Alpha-Energies of different sources with Multi Channel Analyzer

Similar documents
Alpha-energies of different sources with Multi Channel Analyzer (Item No.: P )

Rutherford experiment with MCA

X-ray fluorescence analysis - calibration of the X-ray energy detector

Modern Physics Laboratory (Physics 6180/7180)

Introduction to Environmental Measurement Techniques Radioactivity. Dana Pittauer 1of 48

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes

β-spectroscopy Fig. 1: Experimental set-up for determining inductance from the resonant frequency of an oscillatory circuit.

6. Atomic and Nuclear Physics

Jazan University College of Science Physics Department. Lab Manual. Nuclear Physics (2) 462 Phys. 8 th Level. Academic Year: 1439/1440

Analysis of γ spectrum

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N.

Physical structure of matter. Duane-Hunt displacement law and Planck's quantum of action X-ray Physics. What you need:

Quality Assurance. Purity control. Polycrystalline Ingots

Radioactivity. (b) Fig shows two samples of the same radioactive substance. The substance emits β-particles. Fig. 12.1

Lecture 33 Chapter 22, Sections 1-2 Nuclear Stability and Decay. Energy Barriers Types of Decay Nuclear Decay Kinetics

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N.

SCINTILLATION DETECTORS & GAMMA SPECTROSCOPY: AN INTRODUCTION

NJCTL.org 2015 AP Physics 2 Nuclear Physics

Energy loss of alpha particles - Prelab questions

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of?

4 α or 4 2 He. Radioactivity. Exercise 9 Page 1. Illinois Central College CHEMISTRY 132 Laboratory Section:

Chapter 30 Nuclear Physics and Radioactivity

Nuclear Physics Part 2A: Radioactive Decays

This experiment is included in the XRP 4.0 X-ray solid state, XRS 4.0 X-ray structural analysis, and XRC 4.0 X-ray characteristics upgrade sets.

Scintillation Detector

Composite Nucleus (Activated Complex)

Nuclear Chemistry. Nuclear Terminology

Chapter 22 - Nuclear Chemistry

Alpha decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 21, 2011

1. Introduction. Etim I.P. 1, William E. S. 2, Ekwe S.O. 3. Licensed Under Creative Commons Attribution CC BY

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions

Unit 1 Atomic Structure

Physics 3204 UNIT 3 Test Matter Energy Interface

Chem 100 Section Experiment 12 Name Partner s Name. Radioactivity

UNIQUE SCIENCE ACADEMY

L-35 Modern Physics-3 Nuclear Physics 29:006 FINAL EXAM. Structure of the nucleus. The atom and the nucleus. Nuclear Terminology

Unit 1 Atomic Structure

Nuclear Physics and Astrophysics

Chapter 18 Nuclear Chemistry

Chapter 33: The Atomic Nucleus and Radioactivity Review questions pg. 658

5 Atomic Physics. 1 of the isotope remains. 1 minute, 4. Atomic Physics. 1. Radioactivity 2. The nuclear atom

Particle Physics. Question Paper 1. Save My Exams! The Home of Revision. International A Level. Exam Board Particle & Nuclear Physics

Chapter 12: Nuclear Reaction

Types of radiation resulting from radioactive decay can be summarized in a simple chart. Only X-rays, Auger electrons and internal conversion

Strand J. Atomic Structure. Unit 2. Radioactivity. Text

Nuclear Decays. Alpha Decay

NUCLEI, RADIOACTIVITY AND NUCLEAR REACTIONS

CHAPTER 1 RADIATION AND RADIOACTIVITY

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability

Chem 481 Lecture Material 1/23/09

Radioactivity is the emission of high energy released when the of atoms change. Radioactivity can be or.

Bi β + Po Bismuth-214 is radioactive. It has a half-life of 20 minutes. (a) The nuclide notation for bismuth-214 is Bi.

QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter

Physical Structure of Matter. K a doublet splitting of molybdenum X-rays / fine structure Physics of the Electron.

Alpha-particle Stopping Powers in Air and Argon

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation

UNIT 13: NUCLEAR CHEMISTRY

It s better to have a half-life than no life! Radioactive Decay Alpha, Beta, and Gamma Decay

Radioactivity and energy levels

ABC Math Student Copy

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

2007 Fall Nuc Med Physics Lectures

Chapter 37. Nuclear Chemistry. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

RADIOACTIVITY. Nature of Radioactive Emissions

Fiesta Ware. Nuclear Chemistry. 2009, Prentice-Hall, Inc.

