ] The cse o Breckner s-convexit is s ollows: p} ddβ Remrk 3 Assume tht the unction : C X [, ) is Breckner s-convex unction with s (, ). Let, x C with x nd ssume tht

n-points Inequlities o Hermite-Hdmrd Tpe 47 the mpping [, ] t [( t) x + t] is Lebesgue integrble on [, ]. Then or n b > we hve s (b ) s + { [( t) x + t] dt [ b b (b ) We lso hve the norm inequlities: s (b ) ( t) x + t s dt [ b b (b ) [ ] [ x + (β + ) (β + ) x + + () () ( ) βx + ddβ + { x + (β + ) () βx + or n x, X, normed liner spce. s ] () + (x). + (β + ) x + () s ddβ + s + x s ], ]} ddβ s} ddβ () () 3 Inequlities or n-points In order to extend the bove results or n-points, we need the ollowing representtion o the integrl tht is o interest in itsel. Theorem 3 Let : C X C be deined on the convex subset C o rel or complex liner spce X. Assume tht or x, C with x the mpping [, ] (( t) x + t) C is Lebesgue integrble on [, ]. Then or n prtition = λ < λ <... < λ n < λ n = with n, we hve the representtion n (( t) x + t) dt = (λ j+ λ j ) j= {( u) [( λ j ) x + λ j ] + u [( λ j+ ) x + λ j+ ]} du. (3)

48 S. S. Drgomir Proo. We hve In the integrl λj+ n (( t) x + t) dt = consider the chnge o vrible Then j= λj+ λ j (( t) x + t) dt. (4) λ j (( t) x + t) dt, j {,..., n }, u := λ j+ λ j (t λ j ), t [λ j, λ j+ ]. du = λ j+ λ j dt, u = or t = λ j, u = or t = λ j+, t = ( u) λ j + uλ j+ nd λj+ λ j (( t) x + t) dt (5) = (λ j+ λ j ) [( ( u) λ j uλ j+ ) x + (( u) λ j + uλ j+ ) ] du = (λ j+ λ j ) [( u + u ( u) λ j uλ j+ ) x + (( u) λ j + uλ j+ ) ] du = (λ j+ λ j ) = [(( u) ( λ j ) + u ( λ j+ )) x + (( u) λ j + uλ j+ ) ] du {( u) [( λ j ) x + λ j ] + u [( λ j+ ) x + λ j+ ]} du or n j {,..., n }. Mking use o (4) nd (5) we deduce the desired result (3). The ollowing prticulr cse is o interest nd hs been obtined in [7]. Corollr 3 In the the ssumptions o Theorem 3 we hve (( t) x + t) dt = λ or n λ [, ]. + ( λ) {( u) x + u [( λ) x + λ]} du (6) {( u) [( λ) x + λ] + u} du

n-points Inequlities o Hermite-Hdmrd Tpe 49 Proo. Follows rom (3) b choosing = λ λ = λ λ =. The ollowing result holds or h-convex unctions: Theorem 4 Let : C X C be deined on the convex subset C o rel or complex liner spce X nd is h-convex on C with h L [, ]. Assume tht or x, C with x the mpping [, ] (( t) x + t) R is Lebesgue integrble on [, ]. Then or n prtition = λ < λ <... < λ n < λ n = with n, we hve the inequlities h ( n ) (λ j+ λ j ) j= n (( t) x + t) dt {( λ ) j + λ j+ x + λ } j + λ j+ (λ j+ λ j ) [ (( λ j ) x + λ j ) + (( λ j+ ) x + λ j+ )] j= h (u) du. (7) Proo. Since is h-convex, then {( u) [( λ j ) x + λ j ] + u [( λ j+ ) x + λ j+ ]} h ( u) (( λ j ) x + λ j ) + h (u) (( λ j+ ) x + λ j+ ) or n u [, ] nd or n j {,..., n }. Integrting this inequlit over u [, ] we get {( u) [( λ j ) x + λ j ] + u [( λ j+ ) x + λ j+ ]} du {h ( u) (( λ j ) x + λ j ) + h (u) (( λ j+ ) x + λ j+ )} du = (( λ j ) x + λ j ) h ( u) du + (( λ j+ ) x + λ j+ ) = [ (( λ j ) x + λ j ) + (( λ j+ ) x + λ j+ )] h (u) du, h (u) du or n j {,..., n }. Multipling this inequlit b λ j+ λ j nd summing over j rom to n we get, vi the equlit (3), the second inequlit in (7).

