Int. J. Pharm. Sci. Rev. Res., 35(1), November December 2015; Article No. 07, Pages: 25-29

Similar documents
Volumetric and Viscometric Study of MCM-41 in the Presence of Nicotinamide (A Hydrotropic Agent) in Ethanol

Research Article. Volumetric study of strong electrolytes-metal chlorides and metal sulphates in aqueous medium at different temperatures

Studies on the Solute Solvent Interaction of Nimesulide in Aqueous Solutions of Hydrotropic Agents at Different Temperatures

Journal of Chemical and Pharmaceutical Research, 2013, 5(7): Research Article

Evaluation of apparent and partial molar volume of potassium ferro- and ferricyanides in aqueous alcohol solutions at different temperatures

Journal of Chemical and Pharmaceutical Research, 2012, 4(3): Research Article

Viscosities of oxalic acid and its salts in water and binary aqueous mixtures of tetrahydrofuran at different temperatures

Int. J. Pharm. Sci. Rev. Res., 21(2), Jul Aug 2013; nᵒ 39,

CHAPTER -VIII. Ion-Solvent Interactions of Sodium Molybdate in Oxalic acid-water Systems at Various Temperatures.

Solvation Studies on Sodium Dodecyl Sulphate in aqueous solutions at different temperatures

SHORT COMMUNICATION. Ultrasonic Studies of Amino Acids in Aqueous Sucrose Solution at Different Temperatures

CHAPTER 6 THERMODYNAMIC AND TRANSPORT PROPERTIES OF GLYCINE IN AQUEOUS SOLUTIONS OF SODIUM CARBONATE AT DIFFERENT TEMPERATURES

Research Article Study of Transport Properties of Tris (hydroxymethyl)aminomethane Hydrochloride in 20% (v/v) Acetone-Water System at 303.

SITARAM K. CHAVAN * and MADHURI N. HEMADE ABSTRACT INTRODUCTION

Partial molar properties of homologous dicarboxylic acids in aqueous acetone solutions at different temperatures

Apparent molar volumes of Aspirin in water at temperatures from to K

Ion association and solvation of octahedral Co(Ill) complexes in water mannitol and water + sorbitol mixtures

Apparent molar volume of sodium chloride in mixed solvent at different temperatures

Study Of Ultrasonic Parameters Of Polyvinyl Butyral

ULTRASONIC INVESTIGATIONS OF MOLECULAR INTERACTIONS IN AQUEOUS ELECTROLYTIC SOLUTIONS AT VARYING TEMPERATURES

Available online Research Article

International Journal of Pharma and Bio Sciences

Studies on Acoustic Parameters of Ternary Mixture of Dimethyl Acetamide in Acetone and Isobutyl Methyl Ketone using Ultrasonic and Viscosity Probes

Ultrasonic Studies of Some Biomolecules in Aqueous Guanidine Hydrochloride Solutions at K

Ultrasonic studies of molecular interactions in binary mixtures of n-butanol with water at different temperatures (308K, 318K and 328K)

CHAPTER - VI. Apparent Molar Volumes and Viscosity B-Coefficients of Glycine in Aqueous Silver Sulphate Solutions at T = (298.15, , 318.

Interrelationship between Surface Tension and Sound Velocity & Thermodynamical studies of binary liquid mixtures

Study of Structure Making/Breaking Properties of Glucose, Fructose, Sucrose and Maltose in Aqueous KCl at Various Temperatures

ULTRASONIC AND MOLECULAR INTERACTION STUDIES OF CINNAMALDEHYDE WITH ACETONE IN n-hexane

ФИЗИЧЕСКАЯ ХИМИЯ РАСТВОРОВ

Solutions. Why does a raw egg swell or shrink when placed in different solutions?

Apparent Molar Volume and Viscometric Study of Alcohols in Aqueous Solution

Research Article. Transport studies of alkaline earth metal chlorides in binary aqueous mixtures of sucrose at different temperatures

Study of molecular interactions between L-aspartic acid and aqueous 1,2-propanediol solution at T = K

ULTRASONIC INVESTIGATIONS IN A LIQUID MIXTURE OF ETHYLENEGLYCOL WITH n-butanol

ULTRASONIC STUDIES ON SOME ELECTROLYTES IN N,N, DIMETHYLFORMAMIDE +WATER MIXTURES AT 303K ABSTRACT

Available online at Universal Research Publications. All rights reserved

ULTRASONIC INVESTIGATIONS ON BINARY MIXTURE OF ACETOPHENONE WITH N-BUTANOL AT TEMPERATURES K K

MOLECULAR INTERACTION STUDIES OF GLYCYLGLYCINE IN AQUEOUS SODIUM HALIDE SOLUTIONS AT 303, 308 AND 313K

CHAPTER - VII. Ion-Solvent and Ion-Ion Interactions of Phosphomolybdic Acid in Aqueous Solution of Catechol at , and K.

