Online Homework: Sapling Learning online homework access which can be purchased online for about $40 or at the bookstore for $52.50 is required.

Similar documents
Exams: TA evaluation Total 1000 Grading Scale:

The Basics of General, Organic, and Biological Chemistry

MONTGOMERY COLLEGE Physical Sciences Department Takoma Park-Silver Spring Campus CH 103 Syllabus Fall 2010

Compounds Part 1: Ionic Cpds - Formula Units & Nomenclature (29:15) Video Tutorial Lecture Notes

COMMUNITY COLLEGE OF RHODE ISLAND CHEMISTRY DEPARTMENT. Syllabus and Course Information. for. Survey of Biomedical Chemistry CHEM 1010.

EASTERN ARIZONA COLLEGE Fundamental Organic Chemistry

SYLLABUS. Departmental Syllabus. General Chemistry. Departmental Syllabus. Departmental Syllabus. Departmental Syllabus. Departmental Syllabus

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS BASIC ORGANIC & BIOCHEMISTRY CHEM 1020

OFFICE Room 3268; Tel Chemistry for Changing Times, 14 th Edition, -- Fourth Custom Edition for CCRI - by Hill and McCreary Other Supplies

A stand alone calculator (not part of your cell phone) (preferably a scientific calculator).

Title of Course Fundamentals of General, Organic and Biological Chemistry I Hours_3. Course Code CHE121 Laboratory Hours per Week 3

Introduction to Chemistry

Montgomery County Community College CHE 132 Chemistry for Technology II 4-3-3

0Bergen Community College School of Mathematics, Science and Technology Department of Physical Sciences. Course Syllabus CHM 112 College Chemistry

Chem 102 Fall Syllabus Chem 102. Introduction to General, Organic, and Biological Chemistry

Syllabus. Chemistry 204. General Chemistry II. Spring Credit Hours

UNIT 3 CHEMISTRY. Fundamental Principles in Chemistry

A SURVEY OF ORGANIC CHEMISTRY CHEMISTRY 1315 TuTr 9:35-10:55 am, Boggs B6

Bergen Community College Division of Mathematics, Science and Technology Department of Physical Sciences. Course Syllabus CHM 112 College Chemistry

2/25/2013. Electronic Configurations

Course Information. Instructor Information

Chemistry 131: Introduction to Organic and Biochemistry Spring 2018

Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers

is a substance that reduces the activity of an enzyme by entering the active site in place of the substrate whose structure it mimics.

Biology 30 The Chemistry of Living Things

Alabama. Department of. Postsecondary Education

2.1 Atoms, Ions, and Molecules. 2.1 Atoms, Ions, and Molecules. 2.1 Atoms, Ions, and Molecules. 2.1 Atoms, Ions, and Molecules

Course Competencies Template - Form 112

EVPP 110 Lecture Exam #1 Study Questions Fall 2003 Dr. Largen

UNIT 1: BIOCHEMISTRY

Chapter 25 Organic and Biological Chemistry

Chemistry 200: Basic Chemistry and Applications Course Syllabus: Spring

Full file at

2/18/2013 CHEMISTRY OF CELLS. Carbon Structural Formations. 4 Classes of Organic Compounds (biomolecules)

Chemistry in Biology. Section 1. Atoms, Elements, and Compounds

Chemistry. Course Outcome Summary. Wisconsin Indianhead Technical College. Course Information. Course History. Course Competencies

CALIFORNIA STATE UNIVERSITY, East Bay Department of Chemistry. Chemistry 1615 Survey of Basic Chemistry for Healthier Living Fall Quarter, 2014

Montgomery County Community College CHE 122 General Chemistry-Organic (For the Non-Science Major) 4-3-3

Chapter 02 Chemistry of Life

Chapter 02 Chemistry of Life

Modesto Junior College Course Outline of Record CHEM 144

FUNDAMENTALS OF GENERAL, ORGANIG, AND BLOLOGIGAL CHEMISTRY JOHN R. HOLUM

Basic Concepts of Chemistry

Chapter 25. Organic and Biological Chemistry. Organic and

Guided Notes Unit 1: Biochemistry

Course Syllabus. Department: Science & Technology. Date: April I. Course Prefix and Number: CHM 212. Course Name: Organic Chemistry II

Full file at

Chapter 6 Chemistry in Biology

Atoms. Atoms 9/9/2015

Chemical Basis of Life

Chemistry in Biology Section 1 Atoms, Elements, and Compounds

LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK NATURAL SCIENCES DEPARTMENT. SCC 110: Foundations of Chemistry Fall I 2017