3 Types of Nuclear Decay Processes

Chapter 3. Radioactivity. Table of Contents

NOTES: 25.2 Nuclear Stability and Radioactive Decay

General Physics (PHY 2140)

Basic science. Atomic structure. Electrons. The Rutherford-Bohr model of an atom. Electron shells. Types of Electrons. Describing an Atom

Radioactivity. The Nobel Prize in Physics 1903 for their work on radioactivity. Henri Becquerel Pierre Curie Marie Curie

atomic number and mass number. Go over nuclear symbols, such as He-4 and He. Discuss

Radioactivity and Radioactive Decay

[1] (c) Some fruits, such as bananas, are naturally radioactive because they contain the unstable isotope of potassium-40 ( K.

Chapter 16: Ionizing Radiation

Conceptual Physics Nuclear Physics

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

L 37 Modern Physics [3] The atom and the nucleus. Structure of the nucleus. Terminology of nuclear physics SYMBOL FOR A NUCLEUS FOR A CHEMICAL X

Chapter 18. Nuclear Chemistry

Applied Nuclear Physics (Fall 2006) Lecture 21 (11/29/06) Detection of Nuclear Radiation: Pulse Height Spectra

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY

D) g. 2. In which pair do the particles have approximately the same mass?

Nuclear Physics. PHY232 Remco Zegers Room W109 cyclotron building.

L 36 Modern Physics [3] The atom and the nucleus. Structure of the nucleus. The structure of the nucleus SYMBOL FOR A NUCLEUS FOR A CHEMICAL X

SOURCES of RADIOACTIVITY

P7 Radioactivity. Student Book answers. P7.1 Atoms and radiation. Question Answer Marks Guidance

Nuclear Binding Energy

2. Determine the excess charge on the outer surface of the outer sphere (a distance c from the center of the system).

EXAMINATION QUESTIONS (6)

Complete the table by ticking one box in each row to identify the appropriate isotope. The first row has been completed for you.

RADIOACTIVITY Q32 P1 A radioactive carbon 14 decay to Nitrogen by beta emission as below 14 x 0

NUCL 3000/5030 Laboratory 2 Fall 2013

Physical Structure of Matter Hall effect in p-germanium with Cobra3. Solid-state Physics, Plasma Physics.

Topic 7 &13 Review Atomic, Nuclear, and Quantum Physics

BETA-RAY SPECTROMETER

Page 1. ConcepTest Clicker Questions Chapter 32. Physics, 4 th Edition James S. Walker

Chemistry 132 NT. Nuclear Chemistry. Not everything that can be counted counts, and not everything that counts can be counted.

Nuclear Chemistry. Mass Defect. E=mc 2. Radioactivity. Types of Radiation. Other Nuclear Particles. Nuclear Reactions vs. Normal Chemical Changes

Alpha Decay. Decay alpha particles are monoenergetic. Nuclides with A>150 are unstable against alpha decay. E α = Q (1-4/A)

Transcription:

Physical Structure of Matter Radioactivity Alpha-Energies of different sources with Multi Channel Analyzer What you can learn about Decay series Radioactive equilibrium Isotopic properties Decay energy Particle energy Potential well model of the atomic nucleus Tunnel effect Geiger-Nuttal law Semiconductor Barrier layer What you need: Multi-Channel-Analyzer, Extended version 13727.99 1 Software Multi-Channel-Analyzer 14452.61 1 Americium-241 source, 3.7 kbq 09090.03 1 Radioactive Source Ra-226, 4 kbq 09041.00 1 Alpha- and Photodetector 09099.00 1 Pre-amplifier for alpha detector 09100.10 1 Base plate for radioactivity 09200.00 1 Source holder on fixing magnet 09202.00 1 Counter tube holder on fixing magnet 09201.00 1 Screened cable, BNC, l = 750 mm 07542.11 1 Screened cable, BNC, l = 250 mm 07542.10 1 PC, Windows XP or higher Principle: An Alpha-spectrometer, consisting of a photodetector, a preamplifier, a pulse height analyser and a recording device for registration of the spectra is calibrated by means of an open Alpha-emitter of known Alphaenergy ( 241 Am). The energy spectrum of a radium source which is in equilibrium with its decay products, is recorded and evaluated. The Alpha- Energies found in this way are allocated to the corresponding nuclides of the radium decay series. Complete Equipment Set, Manual on CD-ROM included Alpha-Energies of different sources with Multi Channel Analyzer Alpha-spectrum of the 226 Ra. Tasks: 1. The Alpha-spectrum of the 226 Ra is recorded with Multi Channal Analyzer 2. The calibration spectrum of the open 241 Am Alpha-emitter is recorded at the same settings. 3. The Alpha-energies corresponding to the individual peaks of the Alpha-spectrum of the radium are calculated and compared to the values in the literature. 234 Laboratory Experiments Physics PHYWE Systeme GmbH & Co. KG D-37070 Göttingen