Chapter 4 Study of solute-solute and solute-solvent interactions of l-histidine in aqueous-sucrose solutions at different temperatures using

CHAPTER INTRODUCTION

Comparative Study of Molecular Interaction in Ternary Liquid Mixtures of Polar and Non-Polar Solvents by Ultrasonic Velocity Measurements

International Journal of Advance Engineering and Research Development. Ultrasonic investigations of p-cresol with dimethyl formamide

Pelagia Research Library

Molecular Association Studies on Polyvinyl Alochol At 303k

ISSN X Original Article ACOUSTICAL STUDIES OF BINARY LIQUID MIXTURES OF P-CHLOROTOLUENE IN CHLOROBENZENE AT DIFFERENT TEPERATURES

Ions in Aqueous Solutions and Colligative Properties

Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet

J Madhumitha et al., IJSID, 2012, 2 (1), International Journal of Science Innovations and Discoveries

Solution. Types of Solutions. Concentration and Solution Stoichiometry

Investigation of Acoustical Parameters of Polyvinyl Acetate

Thermo-acoustical molecular interaction studies in ternary liquid mixtures using ultrasonic technique at 303K

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Molecular Interaction Studies with Zinc Stearate, Calcium Stearate and Ethylene Glycol

THE STUDY OF MOLECULAR INTERACTIONS IN STABILIZERS AND PLASTICIZER THROUGH ULTRASONIC MEASUREMENTS

CATALAYTIC AND VISCOMETRIC BEHAVIOR OF CONCENTRATED HYDROCHLORIC ACID IN HYDROLYSIS OF ESTER

Journal of Chemical and Pharmaceutical Research

Scholars Research Library

Solutions Solubility. Chapter 14

Chapter 11 Review Packet

Chapter 11 Properties of Solutions

Journal of Chemical and Pharmaceutical Research, 2015, 7(6): Research Article

Acoustical Studies on the Ternary Mixture of 1, 4- Dioxane + Chloroform + Cyclohexane liquid Mixtures At , and 313.

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. "Like Dissolves Like"

Acoustic Response with Theoretical Evaluation of Ultrasonic Velocity in Ternary Mixtures of DMSO, Benzene, and Toluene at Different Temperatures.

Theoretical evaluation of internal pressure in ternary and sub-binary liquid mixtures at various temperatures

Worksheet 1.1. Chapter 1: Quantitative chemistry glossary

Ultrasonic Studies on Molecular Interaction of Arginine in Aqueous Disaccharides at K

Water: The Solvent for Biochemical Reactions

INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND BIO-SCIENCE

Ultrasonic studies of aqueous solutions of poly diallyl dimethyl ammonium chloride

Section 6.2A Intermolecular Attractions

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.625, ISSN: , Volume 3, Issue 8, September 2015

Name: Score: /100. Part I. Multiple choice. Write the letter of the correct answer for each problem. 3 points each

Viscometric studies of Sodium chloride in various disaccharides and water-ethanol medium

A study of partial molar volumes of citric acid and tartaric acid in water and binary aqueous mixtures of ethanol at various temperatures

Equation Writing for a Neutralization Reaction

Chapter 2 Water: The Solvent for Biochemical Reactions

Ultrasonic studies of N, N-Dimethylacetamide and N-Methylacetamide with Alkoxyethanols in Carbon tetrachloride at different temperatures

Unit 11: Chapters 15 and 16

Warm UP. between carbonate and lithium. following elements have? 3) Name these compounds: 1) Write the neutral compound that forms

Kenneth Hickey and W. Earle Waghorne* Department of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland

Glory.J, International Journal of Advance Research, Ideas and Innovations in Technology.

