Multivariate Time Series Analysis

Similar documents
1.B Appendix to Chapter 1

Let. x y. denote a bivariate time series with zero mean.

8. INVERSE Z-TRANSFORM

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

A L A BA M A L A W R E V IE W

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus:

v v at 1 2 d vit at v v 2a d

RL for Large State Spaces: Policy Gradient. Alan Fern

ANOTHER CATEGORY OF THE STOCHASTIC DEPENDENCE FOR ECONOMETRIC MODELING OF TIME SERIES DATA

rank Additionally system of equation only independent atfect Gawp (A) possible ( Alb ) easily process form rang A. Proposition with Definition

UNIVERSAL BOUNDS FOR EIGENVALUES OF FOURTH-ORDER WEIGHTED POLYNOMIAL OPERATOR ON DOMAINS IN COMPLEX PROJECTIVE SPACES

LAPLACE TRANSFORMS. 1. Basic transforms

INTRODUCTION TO LINEAR ALGEBRA

Principle Component Analysis

graph of unit step function t

1. If * is the operation defined by a*b = a b for a, b N, then (2 * 3) * 2 is equal to (A) 81 (B) 512 (C) 216 (D) 64 (E) 243 ANSWER : D

P a g e 5 1 of R e p o r t P B 4 / 0 9

Algebra Of Matrices & Determinants

Mathematics 805 Final Examination Answers

Least squares. Václav Hlaváč. Czech Technical University in Prague

Estimation Theory Notes: Set1

4. Runge-Kutta Formula For Differential Equations

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

RL for Large State Spaces: Policy Gradient. Alan Fern

Chapter 6 Continuous Random Variables and Distributions

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode

T h e C S E T I P r o j e c t

Analysis of Variance and Design of Experiments-II

CHAPTER 6b. NUMERICAL INTERPOLATION

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445

September 20 Homework Solutions

A Demand System for Input Factors when there are Technological Changes in Production

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 10. Waveguides Part 7: Transverse Equivalent Network (TEN)

P a g e 3 6 of R e p o r t P B 4 / 0 9

Supporting information How to concatenate the local attractors of subnetworks in the HPFP

THIS PAGE DECLASSIFIED IAW EO 12958

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics

Introduction to Numerical Integration Part II

Differential Geometry: Conformal Maps

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

Matrix reconstruction with the local max norm

THIS PAGE DECLASSIFIED IAW E

Section 11.5 Estimation of difference of two proportions

Continuous Random Variable X:

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Numerical Methods using the Successive Approximations for the Solution of a Fredholm Integral Equation

CS344: Introduction to Artificial Intelligence

OPERATOR-VALUED KERNEL RECURSIVE LEAST SQUARES ALGORITHM

7. Indefinite Integrals

Advanced Electromechanical Systems (ELE 847)

Chapter 2 Organizing and Summarizing Data. Chapter 3 Numerically Summarizing Data. Chapter 4 Describing the Relation between Two Variables

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

Hidden Markov Models. A Specific Form of Process.. Doubly Stochastic Processes. What a sensible agent must do. A Common Trait

STRAND B: NUMBER THEORY

Stability Analysis for VAR systems. )', a VAR model of order p (VAR(p)) can be written as:

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V

Kinematics Quantities. Linear Motion. Coordinate System. Kinematics Quantities. Velocity. Position. Don t Forget Units!

a = Acceleration Linear Motion Acceleration Changing Velocity All these Velocities? Acceleration and Freefall Physics 114

Lesson Ten. What role does energy play in chemical reactions? Grade 8. Science. 90 minutes ENGLISH LANGUAGE ARTS

Chapter 3 The Schrödinger Equation and a Particle in a Box

Differential Entropy 吳家麟教授

Calculus 2: Integration. Differentiation. Integration

0 for t < 0 1 for t > 0

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

I I I I. NOBLm NOBLE NOBLE S1 JAMES CLAIMS MINING CORPORATION LTD GRID TOPOGRAPHY GEOLOGY 9 MINERAL CLAIMS LEGEND SYMBOL. 00 i. lo 0f 0 Iv SO.

THE DISCRIMINANT & ITS APPLICATIONS

Solutions to Problems from Chapter 2

H = d d q 1 d d q N d d p 1 d d p N exp

PARABOLA. moves such that PM. = e (constant > 0) (eccentricity) then locus of P is called a conic. or conic section.