1. Which of the following has the lowest vapor pressure? A) H 2 O B) NaCl C) NH 3 D) O 2 E) CH 4

Hole s Human Anatomy and Physiology Eleventh Edition. Chapter 2

`1AP Biology Study Guide Chapter 2 v Atomic structure is the basis of life s chemistry Ø Living and non- living things are composed of atoms Ø

Full file at

BASIC ORGANIC & BIOCHEMISTRY CHEM

Chapter 2 Chemical Aspects of Life

Chemistry 20, Section 1204 Fundamentals of Chemistry, 5 Units El Camino College Spring 2008

Elements and Isotopes

Chapter 2: The Chemical Basis of Life

2.1 Atoms, Ions, and Molecules

CHEMISTRY INTRODUCTORY CHEMISTRY

NORTH CENTRAL HIGH SCHOOL NOTE & STUDY GUIDE. Honors Biology I

CHE 121 Fundamentals of General, Organic and Biological Chemistry I 2010 SYLLABUS AND COURSE OUTLINE

GENERAL, ORGANIC AND BIOLOGICAL CHEMISTRY. JOHN R. AMEND Montana State University. BRADFORD P. MUNDY Colby College

Ch. 2 BASIC CHEMISTRY. Copyright 2010 Pearson Education, Inc.

Biology of Humans: Concepts, Applications, and Issues, 6e (Goodenough) Chapter 2 Chemistry Comes to Life

Teacher Instructions

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chemistry. Atomic and Molecular Structure

Chapter 17 An Introduction to Organic Chemistry, Biochemistry, and Synthetic Polymers

UNL21 Chemistry. About the Course. Aim

CHEM GENERAL CEMISTRY

1/23/2012. Atoms. Atoms Atoms - Electron Shells. Chapter 2 Outline. Planetary Models of Elements Chemical Bonds

- aromatic hydrocarbons carbon atoms connected in a planar ring structure, joined by σ and π bonds between carbon atoms

Figure ) Letter E represents a nucleic acid building block known as a. Answer: nucleotide Diff: 3 Page Ref: 54

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry

Topic 1: Quantitative chemistry

Unit 5 Test. Name: Score: 37 / 37 points (100%)

PTYS 214 Spring Announcements. Midterm #1 on Tuesday! Be on time! No one enters after the first person leaves! Do your homework!

Garden City High School Science Department Honors Living Environment Summer Assignment

Review Activity Module 1: Biological Chemistry

Chapter 2 The Chemistry of Life

The Chemistry of Life

Chapter 2: Fundamentals of Chemistry. Question Type: Multiple Choice. 1) Which of the following pairs is mismatched?

Chapter 2 The Chemistry of Biology. Dr. Ramos BIO 370

Hole s Human Anatomy and Physiology Tenth Edition. Chapter 2

GOB Chemistry LabPaq

Chapter 02 Testbank. 1. Anything that occupies space and has mass is called. A. an electron. B. living. C. matter. D. energy. E. space.

STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK

2: CHEMICAL COMPOSITION OF THE BODY

The Chemistry and Energy of Life

MULTIPLE CHOICE. Circle the one alternative that best completes the statement or answers the question.

Chapter 02 Testbank. 1. Anything that occupies space and has mass is called. A. an electron. B. living. C. matter. D. energy. E. space.

Chapter 002 The Chemistry of Biology

CHEMICAL BONDS. Attraction that holds molecules together Involves valence electrons. Ionic Bonds Covalent Bonds. Involves sharing of.

1. Atomic Concepts. The student should be able to: relate experimental evidence to models of the atom

Randa AbiRafi Jaber Office: Chem Bldg. Rm 212 Office Hrs: Tue, Wed 11:00 Thu: 2:00 3:00 pm

Basic Chemistry. Chapter 2 BIOL1000 Dr. Mohamad H. Termos

Transcription:

Course Syllabus Spring 2018 Chemistry 205: General, Organic and Biological Chemistry Department of Chemistry, Marshall University Instructor: Phil Alexander Phone: (304) 696-4808 Office: 408 Science Building Email: alexand1@marshall.edu Office Hours: 8:30-9 M, W, F; 11-12 M, W; 12:15-1 T, R; 10-11R or by appointment Credit Hours: 3.00 hours Course Times and Locations: Section 201 CRN 2366 11-12:15 T, R room 473 Catalog Description: Introductory course for health professions students and non-science majors covering basic chemical principles with applications in organic chemistry and biochemistry. Required Materials: Text: The text for this course is Ball, Hill and Scott, The Basics of General, Organic and Biological Chemistry Flat World Knowledge, Inc. ISBN: 9781453311097. Versions of the book are available at flatworldknowledge.com ranging from $24 to $89 and ranging from online only to ebook, soft cover printed book and study aids. A black and white version at $71.50 (without any electronic access) is available at the bookstore. Calculator: You will need a basic nonprogrammable scientific calculator. You should be able to find a suitable calculator for around $15 or less. Calculators and phones with alphanumeric and/or graphing capabilities are not permitted during quizzes or exams. Online Homework: Sapling Learning online homework access which can be purchased online for about $40 or at the bookstore for $52.50 is required. Determination of Course Grade: Five tests will be given composed of multiple choice and possibly free response (including problems) questions. The tests will make up 60% of the final grade. The final exam will count as 20% of the grade. Quizzes will be given and will represent 10% of the final grade. Approximately 1 in 5 quizzes will be dropped. Sapling Learning online homework will represent 10% of the grade. The grading scale will be no higher than A 90%, B 80 to 89%, C 70 to 79%, D 60 to 69%, and F < 60%. Course Curriculum: Lectures and assignments will cover chapters 1 through 19 in the text. Attendance: Regular attendance is expected. See me for makeup tests or quizzes. No makeup tests or quizzes will be given unless prompt arrangements are made (complete before next class). Otherwise makeup days are 2/22 or 4/26 (sign up and a university excuse are required). Sapling Learning online homework problems will be assigned for each chapter and may be discussed in class. Problems similar to those on the homework will be included on the tests and quizzes. Attendance, reading, and working the homework are essential for successful completion of this course. Plan on 2 hours out of class work for each hour in class. Please seek me out if you want or need help. Should attendance problems arise contact me before you miss if at all

possible. Please be on time and do not disrupt class by coming in late. Any student involved in an official school function or an unavoidable commitment to his or her employer can arrange to take an exam at another time than the scheduled time. Electronic Device Policy: All cell phones and pagers must be turned to vibrate during class. Recording of lectures without the instructor s permission is prohibited. During examinations, all electronic devices except calculators must be inaccessible. Students MUST BRING A CALCULATOR to class for all lectures and exams. Calculators that are part of a cell phone or PDA are not acceptable during an exam or quiz. No use of a cellphone is permitted during class. University Policies: All university policies, which can be found at this link http://www.marshall.edu /academic-affairs/policies/, will be observed. Important Dates: 1/8 First Day of Class, 1/15 MLK Day Holiday, 2/26 Freshman D &F midterm grades 3/16 Last day to drop individual courses, 3/19-3/24 Spring Break, 4/23-4/27 Dead Week, 4/28 Final Exam Saturday 9:50 AM Tentative class schedule* Week of Chapters 1/8 1, 2 1/15 2, 3 1/22 3, 4, 5 1/29 5, 6 2/5 6, 7, 8 2/12 8,9,10 2/19 10, 11 2/26 12, 13 3/5 13, 14 3/12 14, 15 3/19 Spring Break 3/26 15, 16 4/2 17, 18 4/9 18, 19 4/16 19 4/23 review Tentative exam schedule* Exam Week of Chapters Exam I 1/29 1-4 Exam II 2/12 5-7 Exam III 2/26 8-11 Exam IV 4/2 12-15 Exam V 4/23 16-19 Final Exam SATURDAY 4/28 9:50 AM *The exam and lecture schedule may change based on the rate the class is progressing.

Final exam: Saturday 4/28, 9:50 AM (Chapters 1-19) Students will be able to practice the following objectives presented in class with required and graded online homework and with homework problems from the text. Students will be assessed on the following objectives presented in class using quizzes and exams. Chemistry 205 Learning Objectives Chapter 1 Define chemistry in relation to other sciences. Identify the general steps in the scientific method. Use chemical and physical properties, including phase, to describe matter. Identify a sample of matter as an element, a compound, or a mixture. Express quantities properly, using a number and a unit. Express a large number or a small number in scientific notation. Identify the number of significant figures in a reported value. Use significant figures correctly in arithmetical operations. Recognize the SI base units and explain the system of prefixes used with them. Convert a value reported in one unit to a corresponding value a different unit. Chapter 2 Define a chemical element and give examples of the abundance of different elements. Represent a chemical element with a chemical symbol. Explain all matter is composed of atoms. Describe the modern atomic theory. Describe the three main subatomic particles. State how the subatomic particles are arranged in atoms. Define and differentiate between the atomic number and the mass number of an element. Explain how isotopes differ from one another. Define atomic mass and atomic mass unit. Describe how electrons are grouped within atoms. Explain how elements are organized into the periodic table. Describe how some characteristics of elements relate to their positions on the periodic table. Chapter 3 Define the octet rule. Describe how ionic bonds are formed. Define the two types of ions. Use Lewis diagrams to illustrate ion formation. Write the chemical formula for a simple ionic compound. Recognize polyatomic ions in chemical formulas. Use the rules for naming ionic compounds. Determine the formula mass of an ionic compound. Chapter 4 Describe how a covalent bound forms.