Chapter 4: Types of Chemical Reactions and Solution Stoichiometry

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules

Name: Score: /100. Part I. Multiple choice. Write the letter of the correct answer for each problem. 3 points each

King Saud University College of Pharmacy Department of Pharmaceutics. Biopharmaceutics PHT 414. Laboratory Assignments 2010 G 1431 H

Nanoscale pictures: Figs. 5.1, 5.4, and 5.5

4. Aqueous Solutions. Solution homogeneous mixture of two components

CHAPTER 4 TYPES OF CHEMICAL EQUATIONS AND SOLUTION STOICHIOMETRY

Apparent Molar Volume and Viscometric Study of Ammonium Sulphate in 10% DMF - Water at Temperature and K

[Thakur*, 4.(9): September, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

Overview. Types of Solutions. Intermolecular forces in solution. Concentration terms. Colligative properties. Osmotic Pressure 2 / 46

Journal of Chemical and Pharmaceutical Research, 2012, 4(1): Research Article

MATERIALS AND METHODS

Dielectric Relaxation Studies of Binary Mixtures of Ethanol and Chlorobenzene in Benzene Solution from Microwave Absorption Data

Chapter 12. Preview. Objectives Solutions Suspensions Colloids Solutes: Electrolytes Versus Nonelectrolytes

Research Journal of Chemical Sciences ISSN X Vol. 5(6), 32-39, June (2015)

Transcription:

ISSN 976 44X Research Article Volumetric and Viscometric Studies on Aqueous Ibuprofen Solutions at Temperatures Sulochana Singh*, Upendra Nath Dash Department Of Chemistry, I.T.E.R, Siksha O Anusandhana University, Bhubaneswar, Odisha, India. *Corresponding author s E-mail: ssingh6383@gmail.com Accepted on: 28-8-215; Finalized on: 31-1-215. ABSTRACT The solubility, density and viscosity values of ibuprofen in aqueous medium were measured at different temperatures ranging from 298.5 to 313.15 K at 5 K interval for different concentrations. Various parameters like apparent molar volume (V φ ), limiting apparent molar volume (V φ ), apparent molar expansibility (E φ ), and limiting apparent molar expansibility (E φ ) were evaluated from the density values. From the viscosity data, the values of Falken-Hagen co-efficient (A F ) and the Jole-Dole co-efficient (B J ) were calculated using June-Dole empirical equation. The solubility of ibuprofen in aqueous medium is very very low. The values of V φ, E φ, A F and B J have been discussed in the light of solute solvent and molecular interactions in aqueous medium. Keywords: Aqueous ibuprofen solution, Partial molar properties, Viscosity coefficients, Molecular interaction. INTRODUCTION I buprofen, obtained from isobutyl phenyl propanoic acid, is a weakly acidic, non steroidal antiinflammatory drug having high permeability through stomach, but due to its low solubility limitation, it can t enter into systemic circulation and gastric empting time ranging from 3 minutes to 2 hour and after this time ibuprofen goes to small intestine where it is solubilised but cannot permeate through its membrane. Ibuprofen is used to relieve pain from various conditions, such as headache, dental pain, muscle aches or arthritis. It works by blocking our bodies production of certain natural substances that cause inflammation. This effect helps to decrease swelling, pain or fever. Aqueous solubility of a therapeutically active substance (poorly water soluble drug) is an essential factor for drug effectiveness. Solubilisation may be defined as the method of preparation of a thermodynamically stable solution of a substance that is normally insoluble or very slightly soluble in a given solvent by the introduction of one or more amphiphilic compounds. Formulation and increasing the dissolution rate of poorly water soluble drugs for oral delivery now present one of the interesting challenges to formulation scientists in the pharmaceutical industry. Ibuprofen is well known as a NSAIDs, analgesic, antipyretic agent. It is a weakly acidic drug having high permeability through stomach as it remains 99.9 % unionized in stomach (pk a of ibuprofen =4.43 and ph of gastric juice =1.2 ). Though ibuprofen is highly permeable through stomach but due to its low solubility limitation it cannot permeate through its membrane. Ibuprofen has some surface active properties. These molecules can insert into membrane which could improve the absorption rate of the drug, but also could damage the gastrointestinal membranes following oral administration. In this respect, it is important to have idea of the drug availability in a highly soluble chemical form or a rapid dissolving solid dosage form. For this reason, we decided firstly to investigate the solubility of ibuprofen in water. The bulk properties like density and viscosity have been measured which provide insight into the intermolecular arrangement of ibuprofen in water and help understand thermodynamic properties of the solution. Evaluation of partial molar properties is of importance as they provide a lot of information regarding solute-solvent interactions in solution. Since these quantities cannot be determined directly from the experiment, it is difficult to study the molecular interaction in solution. However, these quantities are related to the corresponding apparent molar quantities which are directly determined. Since solubility, dissolution rate and bioavailability of drug is a very challenging task in drug development work, the present investigation aims at determining solubility of ibuprofen and analyzing variations of density (d) and viscosity coefficient (ɳ) of the solutions of ibuprofen in aqueous medium with different concentrations at four different temperatures ranging from 298.15 K to 313.15 K at an interval of 5K. Attempt has been made to study the possible solute-solvent and solute-solute interactions from the derived volumetric and viscometric parameters in aqueous solutions. MATERIALS AND METHODS Chemicals All chemicals used were of GR, BDH, or AnalaR grades. Conductivity water (Sp.cond.~1-6 S cm -1 ) was used throughout the experiment. Determination of solubility The solution was prepared by adding an excess quantity of ibuprofen in 1 ml of conductivity water and heating the solution for 3 minutes maintained at 5 C. Then the 25

