Environmental Monitoring Presented on behalf Lutz Moritz (TRIUMF) by

Similar documents
Radiation Monitoring and Measurements Presented on behalf of Lutz Moritz by

Measurement of induced radioactivity in air and water for medical accelerators

Activities of the neutron standardization. at the Korea Research Institute of Standards and Science (KRISS)

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Quality Assurance. Purity control. Polycrystalline Ingots

MEASUREMENT AND DETECTION OF RADIATION

Update on Calibration Studies of the Canadian High-Energy Neutron Spectrometry System (CHENSS)

SECTION 8 Part I Typical Questions

Test bench for measurements of NOvA scintillator properties at JINR D.S. Velikanova, 1 A.I. Antoshkin, 1 N.V. Anfimov, 1 O.B.

Fundamentals of Radionuclide Metrology

Physics 307 Laboratory

RADIATION DETECTION AND MEASUREMENT

Acronyms, Abbreviations, and Symbols Foreword to the First Edition Foreword to the Second Edition Preface to the First Edition Preface to the Second

Astrophysical Nucleosynthesis

Chapter 11: Neutrons detectors

Introduction to Radiological Sciences Neutron Detectors. Theory of operation. Types of detectors Source calibration Survey for Dose

Fast-Neutron Production via Break-Up of Deuterons and Fast-Neutron Dosimetry

General Physics (PHY 2140)

General Physics (PHY 2140)

Applied Nuclear Physics (Fall 2006) Lecture 21 (11/29/06) Detection of Nuclear Radiation: Pulse Height Spectra

Queen s University PHYS 352

She uses different thicknesses of sheets of paper between the source and the sensor. radioactive source

Residual activity (contamination) Radiation exposure levels

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Bubble Detector Characterization for Space Radiation

Chapter 33: The Atomic Nucleus and Radioactivity Review questions pg. 658

Comparison of Direct Electron and Photon Activation Measurements with FLUKA Predictions

RADIOACTIVITY Q32 P1 A radioactive carbon 14 decay to Nitrogen by beta emission as below 14 x 0

METHOD TEST METHODS FOR MEASURING RADIONUCLIDE EMISSION FROM STATIONARY SOURCES

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity

STUDY ON THE ENERGY RESPONSE OF PLASTIC SCINTILLATION DETECTOR TO MEV NEUTRONS ABSTRACT

A Report On DESIGN OF NEUTRON SOURCES AND INVESTIGATION OF NEUTRON BASED TECHNIQUES FOR THE DETECTION OF EXPLOSIVE MATERIALS

Physics Dept. PHY-503-SEMESTER 112 PROJECT. Measurement of Carbon Concentration in Bulk Hydrocarbon Samples

Alpha-particle Stopping Powers in Air and Argon

He-3 Neutron Detectors

The origin of heavy elements in the solar system

Photofission of 238-U Nuclei

Measurements of Neutron Total and Capture Cross Sections at the TOF spectrometers of the Moscow Meson Factory

RADIATION PROTECTION

Charged particles detectors Arrays (1)

arxiv:hep-ex/ v1 15 Aug 2006

Neutron Metrology Activities at CIAE (2009~2010)

Particle Size of Radioactive Aerosols Generated During Machine Operation in High-energy Proton Accelerators

A brief history of neutrino. From neutrinos to cosmic sources, DK&ER

Experimental Activities in China

LBNF Neutrino Beam. James Strait Fermi National Accelerator Laboratory P.O. Box 500, Batavia, IL , USA. on behalf of the LBNF/DUNE Team

SCINTILLATION DETECTORS AND PM TUBES

Anwendungen von Radionukliden und Strahlung (FS2011) Radiation Detectors (Week 2, 2 nd part)

章飞虹 ZHANG FeiHong INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS Ph.D. student from Institute of High Energy Physics, Beijing

ICF Burn-History Measurements Using 17-MeV Fusion Gamma Rays

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY

Depth Distribution of H-3, C-14 and Co-60 in Decommissioning of the Biological Shielding Concrete of KRR-2

Occupational Radiation Protection at Accelerator Facilities: Challenges

Accelerators and radiation spectra

Effect of Co-60 Single Escape Peak on Detection of Cs-137 in Analysis of Radionuclide from Research Reactor. Abstract