Determine the chemical formula of a simple covalent compound from its name. Determine the name of a simple covalent compound from its chemical formula. Recognize molecules that are likely to have multiple covalent bonds. Compare covalent bonds in terms of bond length and bond polarity Determine the molecular mass of a molecule. Predict the general shape of a simple covalent molecule. Define organic chemistry. Identify organic molecules as alkanes, alkenes, alkynes, alcohol, or carboxylic acids. Chapter 5 Correctly define a law as it pertains to science. State the law of conservation of matter. Define chemical reaction. Use a balanced chemical equation to represent a chemical reaction. Calculate the amount of one substance that will react with or be produced from a given amount of another substance. Classify a given chemical reaction into a variety of types. Identify a chemical reaction as an oxidation-reduction reaction. Identify oxidation-reduction reactions with organic compounds. Chapter 6 Define the mole unit. Learn how the masses of moles of atoms and molecules are expressed. Convert quantities between mass units and mole units. Use a balanced chemical reaction to determine molar relationships between the substances. Convert from mass or moles of one substance to mass or moles of another substance in a chemical reaction. Chapter 7 Define energy and heat. Relate heat transfer to temperature change. Determine the heat associated with a phase change. Define bond energy. Determine if a chemical process is exothermic or endothermic. Relate the concept of energy change to chemical reactions that occur in the body. Chapter 8 Define phase. Identify the type of interactions between molecules. Describe the solid and liquid phases. Describe the gas phase. Predict the properties of gases using the gas laws. Chapter 9 Understand what causes solutions to form.

Express the amount of solute in a solution in various concentration units. Use molarity to determine quantities in chemical reactions. Determine the resulting concentration of a diluted solution. Describe the dissolution process at the molecular level. Describe how the properties of solutions differ from those of pure solvents. Chapter 10 Recognize a compound as an Arrhenius acid or an Arrhenius base. Recognize a compound as a Brønsted-Lowry acid or a Brønsted-Lowry base. Illustrate the proton transfer process that defines a Brønsted-Lowry acid-base reaction. Write chemical equations for water acting as an acid and as a base. Describe the difference between strong and weak acids and bases. Describe how a chemical reaction reaches chemical equilibrium. Define the ph scale and use it to describe acids and bases. Define buffer and describe how it reacts with an acid or a base. Chapter 11 Define and give examples of the major types of radioactivity. Define half-life. Determine the amount of radioactive substance remaining after a given number of half-lives. Express amounts of radioactivity in a variety of units. Learn some applications of radioactivity. Explain where nuclear energy comes from. Describe the difference between fission and fusion. Chapter 12 Recognize the composition and properties typical of organic and inorganic compounds. Identify and name simple (straight-chain) alkanes given formulas and write formulas for straightchain alkanes given their names. Learn how alkane molecules can have branched chains and recognize compounds that are isomers. Write condensed structural formulas for alkanes given complete structural formulas. Draw line-angle formulas given structural formulas. Name alkanes by the IUPAC system and write formulas for alkanes given IUPAC names. Identify the physical properties of alkanes and describe trends in these properties. Identify the main chemical properties of alkanes. Name halogenated hydrocarbons given formulas and write formulas for these compounds given names. Name cycloalkanes given their formulas and write formulas for these compounds given their names. Chapter 13 Name alkenes given formulas and write formulas for alkenes given names. Recognize that alkenes that can exist as cis-trans isomers. Classify isomers as cis or trans.