ISSN 976 44X solution was kept with continuous stirring for 8 hours in a water thermostat maintained at the required temperature. The solution was then filtered and its concentration was determined by titration with standard NaOH solution using phenolphthalein indicator. This solution was then diluted successively to get the next four different concentrations at the corresponding temperature. Measurement of density The densities of ibuprofen solutions at the corresponding solubilizing temperatures were determined by using a specific gravity bottle (25 ml capacity) as described elsewhere. At least five observations were taken and differences in any two readings did not exceed ±.2%. 1 Measurement of viscosity Viscosity measurements on the aqueous solutions of ibuprofen at the respective solubiliizing temperatures were made as described elsewhere using an Ostwald viscometer in a water thermostat whose temperature was controlled to ±.5K. The values of viscosity so obtained were accurate to within ±.3х1-3 kgm -1 s -1. intercept and slope respectively of the linear plots of (η r - 1)/c 1/2 vs c 1/2. The viscosity data have been analyzed on the basis of transition state theory from the following relation 5 Δμ 2 * =Δμ 1 * + (RT/V 1 )1B J (V 1 -V 2 ) (5) where Δμ 2 * is the contribution per mole of the solute to free energy of activation for viscous flow of the solution and Δμ 1 * =2.33RT log (η V 1 /hn) (6) where h and N are Planck s constant and Avogadro number, respectively. Δμ 1 * is the contribution per mole of the solvent to free energy of activation for viscous flow of the solution. V 1 =M solvent /d (7) V 2 =V φ RESULTS (8) The relative density values of the solutions of ibuprofen of different concentrations have been determined at four different temperatures varying from 298.15K to 313.15K at 5K intervals. The values of the densities are given in Table -1. Viscosity values of water at the required temperatures were obtained from literature. 2,3 Calculation From the density data, the apparent molar volume(v φ ) was calculated by using the following equation 4 V φ = 1(cd ) -1 (d -d)+md -1 (1) where d is the density of solvent (water), d is the density of the solution, c is the molar concentration and M is the molecular mass of the solute (ibuprofen). The apparent molar expansibility, E φ was determined from equation given below, 4 E φ = α V φ +(α-α )1c -1 (2) Figure 1: Variation of density of aqueous ibuprofen solutions with concentration at different temperatures where α and α are the coefficients of expansion of the solution and solvent, respectively, and were obtained from the following relations. 4 α = {-1/d } (δd /δt) P and α={-1/d} (δd/δt) P (3) The relative viscosity of the solution was determined by Jones-Dole empirical equation as follows. η r = η/η = 1+A F c 1/2 +B J c (4) where η r is the relative viscosity co-efficient, η is the viscosity coefficient of the solution and η is that of the solvent, A F is Falken-Hagen co-efficient and B J is Jones- Dole co-efficient. The constants A F and B J are the Figure 2: Plot of apparent molar volume (V φ ) vs c 1/2 of aqueous ibuprofen solution at 298.15K 26