5 S. S. Drgomir Since is h-convex, then or n v, w C we lso hve I we write this inequlit or (v) + (w) ( ) v + w h ( ). v = ( u) [( λ j ) x + λ j ] + u [( λ j+ ) x + λ j+ ] nd w = u [( λ j ) x + λ j ] + ( u) [( λ j+ ) x + λ j+ ] nd tke into ccount tht v + w = {[( λ j) x + λ j ] + [( λ j+ ) x + λ j+ ]} ( = λ ) j + λ j+ x + λ j + λ j+, then we get {( u) [( λ j ) x + λ j ] + u [( λ j+ ) x + λ j+ ]} (8) + {u [( λ j ) x + λ j ] + ( u) [( λ j+ ) x + λ j+ ]} {( h ( ) λ ) j + λ j+ x + λ } j + λ j+ or n u [, ] nd j {,..., n }. Integrting the inequlit (8) over u [, ] we get {( u) [( λ j ) x + λ j ] + u [( λ j+ ) x + λ j+ ]} du (9) + {u [( λ j ) x + λ j ] + ( u) [( λ j+ ) x + λ j+ ]} du {( h ( ) λ ) j + λ j+ x + λ } j + λ j+ or n j {,..., n }. Since = {( u) [( λ j ) x + λ j ] + u [( λ j+ ) x + λ j+ ]} du {u [( λ j ) x + λ j ] + ( u) [( λ j+ ) x + λ j+ ]} du,

n-points Inequlities o Hermite-Hdmrd Tpe 5 then b (9) we get {( u) [( λ j ) x + λ j ] + u [( λ j+ ) x + λ j+ ]} du {( h ( ) λ ) j + λ j+ x + λ } j + λ j+ or n j {,..., n }. Multipling this inequlit b λ j+ λ j nd summing over j rom to n we get, vi the equlit (3), the irst inequlit in (7). Remrk 4 I we tke in (7) = λ λ = λ λ =, then we get the irst two inequlities in (4). The cse o convex unctions is s ollows: Corollr 4 Let : C X R be convex unction on the convex subset C o rel or complex liner spce X. Then or n prtition = λ < λ <... < λ n < λ n = with n, nd or n x, C we hve the inequlities ( ) x + n (λ j+ λ j ) j= n (( t) x + t) dt {( λ ) j + λ j+ x + λ } j + λ j+ (λ j+ λ j ) [ (( λ j ) x + λ j ) + (( λ j+ ) x + λ j+ )] j= (x) + (). (3) Proo. The second nd third inequlities in (3) ollows rom (7) b tking h (t) = t. B the Jensen discrete inequlit ( m m ) p j (z j ) p j z j, j= j=

5 S. S. Drgomir where p j, j {,..., m} with m j= p j = nd z j C, j {,..., m} we hve n (λ j+ λ j ) j= = = { n j= {( n {( ) x + } {( λ ) j + λ j+ x + λ } j + λ j+ [( (λ j+ λ j ) λ ) j + λ j+ x + λ j + λ j+ n ( ) j= λ j+ λj) (λ j+ λ j ) x + j= ( ) x + = ] } n ( } j= λ j+ λj) nd the irst prt o (3) is proved. B the convexit o we lso hve n (λ j+ λ j ) [ (( λ j ) x + λ j ) + (( λ j+ ) x + λ j+ )] j= n (λ j+ λ j ) [( λ j ) (x) + λ j () + ( λ j+ ) (x) + λ j+ ()] j= n = (λ j+ λ j ) [( (λ j + λ j+ )) (x) + (λ j + λ j+ ) ()] j= ( n n = (λ j+ λ j ) j= = (x) + (), j= ( ) ) n λ j+ λ j (x) + j= ( ) λ j+ λ j () which proves the lst prt o (3). Remrk 5 Let (X, ) be normed liner spce over the rel or complex number ields. Then or n prtition = λ < λ <... < λ n < λ n = with n,

n-points Inequlities o Hermite-Hdmrd Tpe 53 nd or n x, X we hve the inequlities p x + n ( (λ j+ λ j ) λ ) j + λ j+ x + λ j + λ j+ j= n ( t) x + t p dt (λ j+ λ j ) [ ( λ j ) x + λ j p + ( λ j+ ) x + λ j+ p ] j= x p + p, where p. p (3) Corollr 5 Let : C X R be deined on convex subset C o rel or complex liner spce X nd is Breckner s-convex on C with s (, ). Assume tht or x, C with x the mpping [, ] (( t) x + t) R is Lebesgue integrble on [, ]. Then or n prtition we hve the inequlities s n (λ j+ λ j ) j= s + = λ < λ <... < λ n < λ n = with n, (( t) x + t) dt {( λ ) j + λ j+ x + λ } j + λ j+ n (λ j+ λ j ) [ (( λ j ) x + λ j ) + (( λ j+ ) x + λ j+ )]. j= (3) Since, or s (, ), the unction (x) = x s is Breckner s-convex on the normed liner spce X, then b (3) we get or n x, X s n ( (λ j+ λ j ) j= s + ( t) x + t s dt λ j + λ j+ ) x + λ j + λ j+ n (λ j+ λ j ) [ ( λ j ) x + λ j s + ( λ j+ ) x + λ j+ s ]. j= s (33)