2007 Fall Nuc Med Physics Lectures

Renewed whole-body counting chamber in STUK

Radiation Detection and Measurement

Unit 2. Instrumentation. Experts Teaching from Practical Experience

Department of Radiation Protection, Nuclear Science Research Institute, Japan Atomic Energy Agency

Beam Dump Experiments at JLab and SLAC

Evaluation and Measurements of Radioactive Air Emission and Off-Site Doses at SLAC

Fabrication of Radiation Sources for Educational Purposes from Chemical Fertilizers using Compressing and Forming Method

K 40 activity and Detector Efficiency

Contents. Charged Particles. Coulomb Interactions Elastic Scattering. Coulomb Interactions - Inelastic Scattering. Bremsstrahlung

ICTP-IAEA Joint Workshop on Nuclear Data for Science and Technology: Medical Applications. 30 September - 4 October, 2013

An introduction to Neutron Resonance Densitometry (Short Summary)

The UK Tritium Users' Group

Time series data from in situ gamma spectroscopy measurements

EEE4106Z Radiation Interactions & Detection

Liquid Scintillation at NPL: Practical Applications

K 40 activity and Detector Efficiency

Recent activities in neutron standardization at NMIJ/AIST

SLAC Metal Clearance Program and Progress

ACCUMULATION OF ACTIVATION PRODUCTS IN PB-BI, TANTALUM, AND TUNGSTEN TARGETS OF ADS

PECULIARITIES OF FORMING THE RADIATION SITUATION AT AN AREA OF NSC KIPT ACCELERATORS LOCATION

Radiation Detection and Measurement

A cryogenic detector for 222 Rn

Emerging Capabilities for Advanced Nuclear Safeguards Measurement Solutions

Half-life measurements using SCEPTAR at ISAC-I

Calculation of Bubble Detector Response Using Data from the Matroshka-R Study

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso

A Brief Overview of Radiation and Analytical Water Testing for Radiological Contaminants.

Neutronics Experiments for ITER at JAERI/FNS

Future gamma-ray spectroscopic experiment (J-PARC E63) on 4 ΛH

Introduction. Principle of Operation

COUNTING ERRORS AND STATISTICS RCT STUDY GUIDE Identify the five general types of radiation measurement errors.

arxiv: v1 [physics.ins-det] 26 Sep 2018

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

Measurements of Radiation Doses Induced by High Intensity Laser between and W/cm 2 onto Solid Targets at LCLS MEC Instrument

A new neutron monitor for pulsed fields at high-energy accelerators

Lab 14. RADIOACTIVITY

Neutrino Physics. Neutron Detector in the Aberdeen Tunnel Underground Laboratory. The Daya Bay Experiment. Significance of θ 13

INTRODUCTION Strained Silicon Monochromator Magnesium Housing Windows for Monochromator Shutter and Collimator Fission Detector HOPG Monochromator

Radionuclide Imaging MII Detection of Nuclear Emission

It s better to have a half-life than no life! Radioactive Decay Alpha, Beta, and Gamma Decay

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016

Energy loss of alpha particles - Prelab questions

PoS(EPS-HEP2017)074. Darkside Status and Prospects. Charles Jeff Martoff Temple University

Radiation Detection. 15 th Annual OSC Readiness Training Program.

Transcription:

Environmental Monitoring Presented on behalf Lutz Moritz (TRIUMF) by Kamran Vaziri Ph.D. Radiation Physicist III Fermi National Accelerator Laboratory 1

2

! "# $ %!!! &!'$ 3

! (!!$ )!*!'! "#!!!!!''!!!&!'$ 4

+, QA involves all those planned and systematic actions necessary to provide adequate confidence that a facility will perform satisfactorily and safely in service.! - '!&!$ - *.'* ' '!+&, 5

-!('!+, - ' - / *!/!* +0123,$ 6

-!!* - -! 4! '!'!!!$ 7

Environmental Monitoring Elements %!5 - * -! '$ %! $ -!* $ -!!*'$!! '!3'$ 8

Environmental Monitoring Planning %!!!5!. *' - '!* - * -!!$!* '$!!!$ 9

'6 7.5!!!'* 8!.+$$*,! +$$**3 *),* 7!(!!!*' '$ 10

'6 '! ** * * 7!( $ 11

Standards, Limits and Guidance %!2!7! +9,7! 2:;11$:917<=:5 %!2911 +9,2'' $ &91!!2 '!'.2$ 12