ISSN 976 44X The values of limiting apparent molar volumes (V φ), limiting apparent molar expansibility (E φ), the slope(s v ) of the plot of V φ vs c 1/2 and the slope (S E ) of the plot E φ vs c 1/2 are given in Table 2 for the aqueous ibuprofen solutions at the experimental temperatures. The experimentally determined values of viscosity (ɳ) for ibuprofen solutions at 298.15 K to 313.15 K at an interval of 5K are presented in Table-3. The relative values of viscosities (ɳ r ), viscosity coefficients A F and B J,Δµ 1 * and Δµ 2 * have been evaluated by means of equations (6), (7) and (8), respectively and are also presented in Table 3. Figure 3: Plot of apparent molar expansibility(e φ ) vs c 1/2 of aqueous ibuprofen solution at 298.15K. Table 1: Density values, d of water and d, of aqueous ibuprofen solutions at different temperatures Temp c 1 7 (mol/m 3 ) d (kg/m 3 ) d (kg/m 3 ) 298.15 3.6 997.1 998.8 2.4 998.5 1.36 998.2.9 997.9.6 997.7 33.15 3.24 995.7 997 2.16 996.7 1.44 996.4.96 996.2.64 995.9 38.15 3.42 994.1 995.3 2.56 994.9 1.92 994.7 1.44 994.5 1.8 994.3 313.15 4.4 992.3 993.7 3.3 993.4 2.4 993.2 1.8 993. 1.35 992.9 The density values of water at the required temperatures were obtained from literature. Table 2: Values of V φ,s v,e φ and S E for aqueous ibuprofen solutions at different temperatures Temperature V φ 1-3 (m 3 mol -1 ) S v 1-4 (m 9/2 mol 3/2 ) E φ 1-2 (m 3 mol -1 K -1 ) S E 1-4 (m 9/2 mol -3/2 K -1 ) 298.15-13.34 4.48 2.8-1.51 33.15-7.48 1.98 2.67-1.39 38.15 -.56 -.17 1.92 -.9 313.15-5.81 1.3 1.5 -.62 The values of V φ calculated by means of Eqn (1) were fitted by a method of least-sqaures to Massion equation to obtain V φ (limiting apparent molar volume) and the slope, S v 4 V φ = V φ + S v c 1/2 (9) The values of E φ were fitted to Massion equation to get the limiting apparent expansibility, E φ, and the slope S E. 4 E φ = E φ + S E c 1/2 (1) 27

ISSN 976 44X Table 3: Values of viscosity ɳ, relative viscosity (ɳ r), A F, B J,Δµ 1 * and Δµ 2 * for aqueous ibuprofen solutions at different temperatures. Temp Solvent ɳ (kgm -1 s -1 ) c 1 7 (mol m -3 ) ɳ (kgm -1 s -1 ) ɳ r A F (1 7/2 mol -1/2 m 3/2 ) B J (1 7 m 3 mol -1 ) V 1 1 4 (m 3 mol -1 ) V 2 1-3 (m 3 mol 1 ) Δµ 1 * 1-3 (kj mol -1 ) Δµ 2 * 1-9 (kj mol -1 ) 298.15 8.94 3.6 9.48 1.6 -.644 243.7 2.7-13.33 3.6 28.9 2.4 9.33 1.4 1.36 9.17 1.3.9 9.9 1.2.6 9.1 1.1 33.15 8.1 3.24 8.44 1.5.51 188.8 2.7-7.48 3.11 22.7 2.16 8.37 1.5 1.44 8.3 1.4.96 8.15 1.2.64 8.8 1.1 38.15 7.23 3.42 7.8 1.8 -.172 267.5 2.7 -.56 3.15 32.63 2.56 7.73 1.7 1.92 7.67 1.6 1.44 7.52 1.4 1.8 7.37 1.2 313.15 6.56 4.4 6.96 1.6 -.687 187. 2.7-5.81 3.2 23.15 3.3 6.89 1.5 2.4 6.83 1.4 1.8 6.76 1.3 1.35 6.62 1.1 Figure 4: Plots of [(ɳ/ ɳ ) ibuprofen solution. DISCUSSION - 1)]/c 1/2 vs. c 1/2 of aqueous It was found that the V φ varied linearly with concentration c 1/2. From Table-1, it is evident that the densities of solutions are greater than that of the solvent and the density values decrease with decrease in concentrations and decrease with increase in temperature (shown in Figure-1). A typical plots of V φ vs c 1/2 and E φ vs c 1/2 are shown in Figure-2 and 3, respectively. As observed from Table-2, the values of limiting apparent molar volume V φ are negative at the experimental temperatures. Since V φ is a measure of solute-solvent interaction, the negative values suggest that there is weaker solutesolvent interaction and also provides for the evidence of electrostriction varying irregularly with temperature. The positive and large values of S v (except at 33.15K) of solutions of ibuprofen indicates the presence of strong solute-solute interaction (a weak solute-solvent interaction) varying with change of temperatures. 5,6 A perusal of Table-2 shows that the E φ values are positive in all cases and decrease with increase in temperature. Since E φ gives an indication of caging or packing effect the positive values of E φ suggest that the structure making (hydrophilic) effect of ibuprofen is favoured in aqueous medium. As observed, the values of S E are negative in all cases. The results are again in agreement with the above contention that the structure making effect is favoured in aqueous solution. 5 A perusal of Table-3 reveals that the viscosity values decrease with decrease in concentration, and with 28