54 S. S. Drgomir Reerences [] M. Alomri nd M. Drus, The Hdmrd s inequlit or s-convex unction. Int. J. Mth. Anl. (Ruse) (8), no. 3-6, 639 646. [] M. Alomri nd M. Drus, Hdmrd-tpe inequlities or s-convex unctions. Int. Mth. Forum 3 (8), no. 37-4, 965 975. [3] G. A. Anstssiou, Univrite Ostrowski inequlities, revisited. Montsh. Mth., 35 (), no. 3, 75 89. [4] N. S. Brnett, P. Cerone, S. S. Drgomir, M. R. Pinheiro nd A. Soo, Ostrowski tpe inequlities or unctions whose modulus o the derivtives re convex nd pplictions. Inequlit Theor nd Applictions, Vol. (Chinju/Msn, ), 9 3, Nov Sci. Publ., Huppuge, NY, 3. Preprint: RGMIA Res. Rep. Coll. 5 (), No., Art. [Online http://rgmi.org/ppers/v5n/pperwppq.pd]. [5] E. F. Beckenbch, Convex unctions, Bull. Amer. Mth. Soc. 54(948), 439 46. [6] M. Bombrdelli nd S. Vrošnec, Properties o h-convex unctions relted to the Hermite-Hdmrd-Fejér inequlities. Comput. Mth. Appl. 58 (9), no. 9, 869 877. [7] W. W. Breckner, Stetigkeitsussgen ür eine Klsse verllgemeinerter konvexer Funktionen in topologischen lineren Räumen. (Germn) Publ. Inst. Mth. (Beogrd) (N.S.) 3(37) (978), 3. [8] W. W. Breckner nd G. Orbán, Continuit properties o rtionll s- convex mppings with vlues in n ordered topologicl liner spce. Universitte Bbeş-Boli, Fcultte de Mtemtic, Cluj-Npoc, 978. viii+9 pp. [9] P. Cerone nd S. S. Drgomir, Midpoint-tpe rules rom n inequlities point o view, Ed. G. A. Anstssiou, Hndbook o Anltic- Computtionl Methods in Applied Mthemtics, CRC Press, New York. 35-. [] P. Cerone nd S. S. Drgomir, New bounds or the three-point rule involving the Riemnn-Stieltjes integrls, in Advnces in Sttistics Combintorics nd Relted Ares, C. Gulti, et l. (Eds.), World Science Publishing,, 53-6. [] P. Cerone, S. S. Drgomir nd J. Roumeliotis, Some Ostrowski tpe inequlities or n-time dierentible mppings nd pplictions, Demonstrtio Mthemtic, 3() (999), 697 7.

n-points Inequlities o Hermite-Hdmrd Tpe 55 [] G. Cristescu, Hdmrd tpe inequlities or convolution o h-convex unctions. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexit 8 (), 3. [3] S. S. Drgomir, An inequlit improving the irst Hermite-Hdmrd inequlit or convex unctions deined on liner spces nd pplictions or semi-inner products. J. Inequl. Pure Appl. Mth. 3 (), no., Article 3, 8 pp. [4] S. S. Drgomir, An inequlit improving the irst Hermite-Hdmrd inequlit or convex unctions deined on liner spces nd pplictions or semi-inner products, J. Inequl. Pure Appl. Mth. 3 (), No., Article 3. [5] S. S. Drgomir, An inequlit improving the second Hermite-Hdmrd inequlit or convex unctions deined on liner spces nd pplictions or semi-inner products, J. Inequl. Pure Appl. Mth. 3 (), No.3, Article 35. [6] S. S. Drgomir, Opertor Inequlities o Ostrowski nd Trpezoidl Tpe. Springer Bries in Mthemtics. Springer, New York,. x+ pp. ISBN: 978--464-778- [7] S. S. Drgomir, Inequlities o Hermite-Hdmrd tpe or h-convex unctions on liner spces, Preprint RGMIA Res. Rep. Coll. 6 (3), Art. 7 [Online http://rgmi.org/ppers/v6/v67.pd]. [8] S. S. Drgomir nd S. Fitzptrick, The Hdmrd inequlities or s- convex unctions in the second sense. Demonstrtio Mth. 3 (999), no. 4, 687 696. [9] S. S. Drgomir nd S. Fitzptrick,The Jensen inequlit or s-breckner convex unctions in liner spces. Demonstrtio Mth. 33 (), no., 43 49. [] S. S. Drgomir nd B. Mond, On Hdmrd s inequlit or clss o unctions o Godunov nd Levin. Indin J. Mth. 39 (997), no., 9. [] S. S. Drgomir nd C. E. M. Perce, On Jensen s inequlit or clss o unctions o Godunov nd Levin. Period. Mth. Hungr. 33 (996), no., 93. [] S. S. Drgomir nd C. E. M. Perce, Qusi-convex unctions nd Hdmrd s inequlit, Bull. Austrl. Mth. Soc. 57 (998), 377-385.