a-energies of different sources with Multi Channel Analyzer LEP Related topics Decay series, radioactive equilibrium, isotopic properties, decay energy, particle energy, potential well model of the atomic nucleus, tunnel effect, Geiger-Nuttall law, semiconductor barrier layer. Principle An a-spectrometer, consisting of a photodetector, a preamplifier and a multi channel analyser (MCA) is calibrated with the help of two a-emission lines of a 226 Ra source which is in radioactive equilibrium with its decay products. The a-emission energy of a 241 Am source and other detectable lines of the 226 Ra source are determined. The a-energies found in this way are assigned to the corresponding nuclides of the radium decay series. The kinetic energy of a-particles is measured the following way: a-particles are stopped within the barrier layer of a reversely biased semiconductor detector. The generated charges are separated by the field in the barrier layer and produce a charge pulse at the detector output. The amount of charge produced is proportional to the a-particle energy deposited in the barrier layer so the energy of each incoming a-particle can be determined by the amount of charge in the pulse. A preamplifier converts the charge pulse into a voltage pulse. A multi-channel analyser (MCA) forms the voltage pulses in a way that they have a well defined height (no sharp peak) and their pulse height is proportional to the initial amount of charge. A pulse-height spectrum of the pulses from the detector is then recorded by the MCA by assigning each pulse according to its height to one of the channels - each representing a specific pulse height interval. The range from some minimal to a maximal pulse height is divided into equal intervals each corresponding to a single channel. If an incoming pulse's height matches some channel's interval, the count of incidents belonging to that channel is increased by one. The diagram channel number vs. number of incidents in that channel depicts the pulse height spectrum. The pulse height spectrum corresponds to the emission energy spectrum of the a-particle emitter. Material Multi Channel Analyzer 13727.99 1 MCA Software 14524.61 1 Alpha and Photo detector* 09099.00 1 Americium-241 source, 74 kbq 09047.51 1 Source Ra-226, 3 kbq 09041.00 1 Preamplifier for alpha detector 09100.10 1 Unit construction plate for radioactivity 09200.00 1 Counter tube holder on fixing magnet 09201.00 1 Source holder on fixing magnet 09202.00 1 Screened cable, BNC, l = 750 mm 07542.11 1 Screened cable, BNC, l = 300 mm 07542.10 1 PC, Windows 95 or higher * Alternatively Alpha detector 09100.00 1 Tasks 1. Perform a two-point calibration of the set-up with the 226 Ra source. 2. Record the a-spectrum of 226 Ra with the same settings as in the calibration. 3. Record the a-spectrum of the 241 Am source. 4. The a-energies corresponding to the individual peaks of the a-spectrum of the radium decay series and the main 241 Am source a-energy are determined and compared to literature values. Set-up Fig. 1 shows the experimental set-up. The upper two preamplifier switches have to be set to "a" and "Inv.". The "Bias" switch has to be set to "Int." and the polarity switch for the internal bias must be kept to " ". Wrong polarisation of the detector diode is to be avoided. Fig. 1: Experimental set-up PHYWE series of publications Laboratory Experiments Physics PHYWE SYSTEME GMBH & Co. KG D-37070 Göttingen 1