Draw structures for cis-trans isomers given their names. Identify the physical properties of alkenes and describe trends in these properties. Write equations for the addition reactions of alkenes with hydrogen, halogens, and water. Draw structures for monomers that can undergo addition polymerization and for four-monomerunit sections of an addition polymer. Describe the general physical and chemical properties of alkynes. Name alkynes given formulas and write formulas for alkynes given names. Describe the bonding in benzene and the way typical reactions of benzene differ from those of the alkenes. Recognize aromatic compounds from structural formulas. Name aromatic compounds given formulas. Write formulas for aromatic compounds given their names. Chapter 14 Describe functional groups and explain why they are useful in the study of organic chemistry. Identify the general structure for an alcohol. Identify the structural feature that classifies alcohols as primary, secondary, or tertiary. Name alcohols with both common names and IUPAC names. Explain why the boiling points of alcohols are higher than those of ethers and alkanes of similar molar masses. Explain why alcohols and ethers of four or fewer carbon atoms are soluble in water while comparable alkanes are not soluble. Describe how to prepare alcohols from alkenes. Give two major types of reactions of alcohols. Describe the result of the oxidation of a primary alcohol. Describe the result of the oxidation of a secondary alcohol. Describe the structure and uses of some common polyhydric alcohols. Describe the structure and uses of some phenols. Describe the structure difference between an alcohol and an ether that affects physical characteristics and reactivity of each. Name simple ethers. Describe the structure and uses of some ethers. Identify the general structure for an aldehyde and a ketone. Use common names to name aldehydes and ketones. Use the IUPAC system to name aldehydes and ketones. Explain why the boiling points of aldehydes and ketones are higher than those of ethers and alkanes of similar molar masses but lower than those of comparable alcohols. Compare the solubilities in water of aldehydes and ketones of four or fewer carbon atoms with the solubilities of comparable alkanes and alcohols. Name the typical reactions take place with aldehydes and ketones. Describe some of the uses of common aldehydes and ketones. Identify thiols (mercaptans) by the presence of an SH group. Chapter 15 Identify the general structure for a carboxylic acid, an ester, an amine, and an amide. Identify the functional group for a carboxylic acid, and ester, an amine, and an amide. Name carboxylic acids with common names.

Name carboxylic acids according to IUPAC nomenclature. Describe the preparation of carboxylic acids. Compare the boiling points of carboxylic acids with alcohols of similar molar mass. Compare the solubilities of carboxylic acids in water with the solubilities of comparable alkanes and alcohols in water. Name the typical reactions that take place with carboxylic acids. Describe how carboxylic acids react with basic compounds. Identify the general structure for an ester. Use common names to name esters. Name esters according to the IUPAC system. Compare the boiling points of esters with alcohols of similar molar mass. Compare the solubilities of esters in water with the solubilities of comparable alkanes and alcohols in water. Identify and describe the substances from which most esters are prepared. Describe the typical reaction that takes place with esters. Identify the products of an acidic hydrolysis of an ester. Identify the products of a basic hydrolysis of an ester. Describe phosphate esters. Understand why phosphate esters are important in living cells. Identify the general structure for an amine. Identify the functional group for amines. Determine the structural feature that classifies amines as primary, secondary, or tertiary. Use nomenclature systems to name amines. Explain why the boiling points of primary and secondary amines are higher than those of alkanes or ethers of similar molar mass but are lower than those of alcohols. Compare the boiling points of tertiary amines with alcohols, alkanes, and ethers of similar molar mass. Compare the solubilities in water of amines of five or fewer carbon atoms with the solubilities of comparable alkanes and alcohols in water. Name the typical reactions that take place with amines. Describe heterocyclic amines. Identify the general structure for an amide. Identify the functional group for an amide. Name amides with common names. Name amides according to the IUPAC system. Compare the boiling points of amides with alcohols of similar molar mass. Compare the solubilities in water of amides of five or fewer carbon atoms with the solubilities of comparable alkanes and alcohols in water. Describe the preparation procedure for amides. Identify the typical reaction that amides undergo. Chapter 16 Recognize carbohydrates and classify them as mono-, di-, or polysaccharides. Classify monosaccharides as aldoses or ketoses and as trioses, tetroses, pentoses, or hexoses. Distinguish between a D sugar and an L sugar.