Standards, Limits and Guidance.!.! * * * $ ' >? ';17@9 'A+)A,$ %!' & $ 13

Environmental Monitoring Program %! $ 9/!"#$ -!! ' -!! $ B/!!' 14

Types of Sources ' 5 '!! - ' - 15

!!+*γ*µ,$ %!!!''.$ %!'!!!!!/ $ $ 16

Fermilab Example- MERL ' 3'+3,. *γ/! $?.! '$ 17

Fermilab Example- MERL 18

MERL- Neutrons Detector For neutron detection, the MERL has a DePangher long counter. For measurements of neutron spectra outside the shields use a set of Bonner spheres. 19

MERL- Muons and Charged Particles!+!,*! 3!!!!$ Muon Telescope A telemetry system relays information on beam parameters to the MERL. A 3 x 3 NaI (Tl) scintillator is used with a multichannel analyzer to detect gamma rays. 20

Supplement to MERL %!''* &+CA*D C7!D C D, '$ %!! $ γ/ '!'$ 21

::$!' $ 2! γ/$! '$ A 22

Chipmunk A stationary rad. Monitor (developed at Fermilab) TE ion chamber (n,γ,cp) Stable indoors & outdoors Used both beam-on and beam-off About 250 installed on site 23

Another Example of Real-time Site Monitoring A network of prompt radiation monitoring stations around the JLab boundary. 24

Monitoring Program 2! - - $ &!!!!! '!'/!'! $ 25

Environmental Monitoring Program %!5!. *!!!! *!!!'.'$ 26

! Prompt Fields - ) -2 - /! // &!! '! '$ 27

'$ %!' -!! -) ;1 E** - 9=0 7 -!/!$ Transient offsite sources. 28

/! Argon Ion Chamber!?23*! '$!/! $ 29

/!*! Passive: TLDs with or without Bonner Spheres Active: Long counter Snoopy or WENDI Bonner Spheres with LiI(Eu), 3 He or BF 3, detectors 30

Prompt Radiation Fields- neutrons %!''CD $!!! &!!!'' &$%!!C'D!( $ 3 '+γ B$B8,*!!!$ &!* &!! $ 31

/ %!4!' :15 -!F - 3!!!6' - G5%!B1/=18!F -?911/91118!!F - +'&H, 32

Prompt radiation fields- neutrons /!'!'! 3!!$!!! '!'$ 33

/!!!!!!!!!!! $ 34

/! for r greater than about 20 meters: aq ( r Φ ( r) = 1 e ) e 2 4π r / µ r / λ a = 2.8 an empirical buildup factor, µ is the corresponding buildup relaxation length (56 meters) λ is the effective interaction length (meters). Φ (r) the fluence (1/m 2 ) Q is the number of neutrons emitted by the source (1/m 2 ). 35

/! Normalized Value of r 2 φ(r) r (meters) Estimate the value of λ from the neutron energy spectrum information 36

/! & r 2 φ(r) (n/10 12 p) r (meters) 37

/ 38

/ 39

/ 40

/2! ' 41

%!/! - $ * - &!* - - $ $ ' &$ 42

!+'$ /', )/ ' 43

27I+µ7> =,G' G I :> 1$9> 3 7 ;1!> 9@<!> = A B1$1 1$9 ) 0 4 <$1 1$1; J 99 7 B11$1 9$1 2 9= ) ;9$1 1$1B ) 9: B0$1 1$1B ) BB ) 1$= 1$119 2 ;9 ;0$1 1$19 ) :; 1$= 1$11B G @1 7 1$10 ;&91 /; J B=<? B&91 /: 9&91 /0 J 44

I!!/+ 9: * 9= )* 99 7, ;9 $ ' &$ 7!' '' AI $ 45

+*/'!,!$ %!! 0 4*!' $ '!!!+$$!!$,!A%'.' ''''!!! = A.!.$ 46

'!!*'!/ ' '! &$ %!"'#!! $'!!!$ '!/ 7!'$ 47

&!! &!!&!! &!$ ' $ 48

49

) A' 50

7 Electrical Connector Quick Removal Fasteners Stainless Steel Inlet/outlet Lead Shield GM Detector Aluminum Case 51

I/ ) I +8, G! G! +4. /=,L9; =< 7 9@;B 9 1$; B9@< 9$B 1$B 9$B 1$B =K 7 B:1$= 1$< 1$: 9B@0 1$K 1$= 9:90 1$K 1$= 1$K 1$B ;9 9BK; <$ 1$; <$1 1$; 52