LEP a-energies of different sources with Multi Channel Analyzer The short BNC cable is used to connect the detector to the "Detector" socket of the a-preamplifier. The other BNC cable connects the "Output" socket of the a-preamplifier with the "Input" socket of the MCA. The 5-pole cable connects the "+/-12 V" jack of the MCA with the corresponding socket of the a-preamplifier. Complete the electrical connections and preamplifier settings prior to turning on the MCA. You may allow some minutes warm up time for the preamplifier before starting the measurement. The MCA is connected by USB to a computer with "measure"- software installed on it. It may be necessary to remove a USB driver that "Windows" installs automatically and to install the correct USB driver for the MCA manually if the MCA is used with the computer for the first time. The black shielding is mounted on the detector and the detector is attached to the counter tube holder on fixing magnet. The 226 Ra source is put into the source holder and inserted into the black detector shielding up to the bedstop so the source is as near to the detector as possible. Procedure Start the program "measure", select "Gauge" > "Multi Channel Analyser". Select "Settings and Calibration" and press the "Continue" button (Fig. 2). The "Settings" window appears as in Fig. 3. Use the "Calibrate" button. Then the window of Fig. 4 appears. Set the "Calibration mode" to "2-point calibration", "Unit" to "kev" and type "4784" and "7687" into the fields for the calibration energies. Set "Gain" to "Level 2" and "Offset [%]" to 5. Move the bars to the corresponding peaks as seen in Fig. 4. Use the "Apply" button, then click the "Save" button in the window of Fig. 3 that appears again. Enter an appropriate name for the calibration and use the "Save" button of Fig. 5. Use the "Close" button in the window of Fig. 3. Select "Spectra recording" in the window seen in Fig. 2 and use the "Continue" button. The "MCA spectra recording" window opens. See Fig. 6. Set "Gain" to "Level 2" and "Offset [%]" to 5. Select "Energy" as "X-Data" and "1" as "Interval width [channels]". Counting rate is now around 160 per second. Record data until the peak positions are well visible, approx. 15 minutes. Stop the measurement with the "Accept data" button. The recorded data appear now in a window in the "measure" main program. Denote the measurement parameters using the "Display options" dialog and save the measurement data. Replace the 226 Ra source with the 241 Am source, again the source as close to the detector as possible. Start a measurement with all other settings unchanged. The counting rate should be around 450 per second. See Fig. 7. Record 120.000 impulses or 5 minutes. Use the "Accept data" button to end measurement and save the data after denoting the measurement parameters. Fig. 2: Start window for the MCA Fig. 4: Calibration window with 226 Ra Fig. 3: Calibration settings window Fig. 5: Naming the calibration 2 PHYWE series of publications Laboratory Experiments Physics PHYWE SYSTEME GMBH & Co. KG D-37070 Göttingen

a-energies of different sources with Multi Channel Analyzer LEP Theory The a-decay is a special form of nuclear fission, where a nucleus splits into an a-particle, which is the helium nucleus 4 2 2He 2, and a nucleus with mass number 4 less, atomic number 2 less and neutron number 2 less than the initial nucleus. An example is the reaction alternatively written as 226 88Ra 138 S 222 86Ra 136 2 4 2He 2 2 E 226 88Ra 138 S 222 86Ra 136 a E. According to the liquid drop model of the atomic nucleus, an a-decay sets energy free for all nuclei heavier than 165 atomic mass units while proton emission does not yield net energy. The a-particle has to overcome the short-range attracting force of strong nuclear interaction to be set free and to gain energy from the relatively long-ranged repelling force of Coulomb interaction. So an a-particle inside a heavy nucleus is in a metastable state and has to cross a potential barrier to be emitted which can only happen by tunnel effect. The tunnel effect favoures the emission of smaller particles over heavier ones so the rate of other spontaneous fission incidents is always lower than the rate of a-decay incidents. In case of higher energy gain by a-decay the potential barrier is thinner and the decay more likely, that is the half-life is shorter. On the other hand potential wall curvature is less for heavy nuclei so a-particles from high Z nuclei may have higher energy, which is both stated by the Geiger-Nuttall law. Because the emission of a-particles is favoured over emission of bigger nuclear fragments, heavy nuclei may have to undergo several decays until they get sufficiently small to be stable. The neutron fraction of nucleons needed for stability has to be larger in heavy nuclides than in light nuclei. An a-particle carries away the same numbers of neutrons and protons. It lowers thus the neutron excess. So b-decays transforming protons to neutrons need to occur in the resulting decay series (or -chain), too. Table 1 lists such a decay series. Typical a-decay energies are around 5 MeV, so the a-particles gain a speed of 15,000 km/s or 5% of the speed of light. Decay momentum is split evenly between both reaction partners but the lighter a-particle gains the main fraction of the reaction energy. Still the recoil energy of the decaying heavy nucleus is in the range of 100 kev, thus much higher than binding energy of the outer electrons or chemical or lattice binding, and may not be neglected. a-particles interact strongly with matter because of their electric charge. They are stopped by some cm of air or some tens of µm of condensed matter. At the beginning of their path the energy loss in matter is nearly proportional to the path length. Here in this experiment the sources in use are covered so all a-particles have to pass some material before leaving the source and some millimetres of air before they reach the detector. The effect of the source covering prevails over the effect of the air and leads to a peak broadening. This limits the energy resolution to greater extent than the limited resolution of the detector. The energy loss in the source cover and air is unknown but can be assumed to be roughly constant for all a-particles so in case of assumed detector linearity (at least) two calibration lines are necessary to calibrate the set-up. The 226 Ra source can be considered to be in radioactive equilibrium with it's decay products up to 210 Pb, which has 22.3 years of half-life. All branches of the decay series cross this nuclide and your source may not be old enough to be in equilibrium with the products following this nuclide. So the fraction of 210 Po may be significantly lower depending on the production date of your source and the related peak may not be present. Actually you can calculate the source's age by comparing the 210 Po peak height with neighbouring peaks. So the peaks to be expected in an intensity that can be registered in this experiment are: 4784 kev 226 Ra 5304 kev 210 Po 5489 kev 222 Rn 6002 kev 218 Po 7687 kev 214 Po Fig. 6: Spectra recording window with 226 Ra Fig. 7: Spectra recording window with 241 Am PHYWE series of publications Laboratory Experiments Physics PHYWE SYSTEME GMBH & Co. KG D-37070 Göttingen 3