56 S. S. Drgomir [3] S. S. Drgomir, J. Pečrić nd L. Persson, Some inequlities o Hdmrd tpe. Soochow J. Mth. (995), no. 3, 335 34. [4] S. S. Drgomir nd Th. M. Rssis (Eds), Ostrowski Tpe Inequlities nd Applictions in Numericl Integrtion, Kluwer Acdemic Publisher,. [5] A. El Frissi, Simple proo nd reeinment o Hermite-Hdmrd inequlit, J. Mth. Ineq. 4 (), No. 3, 365 369. [6] E. K. Godunov nd V. I. Levin, Inequlities or unctions o brod clss tht contins convex, monotone nd some other orms o unctions. (Russin) Numericl mthemtics nd mthemticl phsics (Russin), 38 4, 66, Moskov. Gos. Ped. Inst., Moscow, 985 [7] H. Hudzik nd L. Mligrnd, Some remrks on s-convex unctions. Aequtiones Mth. 48 (994), no.,. [8] E. Kikint nd S. S. Drgomir, Hermite-Hdmrd s inequlit nd the p-hh-norm on the Crtesin product o two copies o normed spce, Mth. Inequl. Appl. (in press) [9] U. S. Kirmci, M. Klričić Bkul, M. E Özdemir nd J. Pečrić, Hdmrd-tpe inequlities or s-convex unctions. Appl. Mth. Comput. 93 (7), no., 6 35. [3] M. A. Lti, On some inequlities or h-convex unctions. Int. J. Mth. Anl. (Ruse) 4 (), no. 9-3, 473 48. [3] D. S. Mitrinović nd I. B. Lcković, Hermite nd convexit, Aequtiones Mth. 8 (985), 9 3. [3] D. S. Mitrinović nd J. E. Pečrić, Note on clss o unctions o Godunov nd Levin. C. R. Mth. Rep. Acd. Sci. Cnd (99), no., 33 36. [33] C. E. M. Perce nd A. M. Rubinov, P-unctions, qusi-convex unctions, nd Hdmrd-tpe inequlities. J. Mth. Anl. Appl. 4 (999), no., 9 4. [34] J. E. Pečrić nd S. S. Drgomir, On n inequlit o Godunov-Levin nd some reinements o Jensen integrl inequlit. Itinernt Seminr on Functionl Equtions, Approximtion nd Convexit (Cluj-Npoc, 989), 63 68, Preprint, 89-6, Univ. Bbeş-Boli, Cluj-Npoc, 989.

n-points Inequlities o Hermite-Hdmrd Tpe 57 [35] J. Pečrić nd S. S. Drgomir, A generliztion o Hdmrd s inequlit or isotonic liner unctionls, Rdovi Mt. (Srjevo) 7 (99), 3 7. [36] M. Rdulescu, S. Rdulescu nd P. Alexndrescu, On the Godunov- Levin-Schur clss o unctions. Mth. Inequl. Appl. (9), no. 4, 853 86. [37] M. Z. Srik, A. Sglm, nd H. Yildirim, On some Hdmrd-tpe inequlities or h-convex unctions. J. Mth. Inequl. (8), no. 3, 335 34. [38] E. Set, M. E. Özdemir nd M. Z. Srık, New inequlities o Ostrowski s tpe or s-convex unctions in the second sense with pplictions. Fct Univ. Ser. Mth. Inorm. 7 (), no., 67 8. [39] M. Z. Srik, E. Set nd M. E. Özdemir, On some new inequlities o Hdmrd tpe involving h-convex unctions. Act Mth. Univ. Comenin. (N.S.) 79 (), no., 65 7. [4] M. Tunç, Ostrowski-tpe inequlities vi h-convex unctions with pplictions to specil mens. J. Inequl. Appl. 3, 3:36. [4] S. Vrošnec, On h-convexit. J. Mth. Anl. Appl. 36 (7), no., 33 3. S. S. Drgomir Mthemtics, College o Engineering & Science Victori Universit, PO Box 448 Melbourne Cit, MC 8, Austrli. School o Computer Science & Applied Mthemtics, Universit o the Witwtersrnd, Privte Bg 3, Johnnesburg 5, South Aric sever.drgomir@vu.edu.u Plese, cite to this pper s published in Armen. J. Mth., V. 8, N. (6), pp. 38 57