/7!/ 70 60 50 Data Counts Fit 40 30 20 10 0 0 1000 2000 3000 4000 5000 6000 7000 8000 Time (seconds) 53

Iβ/2 ) β +8, ε )+I, +>B, ) +4., 9= ) ;KB β N :$=M B=$= B9<$1 99 7 =<@ β N ;$;M 9@$: 9<K$: ;9 ;@; β / :$;M 1$0 @$; 9: 0=: β N 0$9M B$: 90$; Proton & heavy ion accelerators versus electron accelerators 54

'% Bubblers flowmeter pump 55

7'% Make sure beam conditions are stable Connect triple-bubbler to stack Set flow rate Start pull through pump Run for a set time Measure concentration of tritium Record beam parameters for the run 56

7'% Volume of air used= flow rate x time HTO activity= sum( bubbler liquid x HTO concentration) Calibration factor HTO Concentration in stack air = HTO activity / Volume of air used Notes:» May need catalyst to convert HT, T2 to HTO upstream.» Environmental issues of tritium sorption and desorption:» Beam on releases» Beam off releases 57

!27 7<<-7 +, I. $ '!* $ '! '/$?5* $ <1+:1,$!& 58

7'!2 +!/ ;9,!&$ 7'! /(!'$ ).!!/$ 59

G G!'! 5 9$ )/GO **!! $ B$.O!!.$ '!.=:;1 '!$ 60

G 7/3/!/ *'' ' &$ 24/! '$!('/ $ 3!' 61

!* $ ) +%,!! $ *! ''! '!AI.!.$ 62

DCG for / Radionuclides in Water 27I+7>, A/ G I A/= 9B$=P;:1@ B*111 B1QQ 4/0 :=$= 9*111 ;1 )/BB B$@ PK;K 91 1$; 7/;: 9@: :1 B /:; =9B :1 B 7/:0 B01 911 ; 7/:< 09$= ;1 9$@ 7/@1 :$B0 P9KB; : 1$B 7/9=0 =1 = 1$9B /9K: 9<= 911 ;?/B=< ;$;0&91 K 1$1@ B$;&91 /= 63

&/* 64

/& 65

-%!!!!!! / 2'!!!!'+, $ 66

'! /'*!!/ AI $!!!.' '!AI$ &'! =B * =: =@ 7$ 67

2!β/!!+!! /,$ 7!!!/ / '$ %!.'!'!!.' $ 68

I & Beam 69

The Propagation of Radionuclides Through Geological Media: Concentration Model N p = # of protons S ave = average stars/cm3 K i = Σ production ratio L i = leaching fraction ρ = soil density W i = water fraction 99% leaching t irrad = irradiation time t c = cooling time τ i = mean life time of isotope N KLS C 1 exp( t / τ) exp( t / τ) 1.17 10 6 w = p i i ave { } i irrad i c i ρ i 70

%!%!! I Fraction leached Weight of water (as a fraction of soil weight) 71

%!%!! I 72

The Propagation of Radionuclides Through Geological Media D x 2 x C 2 ν x C x λc = C t D x is 1D dispersion coefficient ν x is the seepage velocity λ is the decay constant C is the concentration 73

%!%!! I!2#3 v = K p dh dx! $ %!!!!$ E!.!! $ 74

I 75

%7 10-6 MuCool Tritium (10 yr Pulse) H3 Concentration Ratio(7m) H3 Concentration Ratio(7.5m) H3 Concentration Ratio(8m) H3 Concentration Ratio(8.5m) H3 Concentration Ratio 10-7 10-8 0 50 100 150 200 250 300 Years 76

' $! $ )! (!'+CAD,!'!!'$ %!' &'$ $ $ 77

!+$$ = A$ 0 4* B; )* BB )*/,!!!!!$ 4' - $ - (*!*!74$ 78

%!! - * - * - *! $ %! -!'* '!/$ 79

7 '!!*/ - ' -!.' - 80

Acknowledgements Adapted from manuscript prepared by Lutz Moritz (TRIUMF) Helpful comments & text material received from Don Cossairt (Fermilab) Support was provided by Mr. William Griffing, Fermilab ES&H Director, who encouraged my participation 81