Method of stationary phase

ELEC 201 Electric Circuit Analysis I Lecture 9(a) RLC Circuits: Introduction

ES.182A Topic 32 Notes Jeremy Orloff

Hoeffding, Azuma, McDiarmid

Chapter 3 Single Random Variables and Probability Distributions (Part 2)

Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics ICTAMI 2003, Alba Iulia

Preview 11/1/2017. Greedy Algorithms. Coin Change. Coin Change. Coin Change. Coin Change. Greedy algorithms. Greedy Algorithms

can be viewed as a generalized product, and one for which the product of f and g. That is, does

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

The Single Particle Path Integral and Its Calculations. Lai Zhong Yuan

The Algebra (al-jabr) of Matrices

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

ORDINARY DIFFERENTIAL EQUATIONS

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral.

Precalculus Chapter P.2 Part 1 of 3. Mr. Chapman Manchester High School

PART V. Wavelets & Multiresolution Analysis

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Logarithmic Functions

V. DEMENKO MECHANICS OF MATERIALS LECTURE 6 Plane Bending Deformation. Diagrams of Internal Forces (Continued)

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov)

C o r p o r a t e l i f e i n A n c i e n t I n d i a e x p r e s s e d i t s e l f

Nonlocal Boundary Value Problem for Nonlinear Impulsive q k Symmetric Integrodifference Equation

Fundamental Theorem of Calculus

Physics 101 Lecture 4 Motion in 2D and 3D

1. Definition: Order Statistics of a sample.

Topics Review Fuel Conversion Efficiency Fuel Air Ratio Volumetric Efficiency Road Load Power Relationships between performance parameters

Mathematics. Area under Curve.

Reinforcement learning

Transcription:

Mulvre me Sere Anl

Le { : } be Mulvre me ere. Denon: () = men vlue uncon o { : } = E[ ] or. (,) = Lgged covrnce mr o { : } = E{[ - ()][ - ()]'} or,

Denon: e me ere { : } onr e jon drbuon o,,, e me e jon drbuon o,,, or ll ne ube,,..., o nd ll coce o.

In ce en μ( ) nd ( ) E μ (,) = E{[ - ][ - ]'} = E{[ + - ][ + - ]'} = E{[ - - ][ 0 - ]'} = ( - ) or,. or.

Denon: e me ere { : } wel onr : or. nd or,. μ() μ (,) = ( - )

In ce () = E{[ + - ][ - ]'} = Cov( +, ) clled e Lgged covrnce mr o e proce { : }

e Cro Correlon Funcon nd e Cro Specrum

Noe: j () = (,j) elemen o (), cov, j nd clled e cro covrnce uncon o j nd. j j 0 jj clled e cro correlon uncon o j nd. 0

) Denon: j e clled e cro pecrum o j j nd. Noe: nce j () j (-) en j () comple. ) I j () = c j () - q j () en c j () clled e Copecrum (Concden pecrl den) nd q j () clled e qudrure pecrum

) I j () = A j () ep{ j ()} en A j () clled e Cro Amplude Specrum nd j () clled e Pe Specrum.

Denon: clled e Specrl Mr pp p p p p j p p F

e Mulvre Wener-Kncn Relon (p-vre) nd p p p p e Σ F d e p p p p F Σ

Lemm: Aume en F() : j ) Pove emdene: *F() 0 * 0, were n comple vecor. ) Hermn:F() = F*() = e Adjon o F() = e comple conjuge rnpoe o F()..e. j () =.

Corrollr: e c F() pove emdene lo men ll qure ubmrce long e dgonl ve pove deermnn Hence j j jj 0 nd or j jj j * j j j jj

Denon: K j j jj = Squred Coerenc uncon Noe: K j

Denon: j j rner uncon oced w j nd.

Applcon nd Emple o Mulvre Specrl Anl

Emple I - Lner Fler

denoe bvre me ere w zero men. Le =..., -, -, 0,,,... : Suppoe e me ere { : } conruced ollow:

e me ere { : } d o be conruced rom { : } b men o Lner Fler. E ' ' ' E E ' ' ' E ' ' '

connung ' ' ' d e ' ' ' d e ' ' ' d e e e ' ' ' d e e e ' ' '

connung e e d e A d u e pecrl den o e me ere { : } : e A

Commen A: A e clled e rner uncon o e lner ler. A clled e Gn o e ler wle rg A clled e Pe S o e ler.