LEP a-energies of different sources with Multi Channel Analyzer 241 Am decays to 100% to stable 237 Np and in 85% of the decays an a-particle of 5486 kev is emitted which contributes to the main peak. Table 1: Radium decay series nuclide decay mode half-life E / MeV product of decay 238 U a 4.468 10 9 a 4.270 234 Th 234 Th b- 24.10 d 0.273 234 Pa 234 Pa b- 6.70 h 2.197 234 U 234 U a 245500 a 4.859 230 Th 230 Th a 75380 a 4.770 226 Ra 226 Ra a 1602 a 4.871 222 Rn 222 Rn a 3.8235 d 5.590 218 Po 218 Po a 99.98% 6.115 3.10 min Pb b- 0.02% 0.265 218 At 218 At a 99.90% 6.874 1.5 s Bi b- 0.10% 2.883 218 Rn 218 Rn a 35 ms 7.263 214 Po 214 Pb b- 26.8 min 1.024 214 Bi 214 Bi b- 99.98% 3.272 19.9 min Po a 0.02% 5.617 210 Tl 214 Po a 0.1643 ms 7.833 210 Pb 210 Tl b- 1.30 min 5.484 210 Pb 210 Pb b- 22.3 a 0.064 210 Bi 210 Bi b- 99.99987% 1.426 210 Po 5.013 d a 0.00013% 5.982 206 Tl 210 Po a 138.376 d 5.408 206 Pb 206 Tl b- 4.199 min 1.533 206 Pb 206 Pb stable Evaluation For better visibility of the maximum of the peaks and reduced noise apply the "Smooth" function of "measure" using the -button. See Fig. 8. You may alter the appearance of the curve with the "Display options" function ( -button) for example by choosing on the "Channels" chart of the "Display options" dialogue "Straight lines" for "Interpolation:". Then use the "Survey" function ( -button) to determine the position of the a-peaks to be evaluated and read out the energies in kev. See Fig. 9 and 10. Also read out with help of the "Survey" function a full width at half maximum (FWHM) energy value to asses the measurement accuracy. Table 3: Measurement results measured literature value / kev deviation energy / kev 5498 5489 0.16 % 6065 6002 1.05 % 5582 5486 1.75 % FWHM of the 241 Am-peak is 424 kev at 5486 kev centre or 7.7 %. So the literature values could be reproduced well though the presence of source cover and air broadened the energy distribution of the a-particles reaching the detector. Table 2: Expected a-radiation from the 226 Ra source nuclide fraction pro- E/keV main fraction of duced per a-emission a-particles atom 226 Ra line / kev 226 Ra 100% 4871 4784.34 94.45% 222 Rn 100% 5590 5489.48 99.920% 218 Po 100% 6115 6002.35 99.9789% 218 At 0.02% 6874 6693 89.91% 214 Bi 99.9% 5617 5452 0.0113% 218 Rn 0.10% 7263 7129.2 99.870% 214 Po 99.98% 7833 7686.82 99.9895% 210 Po 99.99987% 5408 5304.33 99.9988% Fig. 9: 226 Ra measurement data Fig. 8: "Smooth" dialog box Fig. 10: 241 Am measurement data 4 PHYWE series of publications Laboratory Experiments Physics PHYWE SYSTEME GMBH & Co. KG D-37070 Göttingen