Identify the structures of D-glucose, D-galactose, and D-fructose and describe how they differ from each other. Define what is meant by anomers and describe how they are formed. Explain what is meant by mutarotation. Identify the physical and chemical properties of monosaccharides. Identify the structures of sucrose, lactose, and maltose. Identify the monosaccharides that are needed to form sucrose, lactose, and maltose. Compare and contrast the structures and uses of starch, glycogen, and cellulose. Chapter 17 Recognize the structures of common fatty acids and classify them as saturated, monounsaturated, or polyunsaturated. Explain why fats and oils are referred to as triglycerides. Explain how the fatty acid composition of the triglycerides determines whether a substance is a fat or oil. Describe the importance of key reactions of triglycerides, such as hydrolysis, hydrogenation, and oxidation. Identify the distinguishing characteristics of membrane lipids. Describe membrane components and how they are arranged. Identify the functions of steroids produced in mammals. Chapter 18 Recognize amino acids and classify them based on the characteristics of their side chains. Explain how an amino acid can act as both an acid and a base. Explain how a peptide is formed from individual amino acids. Explain why the sequence of amino acids in a protein is important. Describe the four levels of protein structure. Identify the types of attractive interactions that hold proteins in their most stable threedimensional structure. Explain what happens when proteins are denatured. Identify how a protein can be denatured. Explain the functions of enzymes. Explain how enzymes are classified and named. Describe the interaction between an enzyme and its substrate. Describe how ph, temperature, and the concentration of an enzyme and its substrate influence enzyme activity. Explain what an enzyme inhibitor is. Distinguish between reversible and irreversible inhibitors. Distinguish between competitive and noncompetitive inhibitors. Explain why vitamins are necessary in the diet. Chapter 19 Identify the different molecules that combine to form nucleotides. Identify the two types of nucleic acids and the function of each type. Describe how nucleotides are linked together to form nucleic acids.

Describe the secondary structure of DNA and the importance of complementary base pairing. Describe how a new copy of DNA is synthesized. Describe how RNA is synthesized from DNA. Identify the different types of RNA and the function of each type of RNA. Describe the characteristics of the genetic code. Describe how a protein is synthesized from mrna. Describe the causes of genetic mutations and how they lead to genetic diseases. Explain how viruses reproduce in cells. Topics for CHM 205 Exam I Chapter 1 01-Introduction 02-Scientific Notation 03-Significant Figures 04-Measurements and Units 05-Unit Conversions 06-Density Chapter 2 07-The Elements 08-Atomic Structure 09-Nuclei of Atoms 10-Arrangement of Electrons 11-Periodic Table Chapter 3 12-Ionic Bonding 13-Formulas of Ionic Compounds 14-Naming Ions and Ionic Compounds Chapter 4 15-Covalent Compounds 16-Multiple Covalent Bonds 17-Covalent Bond Characteristics 18-Formula Mass, Molecular Mass 19-Introduction to Organic Chemistry

Exam II Chapter 5 20-Chemical Equations 21-Types of Reactions 22-Redox Reactions Chapter 6 23-The Mole 24-Stoichiometry-Moles 25-Stoichiometry-Mass Chapter 7 26-Heat and Energy 27-Phase Changes 28-Heat in Chemical Reactions Exam III Chapter 8 29-Intermolecular Forces 30-Gases and Pressure Units 31-PVT Relationships 32-Ideal Gas Law Chapter 9 33-Solutions 34-Concentrations 35-Colligative Properties Chapter 10 36-Arrhenius Acids and Bases 37-Bronsted-Lowery Acids and Bases 38-Acid and Base Strengths and Buffers Chapter 11 39-Radioactivity 40-Radiation Units and Half Life 41-Uses of Radiation and Nuclear Chemistry

Exam IV Chapter 12 42-Alkanes 44-IUPAC Nomenclature 45-Cycloalkanes 46-Chemical and Physical Properties of Alkanes Chapter 13 46-Alkenes and Alkynes 47-Geometric Isomers 48-Properties of Alkenes and Alkynes 49-Polymers 50-Aromatic Compounds Chapter 14 51-Alcohols 52-Formation and Properties of Alcohols 53-Phenols, Ethers, and Organosulfur Compounds 54-Aldehydes and Ketones Chapter 15 55-Carboxylic Acids 56-Formation and Properties of Carboxylic Acids 57-Esters 58-Formation, Properties, and Reactions of Esters 59-Amines 60-Properties of Amines 61-Amides

Exam V Chapter 16 62-Carbohydrates and Stereoisomers 63-Monosaccharides 64-Di- and Polysaccharides Chapter 17 65-Fatty Acids 66-Fats and Oils 67-Membranes and Membrane Lipids 68-Steroids Chapter 18 69-Amino Acids 70-The Isoelectric Point 71-Peptides 72-Proteins 73-Properties of Proteins 74-Enzymes 75-Enzyme Activity 76-Enzyme Inhibition Chapter 19 77-Nucleotides 78-Nucleic Acids 79-Replication and Transcription 80-Mutations and Viruses