Alo E E E

connung d e d e d A e

u cro pecrum o e bvre me ere : : A e

Commen B: K = Squred Coerenc uncon. A A

Emple II - Lner Fler w ddve noe e oupu

denoe bvre me ere w zero men. Le =..., -, -, 0,,,... : Suppoe e me ere { : } conruced ollow: v e noe {v : } ndependen o e ere { : } (m be we)

E v v E v E E ' ' ' v v E v E ' ' ' vv ' ' ' d e d e e vv

connung e A were A e vv d u e pecrl den o e me ere { : } : A vv

Alo E v E v E E

connung d e d e d A e

u cro pecrum o e bvre me ere : : A e

u K = Squred Coerenc uncon. A A A vv vv Noe o Sgnl Ro

Mulvre me Sere Anl

e Cro Correlon Funcon nd e Cro Specrum

Noe: j () = (,j) elemen o (), cov, j nd clled e cro covrnce uncon o j nd. j j 0 jj clled e cro correlon uncon o j nd. 0

) Denon: j e clled e cro pecrum o j j nd. Noe: nce j () j (-) en j () comple. ) I j () = c j () - q j () en c j () clled e Copecrum (Concden pecrl den) nd q j () clled e qudrure pecrum

) I j () = A j () ep{ j ()} en A j () clled e Cro Amplude Specrum nd j () clled e Pe Specrum. Noe: nd j j e j j e

now j j cov, cov, j cov, j j nd j j j e e j e * j

Denon: K j j jj = Squred Coerenc uncon Noe: K j

Denon: j j rner uncon oced w j nd.

Emple I - Lner Fler

denoe bvre me ere w zero men. Le =..., -, -, 0,,,... : Suppoe e me ere { : } conruced ollow:

u e pecrl den o e me ere { : } : e A Commen : A e clled e rner uncon o e lner ler. A clled e Gn o e ler wle rg A clled e Pe S o e ler.

e cro pecrum o e bvre me ere : : A e

Commen B: K = Squred Coerenc uncon. A A

Emple II - Lner Fler w ddve noe e oupu

denoe bvre me ere w zero men. Le =..., -, -, 0,,,... : Suppoe e me ere { : } conruced ollow: v e noe {v : } ndependen o e ere { : } (m be we)

e e pecrl den o e me ere { : } : A e cro pecrum o e bvre me ere : e A vv

Alo nd or = 0,,,..., m. ) co( ) n( I X X X b ) co( ) n( I Y Y Y b

Fnll b b Y X I b b b b b b X Y I b b b b I comple conjuge o

Noe: nd ) ep( I ) ep( C ) ep( I ) ep( C

Alo nd ) ep( I ) ep( C ) ep( I ) ep( C

Alo nd ) ep( I ) ep( C ) ep( I ) ep( C

e mple cro-pecrum, copecrum & qudrure pecrum

Recll e perodogrm ) co( ) n( I mpoc epecon 4 (). I Smlrl e mpoc epecon o 4 (). An mpoc unbed emor o () cn be obned b dvdng b 4. I

e mple cro pecrum ) ep( ˆ C I

e mple copecrum cˆ ˆ Re C co( )

e mple qudrure pecrum qˆ C Im ˆ n( )

e mple Cro mplude pecrum, Pe pecrum & Squred Coerenc

A Recll Cro Amplude Specrum c q Pe Specrum n q c K Squred Coerenc uncon c q

u er mple couner pr cn be dened n mlr mnner. Nmel ˆ A mple Cro Amplude Specrum ˆ mple Pe Specrum n cˆ q ˆ qˆ cˆ \ Kˆ ˆ ˆ ˆ cˆ ˆ qˆ ˆ mple Squred Coerenc uncon

Conen Emon o e Cro-pecrum ()

Dnell Emor

= e Dnell Emor o e Copecrum d d r r d c d c ˆ ˆ, = e Dnell Emor o e qudrure pecrum d d r r d q d q ˆ ˆ,

Weged Covrnce Emor

ˆ,, c q were w m wm C co ˆ,, w m wm C n : 0,,, w m weg uc w 0 ) 0 w ) w m m m w m re equence o ) w m 0 or m.

Agn once e Copecrum nd Qudrure Specrum ve been emed, e Cro pecrum, Amplude Specrum, Pe Specrum nd Coerenc cn be emed generll ollow ung eer e ) Dnell Emor or b) e weged covrnce emor o c () nd q ():

Nmel Aˆ cˆ qˆ ˆ n ˆ Kˆ cˆ qˆ qˆ cˆ ˆ cˆ ˆ ˆ ˆ qˆ ˆ