ISSN 976 44X increase in temperature. A typical plot of [(ɳ/ ɳ ) - 1)]/c 1/2 vs c 1/2 at 298.15 K is shown in Figure-4. The values of A F are very small and negative in most cases (except at 33.15K). Since A F is considered to be a measure of solute-solute interaction, the very small negative values of A F may indicate that the interactions are dependent on the nature of the solute and also the structure of the solvent. The co-efficient B J is a measure of the effective solvodynamic volume of solvated ions and is governed by solute-solvent interactions, i.e. the structural effect of the solvent in solution. It is a fact that when a solute is dissolved in solvent, some of the solvent molecules are wrenched out of the solvent structure because of solute-solvent interactions and this causes an increase in viscosity of solution (a positive contribution to the B J co-efficient). On the other hand, the solvent molecules have to be wrenched out of the bulk solvent and this breaking of this solvent structure cause a decrease in viscosity of the solution (a negative contribution to B J ). Thus, the value of BJ are positive but very small indicating that the interactions are also dependent on the nature of the solute and the structure of the solvent. 7,8 The values of Δμ 1 * are found to be positive at all temperatures showing positive contribution per mole of the solvent to free energy of activation for viscous flow of solution. The positive values of Δμ 2 * show greater contribution per mole of solute to free energy of activation for viscous flow of the solution and are in good agreement with the values of B J -coefficient. Again positive and large values of Δμ 2 * indicate the formation of the transition state accompanied by the rupture and distortion of the intermolecular forces in solvent structure. 9 CONCLUSION The density and viscosity values were found to decrease with decrease in concentration and increase in temperature. The negative value of limiting apparent molar volume (V φ ) is the indicative of the weak solutesolvent interaction. The positive values of E φ suggest that the structure making effect of ibuprofen is favoured in aqueous medium. The viscosity value decreases with decrease in concentration of the solution. The positive and large values of Δµ 2 * indicate the formation of the transition state accompanied by the rupture and distortion of the intermolecular forces in solvent structure. REFERENCES 1. Dash UN, Supkar S, Acoustic behaviour of glycine and its salts in aqueous organic solvent system. Acoust Letters, 16, 1992, 135. 2. Dash UN, Supkar S, Ion association and salvation of octahedral Co(III) complexes in water + mannitol and water + surbitol mixtures Proc Indian Acad Sci (Chem Sci) 17(5), 1995, 541. 3. Robinson RA, Stokes RH, Electrolyte Solutions, Butterworths Scientific Publication, London, 1955, p.3. 4. Harned HS, Owen BB, The Physical Chemistry Of Electrolytic Solutions,3 rd edn, Reinhold, NewYork, 1958. 5. Feakins D, Freemantle J D, Lawrence KG, Transition state treatment of the relative viscosity of electrolytic solutions, application to aqueous and non aqueous and methanol + water systems. J. Chem. Soc. Faraday Trans. I, 7, 1974, 795. 6. Thirumanar S, JobSaba K, Ultrasonic investigation of amino acids in aqueous sodium acetate medium. Indian J. Pure and Appl.Physics, 47, 29, 87. 7. Palani R, Jayachitra K, Ultrasonic study of ternary electrolytic mixtures at 33, 38 and 313K. Indian J. Pure and Appl.Physics, 46, 28, 251. 8. Stokes RH Mills R, International Encyclopedia of Physical Chemistry and Chemical Physics, Pergamon, New York; 1965. 9. Gurney R W, Ionic Processes in Solutions, Dover, New York, 1962, Ch 9. Source of Support: Nil, Conflict of Interest: None. 29